Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Exp Bot ; 75(20): 6405-6422, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39066622

RESUMEN

Frost tolerance has evolved many times independently across flowering plants. However, conservation of several frost tolerance mechanisms among distant relatives suggests that apparently independent entries into freezing climates may have been facilitated by repeated modification of existing traits ('precursor traits'). One possible precursor trait for freezing tolerance is drought tolerance, because palaeoclimatic data suggest plants were exposed to drought before frost and several studies have demonstrated shared physiological and genetic responses to drought and frost stress. Here, we combine ecophysiological experiments and comparative analyses to test the hypothesis that drought tolerance acted as a precursor to frost tolerance in cool-season grasses (Pooideae). Contrary to our predictions, we measured the highest levels of frost tolerance in species with the lowest ancestral drought tolerance, indicating that the two stress responses evolved independently in different lineages. We further show that drought tolerance is more evolutionarily labile than frost tolerance. This could limit our ability to reconstruct the order in which drought and frost responses evolved relative to each other. Further research is needed to determine whether our results are unique to Pooideae or general for flowering plants.


Asunto(s)
Evolución Biológica , Sequías , Congelación , Poaceae , Estaciones del Año , Poaceae/fisiología , Adaptación Fisiológica , Resistencia a la Sequía
2.
Ann Bot ; 132(2): 281-291, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37398990

RESUMEN

BACKGROUND AND AIMS: Perennial plants in seasonal climates need to optimize their carbon balance by adjusting their active season length to avoid risks of tissue loss under adverse conditions. As season length is determined by two processes, namely spring growth and senescence, it is likely to vary in response to several potentially contrasting selective forces. Here we aim to disentangle the cascade of ecological determinants of interspecific differences in season length. METHODS: We measured size trajectories in 231 species in a botanical garden. We examined correlations between their spring and autumn size changes and determined how they make up season length. We used structural equation models (SEMs) to determine how niche parameters and species traits combine in their effect on species-specific season length. KEY RESULTS: Interspecific differences in season length were mainly controlled by senescence, while spring growth was highly synchronized across species. SEMs showed that niche parameters (light and moisture) had stronger, and often trait-independent, effects compared to species traits. Several niche (light) and trait variables (plant height, clonal spreading) had opposing effects on spring growth and senescence. CONCLUSIONS: The findings indicate different drivers and potential risks in growth and senescence. The strong role of niche-based predictors implies that shifts in season length due to global change are likely to differ among habitats and will not be uniform across the whole flora.


Asunto(s)
Ecosistema , Hojas de la Planta , Estaciones del Año , Hojas de la Planta/fisiología , Clima , Árboles/fisiología
3.
Am J Bot ; 109(4): 550-563, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35244206

RESUMEN

PREMISE: Epiphytes are abundant in ecosystems such as tropical montane cloud forests where low-lying clouds are often in contact with vegetation. Climate projections for these regions include more variability in rainfall and an increase in cloud base heights, which would lead to drier conditions in the soil and atmosphere. While recent studies have examined the effects of drought on epiphytic water relations, the influence that atmospheric moisture has, either alone or in combination with drought, on the health and performance of epiphyte communities remains unclear. METHODS: We conducted a 10-week drought experiment on seven vascular epiphyte species in two shadehouses, one with warmer and drier conditions and another that was cooler and more humid. We measured water relations across control and drought-treatment groups and assessed functional traits of leaves produced during drought conditions to evaluate trait plasticity. RESULTS: Epiphytes exposed to drought and drier atmospheric conditions had a significant reduction in stomatal conductance and leaf water potential and an increase in leaf dry matter. Nonsucculent epiphytes from the drier shadehouse had the greatest shifts in functional traits, whereas succulent epiphytes released stored leaf water to maintain water status. CONCLUSIONS: Individuals in the drier shadehouse had a substantial reduction in performance, whereas drought-treated individuals that experienced cloud immersion displayed minimal changes in water status. Our results indicate that projected increases in the cloud base height will reduce growth and performance of epiphytic communities and that nonsucculent epiphytes may be particularly vulnerable.


Asunto(s)
Sequías , Ecosistema , Inmersión , Hojas de la Planta , Árboles , Clima Tropical , Agua
4.
New Phytol ; 229(4): 2007-2019, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33053217

RESUMEN

Understanding how plant communities respond to temporal patterns of precipitation in water-limited ecosystems is necessary to predict interannual variation and trends in ecosystem properties, including forage production, biogeochemical cycling, and biodiversity. In North American shortgrass prairie, we measured plant abundance, functional traits related to growth rate and drought tolerance, and aboveground net primary productivity to identify: species-level responsiveness to precipitation (precipitation sensitivity Sspp ) across functional groups; Sspp relationships to continuous plant traits; and whether continuous trait-Sspp relationships scaled to the community level. Across 32 plant species, we found strong bivariate relationships of both leaf dry matter content (LDMC) and leaf osmotic potential Ψosm with Sspp . Yet, LDMC and specific leaf area were retained in the lowest Akaike information criterion multiple regression model, explaining 59% of Sspp . Most relationships between continuous traits and Sspp scaled to the community level but were often contingent on the presence/absence of particular species and/or land management at a site. Thus, plant communities in shortgrass prairie may shift towards slower growing, more stress-resistant species in drought years and/or chronically drier climate. These findings highlight the importance of both leaf economic and drought tolerance traits in determining species and community responses to altered precipitation.


Asunto(s)
Ecosistema , Pradera , Clima , Sequías , Hojas de la Planta
5.
Physiol Mol Biol Plants ; 27(4): 665-673, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33967455

RESUMEN

Grime's competition-stress-ruderal (CSR) theory is widely used to study plant species' responses to multiple environmental factors. We compared two models to allocate CSR types the global "StrateFy" model (Pierce et al. Funct Ecol, 31:444-457, 2017) and a locally developed morpho-physiological model (Novakovskiy et al. Int J Ecol, p e1323614, 2016). The "StrateFy" model is based on three morphological leaf traits: leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA). The morpho-physiological model additionally uses plant height (PH), leaf dry weight (LDW), photosynthetic capacity (PN) and respiration rate (RD), leaf nitrogen, and carbon concentration (LNC, LCC). We applied both models to 74 plant species, the traits of which were measured at mountain (Northern Urals) and plane (Komi Republic, Russia) landscapes of European Northeast. The comparison of the calculated C, S, and R scores showed two groups of species with large and unidirectional differences. The first group consists of species with a shift from S (morpho-physiological model) to CR (StrateFy model) strategy. Species of this group are typical for deep shaded habitats and characterized by low LDMC (10-25%) and high SLA (30-60 mm2 mg-1). The second group consists of C species (morpho-physiological model) which were classified as S (StrateFy model) strategy. This group includes mainly tall shrubs, graminoids, and forbs with relatively small leaves (300-2000 mm2). In our opinion, the CSR strategies obtained by the morpho-physiological model showed better agreement with the basic principles underlying Grime's theory. The use of a limited number of morphological traits (LA, LDMC, SLA) in the StrateFy model does not always allow to determine the life strategy correctly. For example, these traits are insufficient for a clear separation of deeply shaded stress-tolerant species and ruderals. On the other hand, the use of the morpho-physiological model requires a large number of field measurements, which makes it difficult to use this model to allocate CSR strategies for a large number of species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00973-9.

6.
Glob Chang Biol ; 26(7): 4094-4103, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32320507

RESUMEN

Explaining species geographic distributions by macroclimate variables is the most common approach for getting mechanistic insights into large-scale diversity patterns and range shifts. However, species' traits influencing biophysical processes can produce a large decoupling from ambient air temperature, which can seriously undermine biogeographical inference. We combined stable oxygen isotope theory with a trait-based approach to assess leaf temperature during carbon assimilation (TL ) and its departure (ΔT) from daytime free air temperature during the growing season (Tgs ) for 158 plant species occurring from 3,400 to 6,150 m a.s.l. in Western Himalayas. We uncovered a general extent of temperature decoupling in the region. The interspecific variation in ΔT was best explained by the combination of plant height and δ13 C, and leaf dry matter content partly captured the variation in TL . The combination of TL and ΔT, with ΔT contributing most, explained the interspecific difference in elevational distributions. Stable oxygen isotope theory appears promising for investigating how plants perceive temperatures, a pivotal information to species biogeographic distributions.


Asunto(s)
Carbono , Hojas de la Planta , Isótopos de Oxígeno , Estaciones del Año , Temperatura
7.
Ecol Lett ; 21(6): 885-895, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29601668

RESUMEN

Plant variation in nutrient concentrations encompasses two major axes. The first is connected to nitrogen (N) and phosphorus (P), reflects growth rate and has been designated as the leaf economics spectrum (LES) while the second follows the gradient in calcium (Ca) and magnesium (Mg) and mirrors cell structural differences. Here, we tested in grasslands whether the sum Ca + Mg concentrations is a better indicator of digestibility than LES constituents. Structural equation modelling revealed that the total effect size of N (0.30) on digestibility was much lower than that of Ca + Mg (0.58). The N effect originated predominantly from sampling date (biomass ageing), while the Ca + Mg effect largely from phylogenetic composition (proportion of monocots). Thus, plant variation in partially substitutable divalent cations seems to play a significant role in biomass digestion by ruminants. This finding contests, together with litter decomposition studies, the prominent role of the LES for understanding both fundamental ecological processes.


Asunto(s)
Calcio , Magnesio , Nitrógeno , Fósforo , Filogenia , Hojas de la Planta , Fenómenos Fisiológicos de las Plantas , Plantas
8.
New Phytol ; 213(2): 657-668, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27588893

RESUMEN

Forest ecologists researching the functional basis of tree regeneration patterns and species coexistence often attempt to correlate traits with light-gradient partitioning. However, an exclusive focus on light can overlook other important drivers of forest dynamics. We measured light, temperatures, humidity and sapling densities in each of four phases of a forest dynamic mosaic in New Zealand: shaded understoreys, tree-fall gaps, treefern groves and clearings. We then measured leaf, wood and seed traits, as potential predictors of species' regeneration patterns. Saplings of 18 out of 21 species were significantly associated with one or other of the four phases, and associations were best predicted by a two-trait model (leaf size, wood density) explaining 51% of observed variation. Species associated with treefall gaps had traits favouring light pre-emption (large leaves, low-density wood), whereas those establishing in clearings mostly had small leaves and dense wood, traits probably conferring resistance to the frosts and summer water deficits that saplings were exposed to there. The dynamics of some forests cannot be explained adequately by light-gradient partitioning through a growth vs shade tolerance tradeoff, underpinned by the leaf economics spectrum. Consideration of multiple environmental filters and multiple traits will enhance understanding of regeneration patterns and species coexistence.


Asunto(s)
Ambiente , Bosques , Regeneración , Árboles/fisiología , Análisis de Varianza , Lagos , Microclima , Nueva Zelanda , Tamaño de los Órganos , Hojas de la Planta/anatomía & histología , Carácter Cuantitativo Heredable , Especificidad de la Especie
9.
Ann Bot ; 120(5): 633-652, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28961937

RESUMEN

Background and Aims: While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Methods: Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Key Results: Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Conclusions: Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL. 1974. Flowering plants: evolution above the species level . Cambridge, MA: Belknap Press) is perhaps associated with both seed and leaf development, and major taxa appear routinely specialized with respect to ecologically important size-related traits.


Asunto(s)
Rasgos de la Historia de Vida , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Semillas/fisiología , Ecosistema , Inglaterra , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Semillas/anatomía & histología , Semillas/crecimiento & desarrollo , Suecia
10.
Conserv Biol ; 31(4): 903-911, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27868235

RESUMEN

The causes of species rarity are of critical concern because of the high extinction risk associated with rarity. Studies examining individual rare species have limited generality, whereas trait-based approaches offer a means to identify functional causes of rarity that can be applied to communities with disparate species pools. Differences in functional traits between rare and common species may be indicative of the functional causes of species rarity and may therefore be useful in crafting species conservation strategies. However, there is a conspicuous lack of studies comparing the functional traits of rare species and co-occurring common species. We measured 18 important functional traits for 19 rare and 134 common understory plant species from North Carolina's Sandhills region and compared their trait distributions to determine whether there are significant functional differences that may explain species rarity. Flowering, fire, and tissue-chemistry traits differed significantly between rare and common, co-occurring species. Differences in specific traits suggest that fire suppression has driven rarity in this system and that changes to the timing and severity of prescribed fire may improve conservation success. Our method provides a useful tool to prioritize conservation efforts in other systems based on the likelihood that rare species are functionally capable of persisting.


Asunto(s)
Conservación de los Recursos Naturales , Incendios , Plantas , Ecosistema , North Carolina
11.
Oecologia ; 181(4): 1035-40, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27098527

RESUMEN

Leaf mass per area (LMA) is a primary plant functional trait that represents the cost of constructing a leaf. Ultimately, plants modify LMA by altering leaf thickness (LT), leaf dry matter content (LDMC), or both. While LMA can be modified through both of these constituents, studies of LMA have found that there is variation in whether LT or LDMC changes are responsible for LMA-and the relationships change depending on the species or functional groups being compared. In this study, we used a phylogenetic framework to determine that evolutionary shifts in LMA are driven by LT, and not LDMC, among 45 Serengeti grass species. We considered two alternative hypotheses that could result in evolutionary correlation of LMA on LT but not LDMC: either (1) LT is more labile than LDMC-and is therefore a less costly means to change LMA or (2) LDMC is tightly coupled to a different dimension of leaf variation (e.g., leaf hydraulics), leaving LT as the source of variation in LMA. LT was not more labile than LDMC, leading us to conclude that the evolution of LMA has been shaped by LT because LDMC is responding to other demands on leaf physiology. We speculate that leaf hydraulics provide this constraint on LDMC. The decoupling of LDMC from LT may allow plants to better optimize resource allocation in ecosystems where gradients in light competition, herbivory, and aridity place competing demands on leaf economics.


Asunto(s)
Filogenia , Poaceae , Ecosistema , Hojas de la Planta , Plantas
12.
Ecol Lett ; 17(9): 1158-67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24986005

RESUMEN

Theory predicts shifts in the magnitude and direction of biodiversity effects on ecosystem function (BEF) over succession, but this theory remains largely untested. We studied the relationship between aboveground tree biomass dynamics (Δbiomass) and multiple dimensions of biodiversity over 8-16 years in eight successional rainforests. We tested whether successional changes in diversity-Δbiomass correlations reflect predictions of niche theories. Diversity-Δbiomass correlations were positive early but weak later in succession, suggesting saturation of niche space with increasing diversity. Early in succession, phylogenetic diversity and functional diversity in two leaf traits exhibited the strongest positive correlations with Δbiomass, indicating complementarity or positive selection effects. In mid-successional stands, high biodiversity was associated with greater mortality-driven biomass loss, i.e. negative selection effects, suggesting successional niche trade-offs and loss of fast-growing pioneer species. Our results demonstrate that BEF relationships are dynamic across succession, thus successional context is essential to understanding BEF in a given system.


Asunto(s)
Biodiversidad , Biomasa , Modelos Biológicos , Árboles/fisiología , Filogenia , Dinámica Poblacional , Árboles/clasificación , Árboles/genética , Clima Tropical
13.
Ecol Lett ; 17(9): 1168-77, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25040328

RESUMEN

Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.


Asunto(s)
Ecosistema , Insectos/fisiología , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Polinización , Animales , Abejas/fisiología , Modelos Lineales , Densidad de Población
14.
Plants (Basel) ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732439

RESUMEN

Leaf mass per area (LMA) is a key structural parameter that reflects the functional traits of leaves and plays a vital role in simulating the material and energy cycles of plant ecosystems. In this study, vertical whorl-by-whorl sampling of LMA was conducted in a young Larix principis-rupprechtii plantation during the growing season at the Saihanba Forest Farm. The vertical and seasonal variations in LMA were analysed. Subsequently, a predictive model of LMA was constructed. The results revealed that the LMA varied significantly between different crown whorls and growing periods. In the vertical direction of the crown, the LMA decreased with increasing crown depth, but the range of LMA values from the tree top to the bottom was, on average, 30.4 g/m2, which was approximately 2.5 times greater in the fully expanded phase than in the early leaf-expanding phase. During different growing periods, the LMA exhibited an allometric growth trend that increased during the leaf-expanding phase and then tended to stabilize. However, the range of LMA values throughout the growing period was, on average, 40.4 g/m2. Among the univariate models, the leaf dry matter content (LDMC) performed well (adjusted determination coefficient (Ra2) = 0.45, root mean square error (RMSE) = 13.48 g/m2) in estimating the LMA. The correlation between LMA and LDMC significantly differed at different growth stages and at different vertical crown whorls. The dynamic predictive model of LMA constructed with the relative depth in the crown (RDINC) and date of the year (DOY) as independent variables was reliable in both the assessments (Ra2 = 0.68, RMSE = 10.25 g/m2) and the validation (absolute mean error (MAE) = 8.05 g/m2, fit index (FI) = 0.682). Dynamic simulations of crown LMA provide a basis for elucidating the mechanism of crown development and laying the foundation for the construction of an ecological process model.

15.
Sci Total Environ ; 890: 164044, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37192701

RESUMEN

The vegetation layer contributes to multiple functions of green roofs including their hydrological function as plants remove water from substrates between rainfall events through evapotranspiration, restoring the green roofs storage capacity for rainfall retention. While individual traits have been related to water use strategies of green roof plants, these traits are inconsistent, suggesting the importance of trait combinations which may be reflected in CSR (competitor, stress tolerator, ruderal) strategies. Therefore, relating plant water use to leaf traits and CSR strategies could help facilitate green roof plant selection into new geographical regions where green roof technology is developing. For example, in high latitude northern European regions with long daylight during the growing season. Growth (shoot biomass, relative growth rate and leaf area), leaf traits (leaf dry matter content, specific leaf area and succulence) and CSR strategies were determined of 10 common European green roof plants and related to their water use under well-watered (WW) and water-deficit (WD) conditions. All three succulent species included in the experiment showed mostly stress tolerant traits and their water loss was less than the bare unplanted substrate, likely due to mulching of the substrate surface. Plants with greater water use under WW conditions had more ruderal and competitive strategies, and greater leaf area and shoot biomass, than species with lower WW water use. However, the four species with the highest water use under WW conditions were able to downregulate their water use under WD, indicating that they could both retain rainfall and survive periods of water limitations. This study indicates that, for optimal stormwater retention, green roof plant selection in high latitude regions like northern Europe, should focus on selecting non-succulent plants with predominantly competitive or ruderal strategies to make the most of the long daylight during the short growing season.


Asunto(s)
Conservación de los Recursos Naturales , Agua , Biomasa , Plantas , Hojas de la Planta/fisiología
16.
Mov Ecol ; 11(1): 73, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924137

RESUMEN

A long dispersal distance is widely used to indicate high invasiveness, but it ignores the temporal dimensions of plant invasion. Faster dispersal rates (= distance/time) of invasive species than native ones have been widely used in modeling species invasion and planning control management. However, the comparison of dispersal rate between invasive and native plants, particularly for dispersal on a local or landscape scale, has not been tested with a comprehensive dataset. Moreover, both the effects of plant functional traits on the dispersal rate and variation in the functional-trait effects between invasive and native plants remain elusive. Compiling studies from 30 countries globally, we compared seed dispersal rates (km/year) on a local or landscape scale between 64 observations of invasive and 78 observations of native plants given effects of plant life forms, disturbance levels, and measurement methods. Furthermore, we compared the effects of functional traits on dispersal rate between invasive and native species. We found that: (1) Trait values were similar between the invasive and native plants except for the greater height of woody native plants than woody invasive ones; (2) Compared within the same plant life form, the faster dispersal rates of invasive species were found in herbaceous plants, not in woody plants, and disturbance level and measurement methods did not affect the rate comparison; (3) Plant height and seed length had significant effects on dispersal rates of both invasive and native plants, but the effect of leaf dry matter content (LDMC) was only significant on herbaceous invasive plants. The comparison of dispersal rate between invasive and native plants varied by plant life form. The convergent values but divergent dispersal effects of plant traits between invasive and native species suggest that the trait effects on invasiveness could be better understood by trait association with key factors in invasiveness, e.g., dispersal rate, than the direct trait comparison between invasive and native plants.

17.
Ecol Evol ; 13(9): e10491, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37680960

RESUMEN

The role of geological substrate in shaping plant community functional diversity remains poorly understood. Considering the involvement of leaves in the energy, water, and nutrient economics of plants, we hypothesized that leaves experience geology-related filtering, which in turn shapes their functional attributes and community leaf functional diversity on different substrates. We studied tropical dry forest communities on limestone and siliciclastic phyllite-derived soils, comparing their functional diversity and soil physico-chemical properties. We predicted the most benign habitat (less severe filter) to be associated with higher leaf functional diversity and an acquisitive strategy prevalence, while the more stressful habitat should show conservative leaf traits and lower leaf functional diversity. We measured six traits in 31 common tree species (representing ~80% of community crown cover): leaf area, specific leaf area, leaf thickness, leaf dry matter content, petiole length, and leaf blade narrowness. Leaf functional diversity was assessed through the functional trait dispersion metric. Intraspecific functional variation was examined in 25 species shared between substrates. The limestone substrate was more fertile (higher phosphorous) with higher water retention, while phyllite had higher nitrogen and lower humidity. Principal component analysis segregated plots by substrate, with limestone plots being more clustered. Community leaf functional diversity was higher in the limestone forest. Most species examined showed inter-substrate trait differences in at least one leaf functional trait. The two substrates constituted distinct growth environments, with the more benign substrate associated with higher community leaf functional diversity. The intraspecific analysis revealed the prevalence of acquisitive traits in the more benign and more conservative traits in the more stressful habitat. This study advances our understanding of the role of geological substrate as an environmental filter in tropical dry forests, influencing leaf functional responses and emphasizing the importance of intraspecific functional variation.

18.
Sci Total Environ ; 838(Pt 2): 156150, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35613643

RESUMEN

Biodiversity-stability mechanisms have been the focus of many long-term community stability studies. Community functional composition (i.e., functional diversity and functional identity of community plant functional traits) is critical for community stability; however, this topic has received less attention in large-scale studies. Here, we combined a field survey of biodiversity and plant functional traits in 22 alpine grassland sites throughout the northern Tibetan Plateau with 20 years of satellite-sensed proxy data (enhanced vegetation index) of community productivity to identify the factors influencing community stability. Our results showed that functional composition influenced community stability the most, explaining 61.71% of the variation in community stability (of which functional diversity explained 18.56% and functional identity explained 43.15%), which was a higher contribution than that of biodiversity (Berger-Parker index and species evenness; 35.04%). Structural equation modeling suggested that functional identity strongly affected community stability, whereas biodiversity had a minor impact. Furthermore, functional identity of leaf dry matter content regulated community stability by enhancing species dominance (Berger-Parker index). Our findings demonstrate that functional composition, specifically functional identity, plays a key role in community stability, highlighting the importance of functional identity in understanding and revealing the stabilizing mechanisms in these fragile alpine ecosystems which are subjected to increasing environmental fluctuations.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Hojas de la Planta , Plantas , Tibet
19.
Ecology ; 103(12): e3826, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35857330

RESUMEN

Under climate change, extreme droughts will limit water availability for plants. However, the species-specific responses make it difficult to draw general conclusions. We hypothesized that changes in species' abundance in response to extreme drought can be best explained by a set of water economic traits under ambient conditions in combination with the ability to adjust these traits towards higher drought resistance. We conducted a 4-year field experiment in temperate grasslands using rainout shelters with 30% and 50% rainfall reduction. We quantified the response as the change in species abundance between ambient conditions and the rainfall reduction. Abundance response to extreme drought was best explained by a combination of traits in ambient conditions and their functional adjustment, most likely reflecting plasticity. Smaller leaved species decreased less in abundance under drought. With increasing drought intensity, we observed a shift from drought tolerance, i.e., an increase in leaf dry matter content, to avoidance, i.e., a less negative turgor loss point (TLP) in ambient conditions and a constancy in TLP under drought. We stress the importance of using a multidimensional approach of variation in multiple traits and the importance of considering a range of drought intensities to improve predictions of species' response to climate change.


Asunto(s)
Cambio Climático , Sequías , Hojas de la Planta/fisiología , Agua
20.
Data Brief ; 42: 108286, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35647228

RESUMEN

Trait-based ecology is gaining ground nowadays on species-based ecology: the number of research and publication focusing on the ecological role of taxa instead of the species themselves increased significantly in the last two decades. One great advantage of this approach is that communities with different species composition due to great geographical distances (e.g., different continents) or different environmental conditions (e.g., loess, sand, and alkaline grasslands) become comparable. Obtaining trait values is, however, labour and time consuming even in the case of so-called soft traits. It is therefore reasonable and desirable for scientists to share their data as widely as possible. Demand for such data induced the publication of data papers and the establishment of databases, which support both theoretical ecological research and practical restoration ecological projects. Although several international databases (e.g., TRY, LEDA, CLO-PLA, BiolFLOR) are available nowadays, Central and Eastern European species are either missing or underrepresented in them. Consequently, measurement and publication of the traits of species typical in the above region is necessary. This paper presents leaf trait (leaf fresh and dry weight, leaf area, specific leaf area and leaf dry matter content) data for more than 1100 species of the Central European flora.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA