Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Small ; 20(30): e2311739, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38420904

RESUMEN

Rechargeable aprotic lithium (Li)-oxygen battery (LOB) is a potential next-generation energy storage technology because of its high theoretical specific energy. However, the role of redox mediator on the oxide electrochemistry remains unclear. This is partly due to the intrinsic complexity of the battery chemistry and the lack of in-depth studies of oxygen electrodes at the atomic level by reliable techniques. Herein, cryo-transmission electron microscopy (cryo-TEM) is used to study how the redox mediator LiI affects the oxygen electrochemistry in LOBs. It is revealed that with or without LiI in the electrolyte, the discharge products are plate-like LiOH or toroidal Li2O2, respectively. The I2 assists the decomposition of LiOH via the formation of LiIO3 in the charge process. In addition, a LiI protective layer is formed on the Li anode surface by the shuttle of I3 -, which inhibits the parasitic Li/electrolyte reaction and improves the cycle performance of the LOBs. The LOBs returned to 2e- oxygen reduction reaction (ORR) to produce Li2O2 after the LiI in the electrolyte is consumed. This work provides new insight on the role of redox mediator on the complex electrochemistry in LOBs which may aid the design LOBs for practical applications.

2.
Small ; 19(33): e2301391, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086134

RESUMEN

Lithium-oxygen (Li-O2 ) batteries have received extensive attention owing to ultrahigh theoretical energy density. Compared to typical discharge product Li2 O2 , LiOH has attracted much attention for its better chemical and electrochemical stability. Large-scale applications of Li-O2 batteries with LiOH chemistry are hampered by the serious internal shuttling of the water additives with the desired 4e- electrochemical reactions. Here, a metal organic framework-derived "water-trapping" single-atom-Co-N4 /graphene catalyst (Co-SA-rGO) is provided that successfully mitigates the water shuttling and enables the direct 4e- catalytic reaction of LiOH in the aprotic Li-O2 battery. The Co-N4 center is more active toward proton-coupled electron transfer, benefiting - direction 4e- formation of LiOH. 3D interlinked networks also provide large surface area and mesoporous structures to trap ≈12 wt% H2 O molecules and offer rapid tunnels for O2 diffusion and Li+ transportation. With these unique features, the Co-SA-rGO based Li-O2 battery delivers a high discharge platform of 2.83 V and a large discharge capacity of 12 760.8 mAh g-1 . Also, the battery can withstand corrosion in the air and maintain a stable discharge platform for 220 cycles. This work points out the direction of enhanced electron/proton transfer for the single-atom catalyst design in Li-O2 batteries.

3.
Chemistry ; 29(48): e202301760, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37272919

RESUMEN

Herein, we report two new COOH-functionalized metal-organic frameworks (MOFs) of composition [M6 O4 (OH)6 (PMA)2 (H2 PMA)]×H2 O, M=Zr, Hf), denoted CAU-61, synthesized by using pyromellitic acid (H4 PMA), a tetracarboxylic acid, as the linker and acetic acid as the solvent. The structure was determined from powder X-ray diffraction data and one-dimensional inorganic building units are connected through tetracarboxylate as well as dicarboxylate linker molecules, resulting in highly stable microporous framework structures with limiting and maximum pore diameter of ∼3.6 and ∼5.0 Å, respectively, lined with -COOH groups. Thermal stabilities of up to 400 °C in air, chemical stability in water at pH 1 to 12 and water uptake of 17 mol/mol prompted us to study the proton exchange of the µ2 -OH, µ3 -OH of the IBU and -COOH groups of the linker by titration with LiOH. Comparison of the pKa values with three UiO-66 derivatives confirms distinct pKa value ranges and trends for the different acidic protons. Furthermore, the preparation of Zr-CAU-61 membranes and first results on permeation of dyes and ions in aqueous solutions are presented.

4.
Angew Chem Int Ed Engl ; 62(4): e202212942, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36413636

RESUMEN

The LiOH-based cathode chemistry has demonstrated potential for high-energy Li-O2 batteries. However, the understanding of such complex chemistry remains incomplete. Herein, we use the combined experimental methods with ab initio calculations to study LiOH chemistry. We provide a unified reaction mechanism for LiOH formation during discharge via net 4 e- oxygen reduction, in which Li2 O2 acts as intermediate in low water-content electrolyte but LiHO2 as intermediate in high water-content electrolyte. Besides, LiOH decomposes via 1 e- oxidation during charge, generating surface-reactive hydroxyl species that degrade organic electrolytes and generate protons. These protons lead to early removal of LiOH, followed by a new high-potential charge plateau (1 e- water oxidation). At following cycles, these accumulated protons lead to a new high-potential discharge plateau, corresponding to water formation. Our findings shed light on understanding of 4 e- cathode chemistries in metal-air batteries.

5.
Molecules ; 26(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920236

RESUMEN

This study aimed to improve the performance of the activated carbon-based cathode by increasing the Li content and to analyze the effect of the combination of carbon and oxidizing agent. The crystal structure and chemical structure phase of Li-high surface area activated carbon material (Li-HSAC) was analyzed by X-ray diffraction (XRD) and Raman spectroscopy, the surface state and quantitative element by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and the surface properties with pore-size distribution by Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH) and t-plot methods. The specific surface area of the Li-YP80F is 1063.2 m2/g, micropore volume value is 0.511 cm3/g and mesopore volume is 0.143 cm3/g, and these all values are higher than other LiOH-treated carbon. The surface functional group was analyzed by a Boehm titration, and the higher number of acidic groups compared to the target facilitated the improved electrolyte permeability, reduced the interface resistance and increased the electrochemical properties of the cathode. The oxidizing agent of LiOH treated high surface area of activated carbon was used for the cathode material for EDLC (electric double layer capacitor) to determine its electrochemical properties and the as-prepared electrode retained excellent performance after 10 cycles and 100 cycles. The anodic and cathodic peak current value and peak segregation of Li-YP80F were better than those of the other two samples, due to the micropore-size and physical properties of the sample. The oxidation peak current value appeared at 0.0055 mA/cm2 current density and the reduction peak value at -0.0014 mA/cm2, when the Li-YP80F sample used to the Cu-foil surface. The redox peaks appeared at 0.0025 mA/cm2 and -0.0009 mA/cm2, in the case of using a Nickel foil, after 10 cycling test. The electrochemical stability of cathode materials was tested by 100 recycling tests. After 100 recycling tests, peak current drop decreased the peak profile became stable. The LiOH-treated high surface area of activated carbon had synergistically upgraded electrochemical activity and superior cycling stability that were demonstrated in EDLC.

6.
Angew Chem Int Ed Engl ; 59(51): 22978-22982, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33017504

RESUMEN

Lithium-oxygen (Li-O2 ) batteries have attracted extensive research interest due to their high energy density. Other than Li2 O2 (a typical discharge product in Li-O2 batteries), LiOH has proved to be electrochemically active as an alternative product. Here we report a simple strategy to achieve a reversible LiOH-based Li-O2 battery by using a cation additive, sodium ions, to the lithium electrolyte. Without redox mediators in the cell, LiOH is detected as the sole discharge product and it charges at a low charge potential of 3.4 V. A solution-based reaction route is proposed, showing that the competing solvation environment of the catalyst and Li+ leads to LiOH precipitation at the cathode. It is critical to tune the cell chemistry of Li-O2 batteries by designing a simple system to promote LiOH formation/decomposition.

7.
Angew Chem Int Ed Engl ; 56(50): 16057-16062, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29058366

RESUMEN

Non-aqueous Li-O2 batteries are promising for next-generation energy storage. New battery chemistries based on LiOH, rather than Li2 O2 , have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e- oxygen reduction reaction, the H in LiOH coming solely from added H2 O and the O from both O2 and H2 O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li2 O2 , LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long-lived battery. An optimized metal-catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals.

8.
Materials (Basel) ; 17(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38793439

RESUMEN

In pressurized water reactors, LiOH may be concentrated in some areas, leading to the accelerated corrosion of fuel claddings. Injecting boric acid into primary coolants can mitigate the accelerated corrosion effect of LiOH on Zircaloys, but the effects of boron content on the corrosion behavior of the Zr-Sn-Nb alloy are still unknown. This work focused on the corrosion and hydrogen absorption behavior at 360 °C/18.6 MPa in 100 mg/kg LiOH solutions with 0 mg/kg, 50 mg/kg, and 200 mg/kg boron contents for up to 510 days, aiming to study the effect of boron content on corrosion resistance in LiOH solutions. Corrosion kinetics, microstructures of oxide films, hydrogen absorption concentrations and hydride morphology were obtained after the test. The results show that injecting boron in LiOH solutions can significantly reduce the corrosion weight gain, hydrogen concentration, and hydrogen length of Zr-Sn-Nb alloys, that is, improving corrosion resistance effectively. During the oxidation of the Zr-Sn-Nb alloy, B3+ and Li+ incorporate in oxide films. The incorporation of Li+ may lead to the generation of oxygen vacancies, which can carry oxygen from the solutions to O/M interface, accelerating corrosion. The incorporation of B3+ in oxide films will slow down the oxidation of Zr-Sn-Nb alloys by reducing the oxygen vacancies caused by Li+ aggregation.

9.
Small Methods ; : e2301749, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183412

RESUMEN

Li-air batteries attract significant attention due to their highest theoretical energy density among all existing energy storage technologies. Currently, challenges related to extending lifetime and long-term stability limit their practical application. To overcome these issues and enhance the total capacity of Li-air batteries, this study introduces an innovative approach with NiO/ZrO2 catalysts. Operando advanced chemical imaging with micrometer spatial resolution unveils that NiO/ZrO2 catalysts substantially change the kinetics of crystalline lithium hydroxide (LiOH) formation and facilitate its rapid decomposition with heterogeneous distribution. Moreover, ex situ combined neutron and X-ray computed tomography (CT) analysis, provide evidence of distinct lithium phases homogeneously distributed in the presence of NiO/ZrO2 . These findings underscore the material's superior physico-chemical and electronic properties, with more efficient oxygen diffusion and indications of lower obstruction to its active sites, avoiding clogging in the active electrode, a common cause of capacity loss. Electrochemical tests conducted at high current density demonstrated a significant kinetic enhancement of the oxygen reduction and evolution reactions, resulting in improved charge and discharge processes with low overpotential. This pioneering approach using NiO/ZrO2 catalysts represents a step toward on developing the full potential of Li-air batteries as high-energy-density energy storage systems.

10.
Adv Mater ; 36(5): e2307091, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37857473

RESUMEN

The ever-growing demand for resources sustainability has promoted the recycle of spent lithium-ion batteries to a strategic position. Direct recycle outperforms either hydrometallurgical or pyrometallurgical approaches due to the high added value and facile treatment processes. However, the traditional direct recycling technologies are only applicable for Ni-poor/middle cathodes. Herein, spent Ni-rich LiNi0.8 Co0.1 Mn0.1 O2 (S-NCM) to performance-enhanced single-crystalline cathode materials is directly recycled using a simple but effective LiOH-NaCl molten salt. The evolution process of the Li-supplement and grain-recrystallization during regeneration is systematically investigated, and the successful recovery of the highly degraded microstructure is comprehensively proven, including significant elimination of Ni2+ and O vacancies. Beneficial from the favorable reconstructed single-crystalline particles, the regenerated NCM (R-NCM) represents remarkably enhanced structural stability, electrochemical activity, O2 and cracks suppression during charge/discharge, thus achieving the excellent performances in long-term cycling and high-rate tests. As a result, R-NCM maintains the 86.5% reversible capacity at 1 C after 200 cycles. Instructively, the present molten salt can be successfully applied for recycling spent NCMs with various Li and Ni compositions (e.g., LiNi0.5 Co0.2 Mn0.3 O2 ).

11.
Materials (Basel) ; 16(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36837062

RESUMEN

For thermal energy storage, the most promising method that has been considered is latent heat storage associated with molten salt mixtures as phase-change material (PCM). The binary salt mixture lithium chloride-lithium hydroxide (LiCl-LiOH) with a specific composition can store thermal energy. However, to the best of our knowledge, there is no information on their thermal stability in previous literature. The key objectives of this article were to investigate the thermophysical properties, thermal repeatability, and thermal decomposition behavior of the chosen binary salt mixture. FactSage software was used to determine the composition of the binary salt mixture. Thermophysical properties were investigated with a simultaneous thermal analyzer (STA). The thermal results show that the binary salt 32 mol% LiCl-68 mol% LiOH melts within the range of 269 °C to 292 °C and its heat of fusion is 379 J/g. Thermal repeatability was tested with a thermogravimetric analyzer (TGA) for 30 heating and cooling cycles, which resulted in little change to the melting temperature and heat of fusion. Thermal decomposition analysis indicated negligible weight loss until 500 °C and showed good thermal stability. Chemical and structural instability was verified by X-ray diffraction (XRD) by analysing the binary salt system before and after thermal treatment. A minor peak corresponding to lithium oxide was observed in the sample decomposed at 700 °C which resulted from the decomposition of LiOH at high temperature. The morphology and elemental distribution examinations of the binary salt mixture were carried out via scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). X-ray photoelectron spectroscopy was conducted for surface analysis, and their elemental composition verified the chemical stability of the binary salt mixture. Overall, the results confirmed that the binary salt mixture is a potential candidate to be used as thermal energy storage material in energy storage applications of up to 500 °C.

12.
ACS Appl Mater Interfaces ; 15(19): 23115-23123, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37129923

RESUMEN

In rechargeable Li-O2 batteries, the electrolyte and the electrode are prone to be attacked by aggressive intermediates (O2- and LiO2) and products (Li2O2), resulting in low energy efficiency. It has been reported that in the presence of water, the formation of low-activity LiOH is more stable for electrolyte and electrode, effectively reducing the production of parasitic products. However, the reversible formation and decomposition of LiOH catalyzed by solid catalysts is still a challenge. Here, a freestanding metal-organic framework (MOF)-derived honeycomb-shape porous MnOC@CC cathode was prepared for Li-O2 batteries by in situ growth of urchin-like Mn-MOFs on carbon cloth (CC) and carbonization. The battery with the MnOC@CC cathode exhibits an ultrahigh practical discharge specific capacity of 22,838 mAh g-1 at 200 mA g-1, high-rate capability, and more stable cycling, which is superior to the MnOC powder cathode. X-ray diffraction and Fourier transform infrared results identify that the discharge product of the batteries is LiOH rather than highly active Li2O2, and no parasitic products were found during operation. The MnOC@CC cathode can induce the formation of flower-like LiOH in the presence of water due to its unique porous structure and directional alignment of Mn-O centers. This work achieves the reversible formation and decomposition of LiOH in the presence of water, offering some insights into the practical application of semiopen Li-O2 batteries.

13.
Artículo en Inglés | MEDLINE | ID: mdl-37906037

RESUMEN

Conventional Li-S batteries rely on liquid electrolytes based on LiNO3/DOL/DME mixtures that produce a quasistable interface with the lithium anode. Electron pair donor (EPD) solvents, also known as high donor number solvents, provide much higher polysulfide solubility and close-to-ideal sulfur utilization, making them solvents of choice for lean electrolyte Li-S cells. However, their instability to reduction requires incorporation of an ion-conductive membrane that is stable with Li-such as garnet LLZO and also stable with sulfur/polysulfides. We report that even trace amounts of LiOH on a LLTZO surface trigger a complex reaction with sulfur dissolved in typical EPD solvents (i.e., N,N-dimethylacetamide, DMA) to produce a highly resistive impedance layer that quickly grows with time from 1000 to 10,000 Ω cm2 over a few hours, thus impeding Li+ transport across the interface. Decorating the LLZO with protective phosphate groups to produce a modified surface provides a very low charge-transfer resistance of 40 Ω cm2 that is maintained over time and inhibits the reaction of LiOH and dissolved sulfur. Hybrid liquid-solid electrolyte cells constructed on this concept result in a high sulfur utilization of 1400 mAh g-1 which is 85% of theoretical and remains constant over cycling even with conventional, unoptimized carbon/sulfur cathodes.

14.
ACS Appl Mater Interfaces ; 14(49): 54812-54821, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36458834

RESUMEN

Transition-metal compounds (oxides, sulfides, hydroxides, etc.) as lithium-ion battery (LIB) anodes usually show extraordinary capacity larger than the theoretical value due to the transformation of LiOH into Li2O/LiH. However, there has rarely been a report relaying the transformation of LiOH into Li2O/LiH as the main reaction for LIBs, due to the strong alkalinity of LiOH leading to battery deterioration. In this work, layered silicate MgAl saponite (MA-SAP) is applied as a -OH donor to generate LiOH as the anode material of LIBs for the first time. The MA-SAP maintains a layered structure during the (dis)charging process and has zero-strain characteristic on the (001) crystal plane. In the discharging process, Mg, Al, and Si in the saponite sheets become electron-rich, while the active hydroxyl groups escape from the sheets and combine with lithium ions to form LiOH in the "caves" on sheets, and the LiOH continues to decompose into Li2O and LiH. Consequently, the MA-SAP delivers a maximum capacity of 536 mA h·g-1 at 200 mA·g-1 with a good high-current discharging ability of 155 mA h·g-1 after 1000 cycles under 1 A·g-1. Considering its extremely low cost and completely nontoxic characteristics, MA-SAP has great application prospects in energy storage. In addition, this work has an enlightening effect on the development of new anodes based on extraordinary mechanisms.

15.
ACS Appl Mater Interfaces ; 14(25): 28965-28976, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35708256

RESUMEN

The crystal plane effect of cobalt oxide has attracted much attention in Li-O2 batteries (LOBs) and other electrocatalytic fields. However, boosting the catalytic activity of a specific plane still faces significant challenges. Herein, a strategy of adding water into the electrolyte is developed to construct a LiOH-based Li-O2 battery system using the (111) plane-exposed Co3O4 as a cathode catalyst. The electrochemical performance shows that on the (111) plane, in the presence of water, the overpotential is largely reduced from 1.5 to 1.0 V and the cycling performance is enhanced. It is confirmed that during the discharge process, water reacts to form LiOH and induce the phase transformation of Co3O4 to amorphous CoOx(OH)y. At the recharge stage, LiOH is first decomposed and then CoOx(OH)y is reduced to Co3O4. Compared with pristine (111), the newly formed Co3O4 surface exhibits more active sites, which accelerates the following oxygen reduction and oxygen evolution processes. This work not only reveals the reaction mechanism of water-induced reaction on the (111) plane of Co3O4 but also provides a new perspective for further design of hybrid Li-O2 batteries with a low polarization and a longer cycle life.

16.
Front Chem ; 10: 923936, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844634

RESUMEN

The rechargeable lithium-oxygen (Li-O2) batteries have been considered one of the promising energy storage systems owing to their high theoretical energy density. As an alternative to Li-O2 batteries based on lithium peroxide (Li2O2) cathode, cycling Li-O2 batteries via the formation and decomposition of lithium hydroxide (LiOH) has demonstrated great potential for the development of practical Li-O2 batteries. However, the reversibility of LiOH-based cathode chemistry remains unclear at the fundamental level. Here, we review the recent advances made in Li-O2 batteries based on LiOH formation and decomposition, focusing on the reaction mechanisms occurring at the cathode, as well as the stability of Li anode and cathode binder. We also provide our perspectives on future research directions for high-performance, reversible Li-O2 batteries.

17.
Carbohydr Polym ; 295: 119866, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35988983

RESUMEN

A robust chitosan/tunicate cellulose nanocrystals (TCNCs) anisotropic hydrogel with bright interference colors was fabricated via combining the prestretching orientation method and chemically-physically dual cross-linking. The oriented regenerated chitosan nanofibrous network enabled the TCNCs alignment by covalent interaction and hydrogen bonding. The stretching alignment endows the chitosan/TCNCs hydrogel with enhanced tensile strength, from 0.63 MPa (draw ratio 1.0) to 2.06 MPa (draw ratio 3.5). Moreover, the orientation of chitosan nanofibers led to birefringence appearance, which could be regulated with the TCNCs introduction or draw ratios. The hydrogel swelled completely in 2 min in pH = 3 solution and the interference color disappeared. The oriented chitosan/TCNCs hydrogels showed distinct color change under acid stimulation, which could be quantitatively measured or directly observed under crossed polarizers. This work demonstrated a strategy for fabricating the interference color regulatable hydrogels with acid-response property for sensors and environmental monitoring.


Asunto(s)
Quitosano , Nanopartículas , Urocordados , Animales , Celulosa/química , Quitosano/química , Hidrogeles/química
18.
Membranes (Basel) ; 11(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34677525

RESUMEN

Lithium resources face risks of shortages owing to the rapid development of the lithium industry. This makes the efficient production and recycling of lithium an issue that should be addressed immediately. Lithium bromide is widely used as a water-absorbent material, a humidity regulator, and an absorption refrigerant in the industry. However, there are few studies on the recovery of lithium from lithium bromide after disposal. In this paper, a bipolar membrane electrodialysis (BMED) process is proposed to convert waste lithium bromide into lithium hydroxide, with the generation of valuable hydrobromic acid as a by-product. The effects of the current density, the feed salt concentration, and the initial salt chamber volume on the performance of the BMED process were studied. When the reaction conditions were optimized, it was concluded that an initial salt chamber volume of 200 mL and a salt concentration of 0.3 mol/L provided the maximum benefit. A high current density leads to high energy consumption but with high current efficiency; therefore, the optimum current density was identified as 30 mA/cm2. Under the optimized conditions, the total economic cost of the BMED process was calculated as 2.243 USD·kg-1LiOH. As well as solving the problem of recycling waste lithium bromide, the process also represents a novel production methodology for lithium hydroxide. Given the prices of lithium hydroxide and hydrobromic acid, the process is both environmentally friendly and economical.

19.
Polymers (Basel) ; 12(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046040

RESUMEN

In this work, non-derivatized cellulose pulp was dissolved in a cold alkali solution (LiOH/urea) and chemically cross-linked with methylenebisacrylamide (MBA) to form a robust hydrogel with superior water absorption properties. Different cellulose concentrations (i.e., 2, 3 and 4 wt%) and MBA/glucose molar ratios (i.e., 0.26, 0.53 and 1.05) were tested. The cellulose hydrogel cured at 60 °C for 30 min, with a MBA/glucose molar ratio of 1.05, exhibited the highest water swelling capacity absorbing ca. 220 g H2O/g dry hydrogel. Moreover, the data suggest that the cross-linking occurs via a basic Michael addition mechanism. This innovative procedure based on the direct dissolution of unmodified cellulose in LiOH/urea followed by MBA cross-linking provides a simple and fast approach to prepare chemically cross-linked non-derivatized high-molecular-weight cellulose hydrogels with superior water uptake capacity.

20.
Carbohydr Polym ; 215: 90-98, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30981375

RESUMEN

A series of hydroxybutyl chitosans (HBCSs) with a degree of substitution (DS) ranging from 0.38 to 1.54 were homogeneously synthesized in KOH/LiOH/urea aqueous solutions under ambient conditions. The structure and solution properties of HBCSs were characterized by FT-IR, NMR, SEC-LLS, UV-vis, rheological and DLS measurements. The amino groups at C2 and hydroxyl groups at C3 and C6 participated in the reaction, although substitution mainly occurred at the hydroxyl groups at C6. The HBCSs exhibited good solubility in aqueous solutions, and those with a DS above 1.25 displayed phase separation behavior and precipitated out from solution when heated to a critical temperature. All results confirmed the hypothesis that the homogeneous KOH/LiOH/urea aqueous solution is a stable, mild, and energy-saving reaction medium for preparing HBCSs. Moreover, the HBCSs exhibited excellent biocompatibility, and even promoted the proliferation of normal cells. They also displayed antibacterial activities against Staphylococcus aureus and Escherichia coli, thus being suitable for biomedical applications.


Asunto(s)
Antibacterianos , Quitosano/análogos & derivados , Citotoxinas , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Proliferación Celular/efectos de los fármacos , Quitosano/síntesis química , Quitosano/química , Quitosano/farmacología , Citotoxinas/síntesis química , Citotoxinas/química , Citotoxinas/farmacología , Escherichia coli/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Hidróxidos/química , Compuestos de Litio/química , Compuestos de Potasio/química , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Temperatura , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA