Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.175
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(13): 3319-3337.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38810645

RESUMEN

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.


Asunto(s)
Brassicaceae , Flores , Regulación de la Expresión Génica de las Plantas , Brassicaceae/genética , Brassicaceae/fisiología , Productos Agrícolas/genética , Flores/genética , Flores/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Fenómenos Fisiológicos de las Plantas , Mapeo Cromosómico , Mutación
2.
Cell ; 178(2): 385-399.e20, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257025

RESUMEN

To uncover the selective forces shaping life-history trait evolution across species, we investigate the genomic basis underlying adaptations to seasonal habitat desiccation in African killifishes, identifying the genetic variants associated with positive and relaxed purifying selection in 45 killifish species and 231 wild individuals distributed throughout sub-Saharan Africa. In annual species, genetic drift led to the expansion of nuclear and mitochondrial genomes and caused the accumulation of deleterious genetic variants in key life-history modulating genes such as mtor, insr, ampk, foxo3, and polg. Relaxation of purifying selection is also significantly associated with mitochondrial function and aging in human populations. We find that relaxation of purifying selection prominently shapes genomes and is a prime candidate force molding the evolution of lifespan and the distribution of genetic variants associated with late-onset diseases in different species. VIDEO ABSTRACT.


Asunto(s)
Longevidad , Selección Genética , Envejecimiento , Animales , Replicación del ADN , Evolución Molecular , Frecuencia de los Genes , Genoma Mitocondrial , Peces Killi/clasificación , Peces Killi/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Filogenia , Filogeografía
3.
Annu Rev Cell Dev Biol ; 33: 555-575, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28693387

RESUMEN

Our understanding of the detailed molecular mechanisms underpinning adaptation is still poor. One example for which mechanistic understanding of regulation has converged with studies of life history variation is Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC determines the need for plants to overwinter and their ability to respond to prolonged cold in a process termed vernalization. This review highlights how molecular analysis of vernalization pathways has revealed important insight into antisense-mediated chromatin silencing mechanisms that regulate FLC. In turn, such insight has enabled molecular dissection of the diversity in vernalization across natural populations of A. thaliana. Changes in both cotranscriptional regulation and epigenetic silencing of FLC are caused by noncoding polymorphisms at FLC. The FLC locus is therefore providing important concepts for how noncoding transcription and chromatin regulation influence gene expression and how these mechanisms can vary to underpin adaptation in natural populations.


Asunto(s)
Adaptación Fisiológica/genética , Epigénesis Genética , Sitios Genéticos , Proteínas de Plantas/genética , Evolución Biológica , Flores/fisiología
4.
Proc Natl Acad Sci U S A ; 121(41): e2316827121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39312680

RESUMEN

Movement is a key means by which animals cope with variable environments. As they move, animals construct individual niches composed of the environmental conditions they experience. Niche axes may vary over time and covary with one another as animals make tradeoffs between competing needs. Seasonal migration is expected to produce substantial niche variation as animals move to keep pace with major life history phases and fluctuations in environmental conditions. Here, we apply a time-ordered principal component analysis to examine dynamic niche variance and covariance across the annual cycle for four species of migratory crane: common crane (Grus grus, n = 20), demoiselle crane (Anthropoides virgo, n = 66), black-necked crane (Grus nigricollis, n = 9), and white-naped crane (Grus vipio, n = 9). We consider four key niche components known to be important to aspects of crane natural history: enhanced vegetation index (resources availability), temperature (thermoregulation), crop proportion (preferred foraging habitat), and proximity to water (predator avoidance). All species showed a primary seasonal niche "rhythm" that dominated variance in niche components across the annual cycle. Secondary rhythms were linked to major species-specific life history phases (migration, breeding, and nonbreeding) as well as seasonal environmental patterns. Furthermore, we found that cranes' experiences of the environment emerge from time-dynamic tradeoffs among niche components. We suggest that our approach to estimating the environmental niche as a multidimensional and time-dynamical system of tradeoffs improves mechanistic understanding of organism-environment interactions.


Asunto(s)
Migración Animal , Aves , Ecosistema , Estaciones del Año , Animales , Migración Animal/fisiología , Aves/fisiología
5.
Proc Natl Acad Sci U S A ; 121(25): e2403491121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38875146

RESUMEN

Animals, and mammals in particular, vary widely in their "pace of life," with some species living long lives and reproducing infrequently (slow life histories) and others living short lives and reproducing often (fast life histories). These species also vary in the importance of maternal care in offspring fitness: In some species, offspring are fully independent of their mothers following a brief period of nutritional input, while others display a long period of continued dependence on mothers well after nutritional dependence. Here, we hypothesize that these two axes of variation are causally related to each other, such that extended dependence of offspring on maternal presence leads to the evolution of longer lives at the expense of reproduction. We use a combination of deterministic modeling and stochastic agent-based modeling to explore how empirically observed links between maternal survival and offspring fitness are likely to shape the evolution of mortality and fertility. Each of our modeling approaches leads to the same conclusion: When maternal survival has a strong impact on the survival of offspring and grandoffspring, populations evolve longer lives with less frequent reproduction. Our results suggest that the slow life histories of humans and other primates as well as other long-lived, highly social animals such as hyenas, whales, and elephants are partially the result of the strong maternal care that these animals display. We have designed our models to be readily parameterized with demographic data that are routinely collected by long-term researchers, which will facilitate more thorough testing of our hypothesis.


Asunto(s)
Evolución Biológica , Longevidad , Conducta Materna , Reproducción , Animales , Femenino , Conducta Materna/fisiología , Reproducción/fisiología , Longevidad/fisiología , Humanos , Modelos Biológicos , Fertilidad
6.
Proc Natl Acad Sci U S A ; 121(34): e2319487121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133847

RESUMEN

Extending and safeguarding tropical forest ecosystems is critical for combating climate change and biodiversity loss. One of its constituents, lianas, is spreading and increasing in abundance on a global scale. This is particularly concerning as lianas negatively impact forests' carbon fluxes, dynamics, and overall resilience, potentially exacerbating both crises. While possibly linked to climate-change-induced atmospheric CO2 elevation and drought intensification, the reasons behind their increasing abundance remain elusive. Prior research shows distinct physiological differences between lianas and trees, but it is unclear whether these differences confer a demographic advantage to lianas with climate change. Guided by extensive datasets collected in Panamanian tropical forests, we developed a tractable model integrating physiology, demography, and epidemiology. Our findings suggest that CO2 fertilization, a climate change factor promoting forest productivity, gives lianas a demographic advantage. Conversely, factors such as extreme drought generally cause a decrease in liana prevalence. Such a decline in liana prevalence is expected from a physiological point of view because lianas have drought-sensitive traits. However, our analysis underscores the importance of not exclusively relying on physiological processes, as interactions with demographic mechanisms (i.e., the forest structure) can contrast these expectations, causing an increase in lianas with drought. Similarly, our results emphasize that identical physiological responses between lianas and trees still lead to liana increase. Even if lianas exhibit collinear but weaker responses in their performance compared to trees, a temporary liana prevalence increase might manifest driven by the faster response time of lianas imposed by their distinct life-history strategies than trees.


Asunto(s)
Cambio Climático , Árboles , Árboles/fisiología , Árboles/crecimiento & desarrollo , Bosques , Sequías , Clima Tropical , Biodiversidad , Ecosistema
7.
Bioessays ; 46(1): e2300098, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38018264

RESUMEN

The evolution and biodiversity of ageing have long fascinated scientists and the public alike. While mammals, including long-lived species such as humans, show a marked ageing process, some species of reptiles and amphibians exhibit very slow and even the absence of ageing phenotypes. How can reptiles and other vertebrates age slower than mammals? Herein, I propose that evolving during the rule of the dinosaurs left a lasting legacy in mammals. For over 100 million years when dinosaurs were the dominant predators, mammals were generally small, nocturnal, and short-lived. My hypothesis is that such a long evolutionary pressure on early mammals for rapid reproduction led to the loss or inactivation of genes and pathways associated with long life. I call this the 'longevity bottleneck hypothesis', which is further supported by the absence in mammals of regenerative traits. Although mammals, such as humans, can evolve long lifespans, they do so under constraints dating to the dinosaur era.


Asunto(s)
Dinosaurios , Longevidad , Animales , Envejecimiento/fisiología , Dinosaurios/fisiología , Mamíferos/fisiología , Reptiles , Evolución Biológica
8.
Proc Natl Acad Sci U S A ; 120(14): e2214244120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972440

RESUMEN

Seasonal tropical environments are among those regions that are the most affected by shifts in temperature and rainfall regimes under climate change, with potentially severe consequences for wildlife population persistence. This persistence is ultimately determined by complex demographic responses to multiple climatic drivers, yet these complexities have been little explored in tropical mammals. We use long-term, individual-based demographic data (1994 to 2020) from a short-lived primate in western Madagascar, the gray mouse lemur (Microcebus murinus), to investigate the demographic drivers of population persistence under observed shifts in seasonal temperature and rainfall. While rainfall during the wet season has been declining over the years, dry season temperatures have been increasing, with these trends projected to continue. These environmental changes resulted in lower survival and higher recruitment rates over time for gray mouse lemurs. Although the contrasting changes have prevented the study population from collapsing, the resulting increase in life-history speed has destabilized an otherwise stable population. Population projections under more recent rainfall and temperature levels predict an increase in population fluctuations and a corresponding increase in the extinction risk over the next five decades. Our analyses show that a relatively short-lived mammal with high reproductive output, representing a life history that is expected to closely track changes in its environment, can nonetheless be threatened by climate change.


Asunto(s)
Cheirogaleidae , Cambio Climático , Animales , Humanos , Dinámica Poblacional , Animales Salvajes , Temperatura , Mamíferos , Estaciones del Año , Cheirogaleidae/fisiología
9.
Proc Natl Acad Sci U S A ; 119(10): e2114674119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238685

RESUMEN

SignificanceHere, we demonstrate that a naturally evolving behavior (allonursing) has greater effect on reproductive power (mass per unit of time) and output (litter mass at birth) than does artificial selection (domestication). Additionally, we demonstrate the importance of resource optimization afforded by sociality (rather than resource abundance per se) in shaping a species' life history profile and its ability to overcome its own physiological constraints.


Asunto(s)
Lactancia , Tamaño de la Camada , Leche , Animales , Femenino , Masculino , Ratones
10.
Proc Natl Acad Sci U S A ; 119(33): e2201371119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939680

RESUMEN

Aging is the price to pay for acquiring and processing energy through cellular activity and life history productivity. Climate warming can exacerbate the inherent pace of aging, as illustrated by a faster erosion of protective telomere DNA sequences. This biomarker integrates individual pace of life and parental effects through the germline, but whether intra- and intergenerational telomere dynamics underlies population trends remains an open question. Here, we investigated the covariation between life history, telomere length (TL), and extinction risk among three age classes in a cold-adapted ectotherm (Zootoca vivipara) facing warming-induced extirpations in its distribution limits. TL followed the same threshold relationships with population extinction risk at birth, maturity, and adulthood, suggesting intergenerational accumulation of accelerated aging rate in declining populations. In dwindling populations, most neonates inherited already short telomeres, suggesting they were born physiologically old and unlikely to reach recruitment. At adulthood, TL further explained females' reproductive performance, switching from an index of individual quality in stable populations to a biomarker of reproductive costs in those close to extirpation. We compiled these results to propose the aging loop hypothesis and conceptualize how climate-driven telomere shortening in ectotherms may accumulate across generations and generate tipping points before local extirpation.


Asunto(s)
Envejecimiento , Extinción Biológica , Calentamiento Global , Lagartos , Acortamiento del Telómero , Telómero , Envejecimiento/genética , Animales , Femenino , Lagartos/genética , Dinámica Poblacional , Reproducción , Riesgo , Telómero/genética
11.
Proc Natl Acad Sci U S A ; 119(18): e2122052119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476523

RESUMEN

A substantial body of literature reports that ctenophores exhibit an apparently unique life history characterized by biphasic sexual reproduction, the first phase of which is called larval reproduction or dissogeny. Whether this strategy is plastically deployed or a typical part of these species' life history was unknown. In contrast to previous reports, we show that the ctenophore Mnemiopsis leidyi does not have separate phases of early and adult reproduction, regardless of the morphological transition to what has been considered the adult form. Rather, these ctenophores begin to reproduce at a small body size and spawn continuously from this point onward under adequate environmental conditions. They do not display a gap in productivity for metamorphosis or other physiological transition at a certain body size. Furthermore, nutritional and environmental constraints on fecundity are similar in both small and large animals. Our results provide critical parameters for understanding resource partitioning between growth and reproduction in this taxon, with implications for management of this species in its invaded range. Finally, we report an observation of similarly small-size spawning in a beroid ctenophore, which is morphologically, ecologically, and phylogenetically distinct from other ctenophores reported to spawn at small sizes. We conclude that spawning at small body size should be considered as the default, on-time developmental trajectory rather than as precocious, stress-induced, or otherwise unusual for ctenophores. The ancestral ctenophore was likely a direct developer, consistent with the hypothesis that multiphasic life cycles were introduced after the divergence of the ctenophore lineage.


Asunto(s)
Ctenóforos , Animales , Femenino , Larva , Estadios del Ciclo de Vida , Parto , Embarazo , Reproducción
12.
Proc Natl Acad Sci U S A ; 119(33): e2205564119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943983

RESUMEN

Male-female coevolution has taken different paths among closely related species, but our understanding of the factors that govern its direction is limited. While it is clear that ecological factors, life history, and the economics of reproduction are connected, the divergent links are often obscure. We propose that a complete understanding requires the conceptual integration of metabolic phenotypes. Metabolic rate, a nexus of life history evolution, is constrained by ecological factors and may exert important direct and indirect effects on the evolution of sexual dimorphism. We performed standardized experiments in 12 seed beetle species to gain a rich set of sex-specific measures of metabolic phenotypes, life history traits, and the economics of mating and analyzed our multivariate data using phylogenetic comparative methods. Resting metabolic rate (RMR) showed extensive evolution and evolved more rapidly in males than in females. The evolution of RMR was tightly coupled with a suite of life history traits, describing a pace-of-life syndrome (POLS), with indirect effects on the economics of mating. As predicted, high resource competition was associated with a low RMR and a slow POLS. The cost of mating showed sexually antagonistic coevolution, a hallmark of sexual conflict. The sex-specific costs and benefits of mating were predictably related to ecology, primarily through the evolution of male ejaculate size. Overall, our results support the tenet that resource competition affects metabolic processes that, in turn, have predictable effects on both life history evolution and reproduction, such that ecology shows both direct and indirect effects on male-female coevolution.


Asunto(s)
Metabolismo Basal , Evolución Biológica , Escarabajos , Conducta Sexual Animal , Animales , Escarabajos/metabolismo , Femenino , Masculino , Filogenia , Reproducción
13.
Proc Natl Acad Sci U S A ; 119(28): e2200073119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867741

RESUMEN

In classical evolutionary models, the force of natural selection diminishes with age toward zero by last reproduction. However, intergenerational resource transfers and other late-life contributions in social species may select for postreproductive longevity. We present a formal framework for estimating indirect fitness contributions via production transfers in a skills-intensive foraging niche, reflecting kinship and cooperation among group members. Among contemporary human hunter-gatherers and horticulturalists, indirect fitness contributions from transfers exceed direct reproductive contributions from before menopause until ages when surpluses end, around the modal age of adult death (∼70 y). Under reasonable assumptions, these benefits are the equivalent to having up to several more offspring after age 50. Despite early independence, minimal production surplus, and a shorter lifespan, chimpanzees could theoretically make indirect contributions if they adopted reliable food-sharing practices. Our results for chimpanzees hypothetically adopting hunter-gatherer subsistence suggest that a skills-intensive foraging ecology with late independence and late peak production could select for human-like life histories via positive feedback between longevity and late-life transfers. In contrast, life history changes preceding subsistence shifts would not favor further life extension or subsistence shifts. Our results formalize the theory that longevity can be favored under socioecological conditions characterized by parental and alloparental care funded through transfers of mid- to late-life production surpluses. We also extend our analysis beyond food transfers to illustrate the potential for indirect fitness contributions from pedagogy, or information transfers. While we focus mostly on humans, our approach is adaptable to any context or species where transfers can affect fitness.


Asunto(s)
Evolución Biológica , Esperanza de Vida , Longevidad , Selección Genética , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Reproducción
14.
Annu Rev Entomol ; 69: 99-116, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37585607

RESUMEN

Among the ground-nesting bees are several proven crop pollinators, but only the alkali bee (Nomia melanderi) has been successfully managed. In <80 years, it has become the world's most intensely studied ground-nesting solitary bee. In many ways, the bee seems paradoxical. It nests during the torrid, parched midsummer amid arid valleys and basins of the western United States, yet it wants damp nesting soil. In these basins, extensive monocultures of an irrigated Eurasian crop plant, alfalfa (lucerne), subsidize millions of alkali bees. Elsewhere, its polylectic habits and long foraging range allow it to stray into neighboring crops contaminated with insecticides. Primary wild floral hosts are either non-native or poorly known. Kleptoparasitic bees plague most ground nesters, but not alkali bees, which do, however, host other well-studied parasitoids. Building effective nesting beds requires understanding the hydraulic conductivity of silty nesting soils and its important interplay with specific soil mineral salts. Surprisingly, some isolated populations endure inhospitably cold climates by nesting amid hot springs. Despite the peculiarities and challenges associated with its management, the alkali bee remains the second most valuable managed solitary bee for US agriculture and perhaps the world.


Asunto(s)
Agricultura , Productos Agrícolas , Abejas , Animales , Ambiente , Suelo , Polinización
15.
Annu Rev Entomol ; 69: 219-237, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37708416

RESUMEN

Throughout the past century, the global spread of Bactrocera pests has continued to pose a significant threat to the commercial fruit and vegetable industry, resulting in substantial costs associated with both control measures and quarantine restrictions. The increasing volume of transcontinental trade has contributed to an escalating rate of Bactrocera pest introductions to new regions. To address the worldwide threat posed by this group of pests, we first provide an overview of Bactrocera. We then describe the global epidemic, including border interceptions, species diagnosis, population genetics, geographical expansion, and invasion tracing of Bactrocera pests. We further consider the literature concerning the invasion co-occurrences, life-history flexibility, risk assessment, bridgehead effects, and ongoing implications of invasion recurrences, as well as a case study of Bactrocera invasions of California. Finally, we call for global collaboration to effectively monitor, prevent, and control the ongoing spread of Bactrocera pests and to share experience and knowledge to combat it.


Asunto(s)
Tephritidae , Animales , Geografía , Medición de Riesgo
16.
Plant J ; 116(3): 921-941, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37609706

RESUMEN

Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.


Asunto(s)
Arabidopsis , Brassicaceae , Brassicaceae/fisiología , Arabidopsis/fisiología , Flores , Estrés Salino , Estrés Fisiológico , Agua
17.
Physiology (Bethesda) ; 38(6): 0, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37698354

RESUMEN

Most explanations for the relationship between body size and metabolism invoke physical constraints; such explanations are evolutionarily inert, limiting their predictive capacity. Contemporary approaches to metabolic rate and life history lack the pluralism of foundational work. Here, we call for reforging of the lost links between optimization approaches and physiology.


Asunto(s)
Metabolismo Energético , Modelos Biológicos , Humanos , Tamaño Corporal/fisiología , Metabolismo Energético/fisiología
18.
Ecol Lett ; 27(10): e14517, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39404169

RESUMEN

Evolutionary biology is poised for a third major synthesis. The first presented Darwin's evidence from natural history. The second incorporated genetic mechanisms. The third will be based on energy and biophysical processes. It should include the equal fitness paradigm (EFP), which quantifies how organisms convert biomass into surviving offspring. Natural selection tends to maximise energetic fitness, E = P coh GFQ $$ E={P}_{\mathrm{coh}}\mathrm{GFQ} $$ , where P coh $$ {P}_{\mathrm{coh}} $$ is mass-specific rate of cohort biomass production, G $$ G $$ is generation time, F $$ F $$ is fraction of cohort production that is passed to surviving offspring, and Q $$ Q $$ is energy density of biomas. At steady state, parents replace themselves with offspring of equal mass-specific energy content, E $$ E $$ ≈ 22.4 kJ/g, and biomass, M $$ M $$ ≈ 1 g/g. The EFP highlights: (i) the energetic basis of survival and reproduction; (ii) how natural selection acts directly on the parameters of M $$ M $$ ; (iii) why there is no inherent intrinsic fitness advantage for higher metabolic power, ontogenetic or population growth rate, fecundity, longevity, or resource use efficiency; and (iv) the role of energy in animals with a variety of life histories. Underlying the spectacular diversity of living things is pervasive similarity in how energy is acquired from the environment and used to leave descendants offspring in future generations.


Asunto(s)
Evolución Biológica , Metabolismo Energético , Selección Genética , Animales , Aptitud Genética , Reproducción , Biomasa
19.
Ecol Lett ; 27(9): e14511, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39354891

RESUMEN

Climate change is altering temperature means and variation, and both need to be considered in predictions underpinning conservation. However, there is no consensus in the literature regarding the effects of temperature fluctuations on biological functions. Fluctuations may affect biological responses because of inequalities from non-linear responses, endocrine regulation or exposure to damaging temperatures. Here we establish the current state of knowledge of how temperature fluctuations impact biological responses within individuals and populations compared to constant temperatures with the same mean. We conducted a meta-analysis of 143 studies on ectothermic animals (1492 effect sizes, 118 species). In this study, 89% of effect sizes were derived from diel cycles, but there were no significant differences between diel cycles and shorter (<8 h) or longer (>48 h) cycles in their effect on biological responses. We show that temperature fluctuations have little effect overall on trait mean and variance. Nonetheless, temperature fluctuations can be stressful: fluctuations increased 'gene expression' in aquatic animals, which was driven mainly by increased hsp70. Fluctuating temperatures also decreased longevity, and increased amplitudes had negative effects on population responses in aquatic organisms. We conclude that mean temperatures and extreme events such as heat waves are important to consider, but regular (particularly diel) temperature fluctuations are less so.


Asunto(s)
Cambio Climático , Temperatura , Animales , Organismos Acuáticos/fisiología
20.
Ecol Lett ; 27(9): e14500, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39354911

RESUMEN

The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.


Asunto(s)
Árboles , Clima Tropical , Árboles/crecimiento & desarrollo , Cambio Climático , Reproducción , Bosques
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA