Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.054
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(11): 2767-2784.e23, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38733989

RESUMEN

The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.


Asunto(s)
Cerebelo , Neuronas , Retina , Animales , Femenino , Masculino , Ratones , Cerebelo/metabolismo , Cerebelo/irrigación sanguínea , Cerebelo/citología , Canales Iónicos/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Retina/citología , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Vasos Retinianos/metabolismo
2.
Annu Rev Immunol ; 34: 243-64, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26907217

RESUMEN

Galectins are a family of mammalian carbohydrate-binding proteins expressed by many cell types. Galectins can function intracellularly and can also be secreted to bind to cell surface glycoconjugate counterreceptors. Some galectins are made by immune cells, whereas other galectins are secreted by different cell types, such as endothelial or epithelial cells, and bind to immune cells to regulate immune responses. Galectin binding to a single glycan ligand is a low-affinity interaction, but the multivalency of galectins and the glycan ligands presented on cell surface glycoproteins results in high-avidity binding that can reversibly scaffold or cluster these glycoproteins. Galectin binding to a specific glycoprotein counterreceptor is regulated in part by the repertoire of glycosyltransferase enzymes (which make the glycan ligands) expressed by that cell, and the effect of galectin binding results from clustering or retention of specific glycoprotein counterreceptors bearing these specific ligands.


Asunto(s)
Galectinas/metabolismo , Glicosiltransferasas/metabolismo , Inmunidad , Animales , Carbohidratos/inmunología , Citoesqueleto , Galectinas/inmunología , Glicoproteínas/metabolismo , Humanos , Unión Proteica , Agregación de Receptores
3.
EMBO J ; 42(4): e112030, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36594262

RESUMEN

B lymphocytes recognize bacterial or viral antigens via different classes of the B cell antigen receptor (BCR). Protrusive structures termed microvilli cover lymphocyte surfaces, and are thought to perform sensory functions in screening antigen-bearing surfaces. Here, we have used lattice light-sheet microscopy in combination with tailored custom-built 4D image analysis to study the cell-surface topography of B cells of the Ramos Burkitt's Lymphoma line and the spatiotemporal organization of the IgM-BCR. Ramos B-cell surfaces were found to form dynamic networks of elevated ridges bridging individual microvilli. A fraction of membrane-localized IgM-BCR was found in clusters, which were mainly associated with the ridges and the microvilli. The dynamic ridge-network organization and the IgM-BCR cluster mobility were linked, and both were controlled by Arp2/3 complex activity. Our results suggest that dynamic topographical features of the cell surface govern the localization and transport of IgM-BCR clusters to facilitate antigen screening by B cells.


Asunto(s)
Linfoma de Burkitt , Receptores de Antígenos de Linfocitos B , Humanos , Receptores de Antígenos de Linfocitos B/metabolismo , Membrana Celular/metabolismo , Linfocitos B , Linfoma de Burkitt/metabolismo , Inmunoglobulina M/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(35): e2408843121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163329

RESUMEN

The topological physics has sparked intensive investigations into topological lattices in photonic, acoustic, and mechanical systems, powering counterintuitive effects otherwise inaccessible with usual settings. Following the success of these endeavors in classical wave dynamics, there has been a growing interest in establishing their topological counterparts in diffusion. Here, we propose an additional real-space dimension in diffusion, and the system eigenvalues are transformed from "imaginary" to "real." By judiciously tailoring the effective Hamiltonian with coupling networks, localized and delocalized topological modes are realized in heat transfer. Simulations and experiments in active thermal lattices validate the effectiveness of the proposed theoretical strategy. This approach can be applied to establish various topological lattices in diffusion systems, offering insights into engineering topologically protected edge states in dynamic diffusive scenarios.

5.
Proc Natl Acad Sci U S A ; 121(39): e2410968121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39284065

RESUMEN

Hydrogen, the lightest and most abundant element in the universe, plays essential roles in a variety of clean energy technologies and industrial processes. For over a century, it has been known that hydrogen can significantly degrade the mechanical properties of materials, leading to issues like hydrogen embrittlement. A major challenge that has significantly limited scientific advances in this field is that light atoms like hydrogen are difficult to image, even with state-of-the-art microscopic techniques. To address this challenge, here, we introduce Atom-H, a versatile and generalizable machine learning-based framework for imaging hydrogen atoms at the atomic scale. Using a high-resolution electron microscope image as input, Atom-H accurately captures the distribution of hydrogen atoms and local stresses at lattice defects, including dislocations, grain boundaries, cracks, and phase boundaries. This provides atomic-scale insights into hydrogen-governed mechanical behaviors in metallic materials, including pure metals like Ni, Fe, Ti and alloys like FeCr. The proposed framework has an immediate impact on current research into hydrogen embrittlement and is expected to have far-reaching implications for mapping "invisible" atoms in other scientific disciplines.

6.
Proc Natl Acad Sci U S A ; 121(30): e2401970121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008668

RESUMEN

In topological magnetic materials, the topology of the electronic wave function is strongly coupled to the structure of the magnetic order. In general, ferromagnetic Weyl semimetals generate a strong anomalous Hall conductivity (AHC) due to a large Berry curvature that scales with their magnetization. In contrast, a comparatively small AHC is observed in noncollinear antiferromagnets. We investigated HoAgGe, an antiferromagnetic (AFM) Kagome spin-ice compound, which crystallizes in a hexagonal ZrNiAl-type structure in which Ho atoms are arranged in a distorted Kagome lattice, forming an intermetallic Kagome spin-ice state in the ab-plane. It exhibits a large topological Hall resistivity of ~1.6 µΩ-cm at 2.0 K in a field of ~3 T owing to the noncoplanar structure. Interestingly, a total AHC of 2,800 Ω-1 cm-1 is observed at ~45 K, i.e., 4 TN, which is quite unusual and goes beyond the normal expectation considering HoAgGe as an AFM Kagome spin-ice compound with a TN of ~11 K. We demonstrate further that the AHC below TN results from the nonvanishing Berry curvature generated by the formation of Weyl points under the influence of the external magnetic field, while the skew scattering led by Kagome spins dominates above the TN. These results offer a unique opportunity to study frustration in AFM Kagome lattice compounds.

7.
Proc Natl Acad Sci U S A ; 121(40): e2404973121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39302998

RESUMEN

Replica symmetry breaking (RSB) for spin glasses predicts that the equilibrium configuration at two different magnetic fields are maximally decorrelated. We show that this theory presents quantitative predictions for this chaotic behavior under the application of a vanishing external magnetic field, in the crossover region where the field intensity scales proportionally to [Formula: see text], being N the system size. We show that RSB theory provides universal predictions for chaotic behavior: They depend only on the zero-field overlap probability function [Formula: see text] and are independent of other system features. In the infinite volume limit, each spin-glass sample is characterized by an infinite number of states that have a tree-like structure. We generate the corresponding probability distribution through efficient sampling using a representation based on the Bolthausen-Sznitman coalescent. Using solely [Formula: see text] as input we can analytically compute the statistics of the states in the region of vanishing magnetic field. In this way, we can compute the overlap probability distribution in the presence of a small vanishing field and the increase of chaoticity when increasing the field. To test our computations, we have simulated the Bethe lattice spin glass and the 4D Edwards-Anderson model, finding in both cases excellent agreement with the universal predictions.

8.
Proc Natl Acad Sci U S A ; 121(24): e2311180121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830101

RESUMEN

As a sustainable and promising approach of removing of nitrogen oxides (NOx), catalytic reduction of NOx with H2 is highly desirable with a precise understanding to the structure-activity relationship of supported catalysts. In particular, the dynamic evolution of support at microscopic scale may play a critical role in heterogeneous catalysis, however, identifying the in situ structural change of support under working condition with atomic precision and revealing its role in catalysis is still a grand challenge. Herein, we visually capture the surface lattice expansion of WO3-x support in Pt-WO3-x catalyst induced by NO in the exemplified reduction of NO with H2 using in situ transmission electron microscopy and first reveal its important role in enhancing catalysis. We find that NO can adsorb on the oxygen vacancy sites of WO3-x and favorably induce the reversible stretching of W-O-W bonds during the reaction, which can reduce the adsorption energy of NO on Pt4 centers and the energy barrier of the rate-determining step. The comprehensive studies reveal that lattice expansion of WO3-x support can tune the catalytic performance of Pt-WO3-x catalyst, leading to 20% catalytic activity enhancement for the exemplified reduction of NO with H2. This work reveals that the lattice expansion of defective support can tune and optimize the catalytic performance at the atomic scale.

9.
Proc Natl Acad Sci U S A ; 120(28): e2305172120, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399415

RESUMEN

Chemical gardens are complex, often macroscopic, structures formed by precipitation reactions. Their thin walls compartmentalize the system and adjust in size and shape if the volume of the interior reactant solution is increased by osmosis or active injection. Spatial confinement to a thin layer is known to result in various patterns including self-extending filaments and flower-like patterns organized around a continuous, expanding front. Here, we describe a cellular automaton model for this type of self-organization, in which each lattice site is occupied by one of the two reactants or the precipitate. Reactant injection causes the random replacement of precipitate and generates an expanding near-circular precipitate front. If this process includes an age bias favoring the replacement of fresh precipitate, thin-walled filaments arise and grow-like in the experiments-at the leading tip. In addition, the inclusion of a buoyancy effect allows the model to capture various branched and unbranched chemical garden shapes in two and three dimensions. Our results provide a model of chemical garden structures and highlight the importance of temporal changes in the self-healing membrane material.

10.
Proc Natl Acad Sci U S A ; 120(26): e2302541120, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339199

RESUMEN

We propose a first-principles model of minimum lattice thermal conductivity ([Formula: see text]) based on a unified theoretical treatment of thermal transport in crystals and glasses. We apply this model to thousands of inorganic compounds and find a universal behavior of [Formula: see text] in crystals in the high-temperature limit: The isotropically averaged [Formula: see text] is independent of structural complexity and bounded within a range from ∼0.1 to ∼2.6 W/(m K), in striking contrast to the conventional phonon gas model which predicts no lower bound. We unveil the underlying physics by showing that for a given parent compound, [Formula: see text] is bounded from below by a value that is approximately insensitive to disorder, but the relative importance of different heat transport channels (phonon gas versus diffuson) depends strongly on the degree of disorder. Moreover, we propose that the diffuson-dominated [Formula: see text] in complex and disordered compounds might be effectively approximated by the phonon gas model for an ordered compound by averaging out disorder and applying phonon unfolding. With these insights, we further bridge the knowledge gap between our model and the well-known Cahill-Watson-Pohl (CWP) model, rationalizing the successes and limitations of the CWP model in the absence of heat transfer mediated by diffusons. Finally, we construct graph network and random forest machine learning models to extend our predictions to all compounds within the Inorganic Crystal Structure Database (ICSD), which were validated against thermoelectric materials possessing experimentally measured ultralow κL. Our work offers a unified understanding of [Formula: see text], which can guide the rational engineering of materials to achieve [Formula: see text].

11.
Proc Natl Acad Sci U S A ; 120(30): e2302561120, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37467270

RESUMEN

Metal-organic frameworks (MOFs), which possess a high degree of crystallinity and a large surface area with tunable inorganic nodes and organic linkers, exhibit high stimuli-responsiveness and molecular adsorption selectivity that enable various applications. The adsorption in MOFs changes the crystalline structure and elastic moduli. Thus, the coexistence of adsorbed/desorbed sites makes the host matrices elastically heterogeneous. However, the role of elastic heterogeneity in the adsorption-desorption transition has been overlooked. Here, we show the asymmetric role of elastic heterogeneity in the adsorption-desorption transition. We construct a minimal model incorporating adsorption-induced lattice expansion/contraction and an increase/decrease in the elastic moduli. We find that the transition is hindered by the entropic and energetic effects which become asymmetric in the adsorption process and desorption process, leading to the strong hysteretic nature of the transition. Furthermore, the adsorbed/desorbed sites exhibit spatially heterogeneous domain formation, implying that the domain morphology and interfacial area between adsorbed/desorbed sites can be controlled by elastic heterogeneity. Our results provide a theoretical guideline for designing soft porous crystals with tunable adsorption hysteresis and the dispersion and domain morphology of adsorbates using elastic heterogeneity.

12.
Proc Natl Acad Sci U S A ; 120(35): e2304294120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37607226

RESUMEN

Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.

13.
Proc Natl Acad Sci U S A ; 120(50): e2312224120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38051768

RESUMEN

To master the activation law and mechanism of surface lattice oxygen for the oxygen evolution reaction (OER) is critical for the development of efficient water electrolysis. Herein, we propose a strategy for triggering lattice-oxygen oxidation and enabling non-concerted proton-electron transfers during OER conditions by substituting Al in La0.3Sr0.7CoO3-δ. According to our experimental data and density functional theory calculations, the substitution of Al can have a dual effect of promoting surface reconstruction into active Co oxyhydroxides and activating deprotonation on the reconstructed oxyhydroxide, inducing negatively charged oxygen as an active site. This leads to a significant improvement in the OER activity. Additionally, Al dopants facilitate the preoxidation of active cobalt metal, which introduces great structural flexibility due to elevated O 2p levels. As OER progresses, the accumulation of oxygen vacancies and lattice-oxygen oxidation on the catalyst surface leads to the termination of Al3+ leaching, thereby preventing further reconstruction. We have demonstrated a promising approach to achieving tunable electrochemical reconstruction by optimizing the electronic structure and gained a fundamental understanding of the activation mechanism of surface oxygen sites.

14.
Proc Natl Acad Sci U S A ; 120(20): e2300860120, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155855

RESUMEN

Photonic gauge potentials, including scalar and vector ones, play fundamental roles in emulating photonic topological effects and for enabling intriguing light transport dynamics. While previous studies mainly focus on manipulating light propagation in uniformly distributed gauge potentials, here we create a series of gauge-potential interfaces with different orientations in a nonuniform discrete-time quantum walk and demonstrate various reconfigurable temporal-refraction effects. We show that for a lattice-site interface with the potential step along the lattice direction, the scalar potentials can yield total internal reflection (TIR) or Klein tunneling, while vector potentials manifest direction-invariant refractions. We also reveal the existence of penetration depth for the temporal TIR by demonstrating frustrated TIR with a double lattice-site interface structure. By contrast, for an interface emerging in the time-evolution direction, the scalar potentials have no effect on the packet propagation, while the vector potentials can enable birefringence, through which we further create a "temporal superlens" to achieve time-reversal operations. Finally, we experimentally demonstrate electric and magnetic Aharonov-Bohm effects using combined lattice-site and evolution-step interfaces of either scalar or vector potential. Our work initiates the creation of artificial heterointerfaces in synthetic time dimension by employing nonuniformly and reconfigurable distributed gauge potentials. This paradigm may find applications in optical pulse reshaping, fiber-optic communications, and quantum simulations.

15.
Proc Natl Acad Sci U S A ; 120(27): e2305755120, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364103

RESUMEN

Thermal chirality, generically referring to the handedness of heat flux, provides a significant possibility for modern heat control. It may be realized with the thermal Hall effect yet at the high cost of strong magnetic fields and extremely low temperatures. Here, we reveal magnet-free and room-temperature Hall-like heat transfer in an active thermal lattice composed of a stationary solid matrix and rotating solid particles. Rotation breaks the Onsager reciprocity relation and generates giant thermal chirality about two orders of magnitude larger than ever reported at the optimal rotation velocity. We further achieve anisotropic thermal chirality by breaking the rotation invariance of the active lattice, bringing effective thermal conductivity to a region unreachable by the thermal Hall effect. These results could enlighten topological and non-Hermitian heat transfer and efficient heat utilization in ways distinct from phonons.

16.
Proc Natl Acad Sci U S A ; 120(13): e2202815120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943880

RESUMEN

Increasing evidence has suggested that the HIV-1 capsid enters the nucleus in a largely assembled, intact form. However, not much is known about how the cone-shaped capsid interacts with the nucleoporins (NUPs) in the nuclear pore for crossing the nuclear pore complex. Here, we elucidate how NUP153 binds HIV-1 capsid by engaging the assembled capsid protein (CA) lattice. A bipartite motif containing both canonical and noncanonical interaction modules was identified at the C-terminal tail region of NUP153. The canonical cargo-targeting phenylalanine-glycine (FG) motif engaged the CA hexamer. By contrast, a previously unidentified triple-arginine (RRR) motif in NUP153 targeted HIV-1 capsid at the CA tri-hexamer interface in the capsid. HIV-1 infection studies indicated that both FG- and RRR-motifs were important for the nuclear import of HIV-1 cores. Moreover, the presence of NUP153 stabilized tubular CA assemblies in vitro. Our results provide molecular-level mechanistic evidence that NUP153 contributes to the entry of the intact capsid into the nucleus.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , VIH-1/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de Complejo Poro Nuclear/metabolismo , Infecciones por VIH/metabolismo , Poro Nuclear/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(33): e2302756120, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549272

RESUMEN

The mutual coupling of spin and lattice degrees of freedom is ubiquitous in magnetic materials and potentially creates exotic magnetic states in response to the external magnetic field. Particularly, geometrically frustrated magnets serve as a fertile playground for realizing magnetic superstructure phases. Here, we observe an unconventional two-step magnetostructural transition prior to a half-magnetization plateau in a breathing pyrochlore chromium spinel by means of state-of-the-art magnetization and magnetostriction measurements in ultrahigh magnetic fields available up to 600 T. Considering a microscopic magnetoelastic theory, the intermediate-field phase can be assigned to a magnetic superstructure with a three-dimensional periodic array of 3-up-1-down and canted 2-up-2-down spin molecules. We attribute the emergence of the magnetic superstructure to a unique combination of the strong spin-lattice coupling and large breathing anisotropy.

18.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36866642

RESUMEN

Microtubules are critical for a variety of important functions in eukaryotic cells. During intracellular trafficking, molecular motor proteins of the kinesin superfamily drive the transport of cellular cargoes by stepping processively along the microtubule surface. Traditionally, the microtubule has been viewed as simply a track for kinesin motility. New work is challenging this classic view by showing that kinesin-1 and kinesin-4 proteins can induce conformational changes in tubulin subunits while they are stepping. These conformational changes appear to propagate along the microtubule such that the kinesins can work allosterically through the lattice to influence other proteins on the same track. Thus, the microtubule is a plastic medium through which motors and other microtubule-associated proteins (MAPs) can communicate. Furthermore, stepping kinesin-1 can damage the microtubule lattice. Damage can be repaired by the incorporation of new tubulin subunits, but too much damage leads to microtubule breakage and disassembly. Thus, the addition and loss of tubulin subunits are not restricted to the ends of the microtubule filament but rather, the lattice itself undergoes continuous repair and remodeling. This work leads to a new understanding of how kinesin motors and their microtubule tracks engage in allosteric interactions that are critical for normal cell physiology.


Asunto(s)
Cinesinas , Tubulina (Proteína) , Microtúbulos , Proteínas Asociadas a Microtúbulos , Citoesqueleto
19.
Proc Natl Acad Sci U S A ; 119(52): e2211725119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36534795

RESUMEN

Concepts from quantum topological states of matter have been extensively utilized in the past decade to create mechanical metamaterials with topologically protected features, such as one-way edge states and topologically polarized elasticity. Maxwell lattices represent a class of topological mechanical metamaterials that exhibit distinct robust mechanical properties at edges/interfaces when they are topologically polarized. Realizing topological phase transitions in these materials would enable on-and-off switching of these edge states, opening opportunities to program mechanical response and wave propagation. However, such transitions are extremely challenging to experimentally control in Maxwell topological metamaterials due to mechanical and geometric constraints. Here we create a Maxwell lattice with bistable units to implement synchronized transitions between topological states and demonstrate dramatically different stiffnesses as the lattice transforms between topological phases both theoretically and experimentally. By combining multistability with topological phase transitions, this metamaterial not only exhibits topologically protected mechanical properties that swiftly and reversibly change, but also offers a rich design space for innovating mechanical computing architectures and reprogrammable neuromorphic metamaterials. Moreover, we design and fabricate a topological Maxwell lattice using multimaterial 3D printing and demonstrate the potential for miniaturization via additive manufacturing. These design principles are applicable to transformable topological metamaterials for a variety of tasks such as switchable energy absorption, impact mitigation, wave tailoring, neuromorphic metamaterials, and controlled morphing systems.


Asunto(s)
Comercio , Impresión Tridimensional , Elasticidad , Miniaturización , Transición de Fase
20.
Proc Natl Acad Sci U S A ; 119(25): e2200607119, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696570

RESUMEN

Multi-principal element alloys (MPEAs) exhibit outstanding mechanical properties because the core effect of severe atomic lattice distortion is distinctly different from that of traditional alloys. However, at the mesoscopic scale the underlying physics for the abundant dislocation activities responsible for strength-ductility synergy has not been uncovered. While the Eshelby mean-field approaches become insufficient to tackle yielding and plasticity in severely distorted crystalline solids, here we develop a three-dimensional discrete dislocation dynamics simulation approach by taking into account the experimentally measured lattice strain field from a model FeCoCrNiMn MPEA to explore the heterogeneous strain-induced strengthening mechanisms. Our results reveal that the heterogeneous lattice strain causes unusual dislocation behaviors (i.e., multiple kinks/jogs and bidirectional cross slips), resulting in the strengthening mechanisms that underpin the strength-ductility synergy. The outcome of our research sheds important insights into the design of strong yet ductile distorted crystalline solids, such as high-entropy alloys and high-entropy ceramics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA