Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Am Acad Dermatol ; 89(1): 99-105, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35752277

RESUMEN

BACKGROUND: Although various skin cancer detection devices have been proposed, most of them are not used owing to their insufficient diagnostic accuracies. Laser-induced plasma spectroscopy (LIPS) can noninvasively extract biochemical information of skin lesions using an ultrashort pulsed laser. OBJECTIVE: To investigate the diagnostic accuracy and safety of real-time noninvasive in vivo skin cancer diagnostics utilizing nondiscrete molecular LIPS combined with a deep neural network (DNN)-based diagnostic algorithm. METHODS: In vivo LIPS spectra were acquired from 296 skin cancers (186 basal cell carcinomas, 96 squamous cell carcinomas, and 14 melanomas) and 316 benign lesions in a multisite clinical study. The diagnostic performance was validated using 10-fold cross-validations. RESULTS: The sensitivity and specificity for differentiating skin cancers from benign lesions using LIPS and the DNN-based algorithm were 94.6% (95% CI: 92.0%-97.2%) and 88.9% (95% CI: 85.5%-92.4%), respectively. No adverse events, including macroscopic or microscopic visible marks or pigmentation due to laser irradiation, were observed. LIMITATIONS: The diagnostic performance was evaluated using a limited data set. More extensive clinical studies are needed to validate these results. CONCLUSIONS: This LIPS system with a DNN-based diagnostic algorithm is a promising tool to distinguish skin cancers from benign lesions with high diagnostic accuracy in real clinical settings.


Asunto(s)
Carcinoma Basocelular , Aprendizaje Profundo , Neoplasias Cutáneas , Humanos , Triaje , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/patología , Sensibilidad y Especificidad , Análisis Espectral , Algoritmos
2.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36772407

RESUMEN

Long-wave infrared (LWIR) emissions of laser-induced plasma on solid potassium chloride and acetaminophen tablet surfaces were studied using both a one-dimensional (1-D) linear array detection system and, for the first time, a two-dimensional (2-D) focal plane array (FPA) detection system. Both atomic and molecular infrared emitters in the vicinity of the plasma were identified by analyzing the detected spectral signatures in the infrared region. Time- and space-resolved long-wave infrared emissions were also studied to assess the temporal and spatial behaviors of atomic and molecular emitters in the plasma. These pioneer temporal and spatial investigations of infrared emissions from laser-induced plasma would be valuable to the modeling of plasma evolutions and the advances of the novel LWIR laser-induced breakdown spectroscopy (LIBS). When integrated both temporally (≥200 µs) and spatially using a 2-D FPA detector, the observed intensities and signal-to-noise-ratio (SNR) of single-shot LWIR LIBS signature emissions from intact molecules were considerably enhanced (e.g., with enhancement factors up to 16 and 3.76, respectively, for a 6.62 µm band of acetaminophen molecules) and, in general, comparable to those from the atomic emitters. Pairing LWIR LIBS with conventional ultraviolet-visible-near infrared (UV/Vis/NIR) LIBS, a simultaneous UV/Vis/NIR + LWIR LIBS detection system promises unprecedented capability of in situ, real-time, and stand-off investigation of both atomic and molecular target compositions to detect and characterize a range of chemistries.

3.
Nanotechnology ; 34(5)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36327449

RESUMEN

We demonstrate high-order harmonic generation in Ni-doped CsPbBr3perovskite nanocrystals ablated by nanosecond pulses using chirp-free 35 fs, and chirped 135 fs pulses in the case of single-color pump (800 nm) and a two-color pump (800 and 400 nm). We analyzed the spectral shift, cut-off, and intensity distribution of harmonics in the case of chirped drving pulses compared to chirp-free pulses. It is shown that the presence of Ni dopants and CsPbBr3plasma components improves the harmonics emission. Also, we measured the third-order nonlinear optical (NLO) properties of these nanocrystals using 800 nm, 60 fs, 1 kHz pulses. The variations of measured NLO parameters of CsPbBr3perovskite nanocrystals containing different concentrations of nickel correlate with variations of generated high-order harmonics from laser induced plasmas of studied nanocrystals in terms of harmonics intensity, cut-off, and spectral shift (in case of chirped driving pulses). The spectral shift of the harmonics generated from the Ni-doped CsPbBr3perovskite nanocrystals can be used to form tunable extreme ultraviolet sources.

4.
Sensors (Basel) ; 21(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071392

RESUMEN

A laser-induced breakdown spectroscopy (LIBS) system using a microchip laser for plasma generation is proposed for in-situ analysis of trace minerals in human hair. The LIBS system is more compact and less expensive than conventional LIBS systems, which use flashlamp-excited Q-switched Nd:YAG lasers. Focusing optics were optimized using a Galilean beam expander to compensate for the low emitted pulse energy of the microchip laser. Additionally, hundreds of generated LIBS spectra were accumulated to improve the signal-to-noise ratio of the measurement system, and argon gas was injected at the irradiation point to enhance plasma intensity. LIBS spectra of human hair in the UV to near IR regions were investigated. Relative mass concentrations of Ca, Mg, and Zn were analyzed in hairs obtained from five subjects using the intensity of C as a reference. The results coincide well with those measured via inductively coupled argon plasma mass spectrometry. The lowest detectable concentrations of the measured LIBS spectra were 9.0 ppm for Mg, 27 ppm for Zn, and 710 ppm for Ca. From these results, we find that the proposed LIBS system based on a microchip laser is feasible for the analysis of trace minerals in human hair.


Asunto(s)
Láseres de Estado Sólido , Oligoelementos , Humanos , Luz , Análisis Espectral , Oligoelementos/análisis
6.
Lasers Med Sci ; 33(6): 1225-1236, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29453616

RESUMEN

Bone may be similar to geological formulations in many ways. Therefore, it may be logical to apply laser-based geological techniques in bone research. The mineral and element oxide composition of bioapatite can be estimated by mathematical models. Laser-induced plasma spectrometry (LIPS) has long been used in geology. This method may provide a possibility to determine the composition and concentration of element oxides forming the inorganic part of bones. In this study, we wished to standardize the LIPS technique and use mathematical calculations and models in order to determine CaO distribution and bone homogeneity using bovine shin bone samples. We used polished slices of five bovine shin bones. A portable LIPS instrument using high-power Nd++YAG laser pulses has been developed (OpLab, Budapest). Analysis of CaO distribution was carried out in a 10 × 10 sampling matrix applying 300-µm sampling intervals. We assessed both cortical and trabecular bone areas. Regions of interest (ROI) were determined under microscope. CaO peaks were identified in the 200-500 nm wavelength range. A mathematical formula was used to calculate the element oxide composition (wt%) of inorganic bone. We also applied two accepted mathematical approaches, the Bartlett's test and frequency distribution curve-based analysis, to determine the homogeneity of CaO distribution in bones. We were able to standardize the LIPS technique for bone research. CaO concentrations in the cortical and trabecular regions of B1-5 bones were 33.11 ± 3.99% (range 24.02-40.43%) and 27.60 ± 7.44% (range 3.58-39.51%), respectively. CaO concentrations highly corresponded to those routinely determined by ICP-OES. We were able to graphically demonstrate CaO distribution in both 2D and 3D. We also determined possible interrelations between laser-induced craters and bone structure units, which may reflect the bone structure and may influence the heterogeneity of CaO distributions. By using two different statistical methods, we could confirm if bone samples were homogeneous or not with respect to CaO concentration distribution. LIPS, a technique previously used in geology, may be included in bone research. Assessment of element oxide concentrations in the inorganic part of bone, as well as mathematical calculations may be useful to determine the content of CaO and other element oxides in bone, further analyze bone structure and homogeneity and possibly apply this research to normal, as well as diseased bones.


Asunto(s)
Densidad Ósea , Huesos/química , Geología/instrumentación , Rayos Láser , Gases em Plasma/química , Análisis Espectral/métodos , Animales , Huesos/diagnóstico por imagen , Compuestos de Calcio/análisis , Hueso Esponjoso/química , Hueso Esponjoso/diagnóstico por imagen , Bovinos , Modelos Biológicos , Modelos Teóricos , Óxidos/análisis , Óxidos/química , Espectrofotometría Atómica , Estadística como Asunto , Tomografía Computarizada por Rayos X
7.
Anal Bioanal Chem ; 407(25): 7537-62, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26229023

RESUMEN

Laser-induced breakdown spectroscopy (LIBS) has become an established analytical atomic spectrometry technique and is valued for its very compelling set of advantageous analytical and technical characteristics. It is a rapid, versatile, non-contact technique, which is capable of providing qualitative and quantitative analytical information for practically any sample, in a virtually non-destructive way, without any substantial sample preparation. The instrumentation is simple, robust, compact, and even enables remote analysis. This review attempts to give a critical overview of the diverse progress of the field, focusing on the results of the last five years. The advancement of LIBS instrumentation and data evaluation is discussed in detail and selected results of some prominent applications are also described.

8.
Orv Hetil ; 155(45): 1783-93, 2014 Nov 09.
Artículo en Húngaro | MEDLINE | ID: mdl-25362641

RESUMEN

The structural similarities between the inorganic component of bone tissue and geological formations make it possible that mathematic models may be used to determine weight percentage composition of different mineral element oxides constituting the inorganic component of bone tissue. The determined weight percentage composition can be verified with the determination of element oxide concentration values by laser induced plasma spectroscopy and inductively coupled plasma optical emission spectrometry. It can be concluded from calculated weight percentage composition of the inorganic component of bone tissue and laboratory analyses that the properties of bone tissue are determined primarily by hydroxylapatite. The inorganic bone structure can be studied well by determining the calcium oxide concentration distribution using the laser induced plasma spectroscopy technique. In the present study, thin polished bone slides prepared from male bovine tibia were examined with laser induced plasma spectroscopy in a regular network and combined sampling system to derive the calculated calcium oxide concentration distribution. The superficial calcium oxide concentration distribution, as supported by "frequency distribution" curves, can be categorized into a number of groups. This, as such, helps in clearly demarcating the cortical and trabecular bone structures. Following analyses of bovine tibial bone, the authors found a positive association between the attenuation value, as determined by quantitative computer tomography and the "ρ" density, as used in geology. Furthermore, the calculated "ρ" density and the measured average calcium oxide concentration values showed inverse correlation.


Asunto(s)
Huesos/química , Compuestos de Calcio/análisis , Técnicas de Química Analítica/métodos , Rayos Láser , Modelos Teóricos , Óxidos/análisis , Oligoelementos/análisis , Animales , Matriz Ósea/química , Bovinos , Geología , Masculino , Distribución Tisular
9.
Anal Chim Acta ; 1289: 342198, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38245203

RESUMEN

BACKGROUND: The molecular isotopologues in laser-induced plasma exhibit riddling emission behaviors in terms of wavelength, intensity, and temporal evolution of spectra due to the isotope effect. Although this phenomenon introduces uncertainty to isotope analyses based on molecular spectra, its underlying mechanism remains undisclosed. RESULTS: In this study, laser-induced breakdown spectroscopy (LIBS) is employed to identify the emission behavior of hydrogen, oxygen, and nitrogen isotopologues in a plasma plume. The goal is to discern the details of the isotope effect and mitigate resulting uncertainty. The molecular emissions of hydroxyl (OH) and imidogen (NH) were measured from plasma ablated on isotopically enriched water samples. Time-resolved detection clearly reveals distinct isotopic disparities in intensity variation and optimum gate delay, which were attributed to plasma thermo-hydrodynamics. Lighter isotopologues exhibit earlier and faster associations than their heavier counterparts due to their fast reaction rates and expansion velocities. The extent of the isotope effect hinged on plasma characteristics governed by measurement conditions. Consequently, comparing spectral intensity between molecular isotopologues cannot directly indicate the nominal isotope abundance of the sample. To address it, a compensation strategy has been devised, quantifying isotope effects through parameters like the slope and optimum delay of time-resolved detection. The approach successfully predicts nominal isotope abundance using compensated intensity ratios, with an absolute bias of less than 3 %. SIGNIFICANCE: This study not only offered fundamental insights into the isotope effect in laser-induced plasma but also proposed an alternative method for isotope quantification that circumvents complicated calibration processes.

10.
Anal Chim Acta ; 1309: 342674, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772657

RESUMEN

BACKGROUND: Laser-induced breakdown spectroscopy (LIBS) is extensively utilized a range of scientific and industrial detection applications owing to its capability for rapid, in-situ detection. However, conventional LIBS models are often tailored to specific LIBS systems, hindering their transferability between LIBS subsystems. Transfer algorithms can adapt spectral models to subsystems, but require access to the datasets of each subsystem beforehand, followed by making individual adjustments for the dataset of each subsystem. It is clear that a method to enhance the inherent transferability of spectral original models is urgently needed. RESULTS: We proposed an innovative fusion methodology, named laser-induced breakdown spectroscopy fusion laser-induced plasma acoustic spectroscopy (LIBS-LIPAS), to enhance the transferability of support vector machine (SVM) original models across LIBS systems with varying laser beams. The methodology was demonstrated using nickel-based high-temperature alloy samples. Here, the area-full width at half maximum (AFCEI) Composite Evaluation Index was proposed for extracting critical features from LIBS. Further enhancing the transferability of the model, the laser-induced plasma acoustic signal was transformed from the time domain to the frequency domain. Subsequently, the feature-level fusion method was employed to improve the classification accuracy of the transferred LIBS system to 97.8 %. A decision-level fusion approach (amalgamating LIBS, LIPAS, and feature-level fusion models) achieved an exemplary accuracy of 99 %. Finally, the adaptability of the method was demonstrated using titanium alloy samples. SIGNIFICANCE AND NOVELTY: In this work, based on plasma radiation models, we simultaneously captured LIBS and LIPAS, and proposed the fusion of these two distinct yet origin-consistent signals, significantly enhancing the transferability of the LIBS original model. The methodology proposed holds significant potential to advance LIBS technology and broaden its applicability in analytical chemistry research and industrial applications.

11.
Materials (Basel) ; 16(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37512264

RESUMEN

As an advanced connection technology for large thick-walled components, narrow gap laser welding has the advantages of small heat input and high efficiency and quality. However, porosity defects are prone to occur inside the weld due to the complex welding environment. In this study, the influence of the process parameters and pollutants such as water and oil on the porosity defect were explored. The action mechanism of water on the electron temperature and spectral intensity of the laser-induced plasma was analyzed. The results showed that the spectral intensity during narrow gap laser welding was weaker than that of flat plate butt welding. Under the optimal welding process conditions, the electron temperature during narrow gap laser self-fusion welding was calculated as 7413.3 K by the Boltzmann plot method. The electron density was 5.6714 × 1015 cm-3, conforming to the thermodynamic equilibrium state. With six groups of self-fusion welding parameters, only sporadic porosity defects were observed according to the X-ray detection. When there was water on the base metal surface, a large number of dense pores were observed on the weld surface and in the weld through X-ray inspection. Compared with the spectral data obtained under the normal process, the relative light intensity of the spectrometer in the whole band was reduced. The electron temperature decreased to the range of 6900 to 7200 K, while the electron density increased. The spectrum variation during narrow gap laser wire filling welding was basically the same as that of laser self-fusion welding. The porosity defects caused by water and oil pollutants in the laser welding could be effectively identified based on the intensity of the Fe I spectral lines.

12.
Heliyon ; 9(11): e21195, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954347

RESUMEN

In this work, we proposed a laser-induced current (LIC) method to investigate the grain-size dependence of the plasma of table sugar induced by a nanosecond (ns) pulsed ultraviolet laser in the size range of <180 µm->550 µm and achieve the lower power consumption in measurement. Under multiple laser irradiations and an external electric field (Vb) of 200 V, the LIC variation's (ΔIp) standard deviation and variance were 0.53 nA and 0.05 nA, respectively, indicating the relatively small systematic error during the testing process. The Vb causes a decrease in the possibility of electron-ion complexation and accelerates the separation, resulting in an increase in ΔIp with Vb. With increasing grain size (diameter D) of table sugar, ΔI demonstrate a valley-like behaviour and 250-380 µm is the critical range Dc where ΔI is very weak and considerably depends on the Vb with the slope of 0.031 nA/V. At D > 550 µm and Vb = 5 V, ΔI intensities monotonically rise by 30 % when D surpasses Dc. In this instance, the energy was the main contributor to the LIC signal during plasma generation and expansion. While D is less than Dc, ΔIp increases by 27 % at D ≤ 180 µm and Vb = 5 V. The yield stress is the main reason for the formation of plasma with high temperature and density in this situation because the sugar behaves like an elastic solid. The reason for such a LIC variation trend was discussed, which can be explained by considering the morphological, thermal and mechanical properties competing with each other. The present result suggests that the LIC method enables non-contact characterisation of sugar particle size at low-power consumption.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122536, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841136

RESUMEN

Vibration-rotation signatures of intact water and complex organic molecules in vapor phase were detected, identified, and mode-assigned in the long-wave infrared emissions of laser-induced plasma. Time resolved long-wave infrared emissions were also studied to assess the temporal behaviors of these gaseous molecular emitters. The temperatures of these molecular vapors in the hot and transient vapor-plasma plume of the laser-induced plasma were estimated to be well above room temperatures during their existence. The temperatures of the water vapors in the vapor-plasma plume were found to be evolving with time and ranging from > 2700 K at 10 µs to âˆ¼ 1500 K at 200 µs after plasma initiations using HITRAN/HAPI based molecular spectral analysis. The observations in the present study comprise (to our knowledge) the first direct evidence of hot water and intact complex organic gas molecules in the vicinity of the laser-induced plasma. The findings presented in this work serve as an important step forward in improving the understanding of the thermodynamic characteristics (such as temperatures and phases) of intact complex molecules in a hot and intricate system such as the vapor-plasma plume of a laser-induced plasma, which is essential in both fundamental studies of plasmas and of laser-induced plasma based analytical applications.

14.
Materials (Basel) ; 16(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37110099

RESUMEN

Single-shot ultrafast multi-frame imaging technology plays a crucial role in the observation of laser-induced plasma. However, there are many challenges in the application of laser processing, such as technology fusion and imaging stability. To provide a stable and reliable observation method, we propose an ultrafast single-shot multi-frame imaging technology based on wavelength polarization multiplexing. Through the frequency doubling and birefringence effects of the BBO and the quartz crystal, the 800 nm femtosecond laser pulse was frequency doubled to 400 nm, and a sequence of probe sub-pulses with dual-wavelength and different polarization was generated. The coaxial propagation and framing imaging of multi-frequency pulses provided stable imaging quality and clarity, as well as high temporal/spatial resolution (200 fs and 228 lp/mm). In the experiments involving femtosecond laser-induced plasma propagation, the probe sub-pulses measured their time intervals by capturing the same results. Specifically, the measured time intervals were 200 fs between the same color pulses and 1 ps between the adjacent different. Finally, based on the obtained system time resolution, we observed and revealed the evolution mechanism of femtosecond laser-induced air plasma filaments, the multifilament propagation of femtosecond laser in fused silica, and the influence mechanism of air ionization on laser-induced shock waves.

15.
Appl Spectrosc ; 77(11): 1253-1263, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37700694

RESUMEN

Nanoparticle-enhanced laser-induced breakdown spectroscopy (NELIBS) is an optical emission technique based on the laser-induced plasma (LIP) on a sample after the deposition of plasmonic nanoparticles (NPs) on its surface. The employment of the NPs allows an enhancement of the signal with respect to the one obtained with the conventional laser-induced breakdown spectroscopy (LIBS) enabling an extremely high sensitivity and very low limits of detection compared with the LIBS performance. Recently, NELIBS was used for monitoring the NP protein corona formation. As a matter of fact, the NPs in the presence of proteins adsorbed on the surface change their surface properties, therefore the sensing of protein corona formation was possible because of the strong dependence of NELIBS effects on the NP organization on the substrate, which in turn is deeply affected by the surface properties of the NPs. A correlation was found between NELIBS enhancement and the structure of the NP-protein conjugate in terms of protein content absorbed on the NP surface. An interesting question that was not yet exploited regards the role of LIP during the NELIBS when the NPs are covered with proteins. Since the presence of organic matter can strongly quench the LIP emission, the study of the LIP properties during protein corona sensing by NELIBS is of interest for two main reasons: (i) to understand whether the plasma parameters can vary in the presence of proteins adsorbed on the NP surface and (ii) to investigate how and if the plasma parameters themselves can influence the NELIBS processes. With this aim, the study of plasma parameters, i.e., electron densities and temperatures, during the sensing of NP protein corona by NELIBS is presented and discussed. The NPs used during these experiments were ultrapure gold NPs (AuNPs) produced by pulsed laser ablation in liquid, which are stable without any stabilizer. The human serum albumin protein is used to form AuNP-protein conjugates further deposited on a titanium target in NELIBS measurements. Dynamic light scattering, surface plasmon resonance spectroscopy, and laser Doppler electrophoresis for ζ-potential determination were employed to monitor the protein coverage of NP surface in the conjugate solutions before the NELIBS measurements.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Corona de Proteínas , Humanos , Corona de Proteínas/química , Nanopartículas del Metal/química , Oro/química , Proteínas/química , Nanopartículas/química , Análisis Espectral , Rayos Láser
16.
Appl Spectrosc ; 76(11): 1300-1306, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35850594

RESUMEN

Reported here is a rapid and simplified approach for modeling the temporal evolution of the plasma temperature. The use of only two emission lines makes this technique simple, accurate, and fast. Usually, multiple emission lines are required for estimating plasma temperature using Boltzmann/Saha-Boltzmann plots. But, in several cases, either multiple emission lines are not available for every element and/or sufficient lines are not free from self-absorption effect. The proposed method greatly increases the possibility of plasma temperature estimation as it requires only two lines. A brass target was used to generate the plasma, using a conventional single-pulse nanosecond laser of ∼7 ns pulse duration at an excitation wavelength of 532 nm. The initial temperature of plasma and the radiation decay constant were estimated using a proposed intensity ratio model. The results were estimated using various combinations of emission lines, which show an excellent agreement with the values obtained using the previously reported method.

17.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500851

RESUMEN

Carbon-containing plasma is an attractive medium for generation of harmonics of laser pulses in the extreme ultraviolet range. We ablate two metal carbide (B4C and Cr3C2) nanoparticles and silicon carbide (SiC) nanoparticles and generate harmonics after propagation of 35 fs pulses through the laser-induced plasmas. We analyze the spectra, spectral shifts, and splitting of harmonics from nanoparticles-contained plasmas, which demonstrate the chirp-related harmonic cut-off scaling. In addition, we present the simplified two-color pump model calculations of HHG based on the strong field approximation.

18.
Appl Spectrosc ; 76(8): 926-936, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34494912

RESUMEN

Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) is employed to detect tiny amounts of mass ablated from macroscopic specimens and to measure chemical images of microstructured samples with high spatial resolution. Frequency-doubled fs-pulses (length 400 fs, wavelength 520 nm) are tightly focused with a Schwarzschild microscope objective to ablate the sample surface. The optical emission of laser-induced plasma (LIP) is collected by the objective and measured with an echelle spectrometer equipped with an intensified charge-coupled device camera. A second fs-laser pulse (1040 nm) in orthogonal beam arrangement is reheating the LIP. The optimization of the experimental setup and measurement parameters enables us to record single-pulse fs-LIBS spectra of 5 nm thin metal layers with an ablated mass per pulse of 100 femtogram (fg) for Cu and 370 fg for Ag films. The orthogonal double-pulse fs-LIBS enhances the recorded emission line intensities (two to three times) and improves the contrast of chemical images in comparison to single-pulse measurements. The size of ablation craters (diameters as small as 1.5 µm) is not increased by the second laser pulse. The combination of minimally invasive sampling by a tightly focused low-energy fs-pulse and of strong enhancement of plasma emission by an orthogonal high-energy fs-pulse appears promising for future LIBS chemical imaging with high spatial resolution and with high spectrochemical sensitivity.

19.
Front Optoelectron ; 14(1): 37-63, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36637782

RESUMEN

Developing efficient and robust terahertz (THz) sources is of incessant interest in the THz community for their wide applications. With successive effort in past decades, numerous groups have achieved THz wave generation from solids, gases, and plasmas. However, liquid, especially liquid water has never been demonstrated as a THz source. One main reason leading the impediment is that water has strong absorption characteristics in the THz frequency regime.A thin water film under intense laser excitation was introduced as the THz source to mitigate the considerable loss of THz waves from the absorption. Laser-induced plasma formation associated with a ponderomotive force-induced dipole model was proposed to explain the generation process. For the one-color excitation scheme, the water film generates a higher THz electric field than the air does under the identical experimental condition. Unlike the case of air, THz wave generation from liquid water prefers a sub-picosecond (200-800 fs) laser pulse rather than a femtosecond pulse (~50 fs). This observation results from the plasma generation process in water.For the two-color excitation scheme, the THz electric field is enhanced by one-order of magnitude in comparison with the one-color case. Meanwhile, coherent control of the THz field is achieved by adjusting the relative phase between the fundamental pulse and the second-harmonic pulse.To eliminate the total internal reflection of THz waves at the water-air interface of a water film, a water line produced by a syringe needle was used to emit THz waves. As expected, more THz radiation can be coupled out and detected. THz wave generation from other liquids were also tested.

20.
Appl Spectrosc ; 75(3): 287-298, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33103491

RESUMEN

Laser-induced carbon plasma in air undergoes various physicochemical processes that affect the kinetic chemistry of species of the plasma plume. We report the time- and space-resolved characterization of carbon plasma produced by infrared nanosecond laser into air at atmospheric pressure. Investigating the laser fluence effect highlights dissociation for fluences >40 J cm-2, and recombination processes in the fluence range of 10-40 J cm-2. Emission intensities of C2 and CN molecules undergo an enhancement at specific spatiotemporal locations in the laser-induced plasma. At a value of 27 J/cm2 and 0.8 mm from the plasma ignition, molecular band formation is favored for the specific temperature and density values of 1.7 × 1015 cm-3 and 9502 K. The vibrational temperatures of molecules are determined using nonlinear spectral data fitting program. The shock front between laser-induced carbon plasma and air may lead to a significant shock wave that affects the occurrence of molecular CN and C2 formation. This can be explained by the distinct temperatures exhibited by CN and C2 molecules with laser fluence. The atomic carbon travels farther to react and form C2, where the ionization-recombination process plays a significant role in its formation. Collisions of C with N neutrals and N2 molecules are the plausible origin of CN generation. Moreover, the density of CN in the plasma depends on C2 molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA