Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Cell Sci ; 135(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36172824

RESUMEN

Extracellular matrix (ECM) is an important component of stem cell niche. Remodeling of ECM mediated by ECM regulators, such as matrix metalloproteinases (MMPs) plays a vital role in stem cell function. However, the mechanisms that modulate the function of ECM regulators in the stem cell niche are understudied. Here, we explored the role of the transcription factor (TF) ETS-1, which is expressed in the cathepsin-positive cell population, in regulating the expression of the ECM regulator, mt-mmpA, thereby modulating basement membrane thickness. In planarians, the basement membrane around the gut/inner parenchyma is thought to act as a niche for pluripotent stem cells. It has been shown that the early epidermal progenitors migrate outwards from this region and progressively differentiate to maintain the terminal epidermis. Our data shows that thickening of the basement membrane in the absence of ets-1 results in defective migration of stem cell progeny. Furthermore, the absence of ets-1 leads to a defective epidermal progenitor landscape, despite its lack of expression in those cell types. Together, our results demonstrate the active role of ECM remodeling in regulating tissue homeostasis and regeneration in the planarian Schmidtea mediterranea. This article has an associated First Person interview with one of the co-first authors of the paper.


Asunto(s)
Mediterranea , Planarias , Animales , Humanos , Diferenciación Celular , Catepsinas/metabolismo , Planarias/metabolismo , Epidermis/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Membrana Basal/metabolismo , Factores de Transcripción/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(51): 32464-32475, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293420

RESUMEN

Epigenetics regulation plays a critical role in determining cell identity by controlling the accessibility of lineage-specific regulatory regions. In muscle stem cells, epigenetic mechanisms of how chromatin accessibility is modulated during cell fate determination are not fully understood. Here, we identified a long noncoding RNA, LncMyoD, that functions as a chromatin modulator for myogenic lineage determination and progression. The depletion of LncMyoD in muscle stem cells led to the down-regulation of myogenic genes and defects in myogenic differentiation. LncMyoD exclusively binds with MyoD and not with other myogenic regulatory factors and promotes transactivation of target genes. The mechanistic study revealed that loss of LncMyoD prevents the establishment of a permissive chromatin environment at myogenic E-box-containing regions, therefore restricting the binding of MyoD. Furthermore, the depletion of LncMyoD strongly impairs the reprogramming of fibroblasts into the myogenic lineage. Taken together, our study shows that LncMyoD associates with MyoD and promotes myogenic gene expression through modulating MyoD accessibility to chromatin, thereby regulating myogenic lineage determination and progression.


Asunto(s)
Cromatina/genética , ARN Largo no Codificante/genética , Células Satélite del Músculo Esquelético/fisiología , Animales , Diferenciación Celular/genética , Linaje de la Célula , Transdiferenciación Celular , Cromatina/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Desarrollo de Músculos/fisiología , Proteína MioD/genética , Mioblastos/citología , Mioblastos/fisiología , Células Satélite del Músculo Esquelético/citología
3.
BMC Biol ; 20(1): 122, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35610641

RESUMEN

BACKGROUND: Oligodendrocytes are glial cells that support and insulate axons in the central nervous system through the production of myelin. Oligodendrocytes arise throughout embryonic and early postnatal development from oligodendrocyte precursor cells (OPCs), and recent work demonstrated that they are a transcriptional heterogeneous cell population, but the regional and functional implications of this heterogeneity are less clear. Here, we apply in situ sequencing (ISS) to simultaneously probe the expression of 124 marker genes of distinct oligodendrocyte populations, providing comprehensive maps of the corpus callosum, cingulate, motor, and somatosensory cortex in the brain, as well as gray matter (GM) and white matter (WM) regions in the spinal cord, at postnatal (P10), juvenile (P20), and young adult (P60) stages. We systematically compare the abundances of these populations and investigate the neighboring preference of distinct oligodendrocyte populations. RESULTS: We observed that oligodendrocyte lineage progression is more advanced in the juvenile spinal cord compared to the brain, corroborating with previous studies. We found myelination still ongoing in the adult corpus callosum while it was more advanced in the cortex. Interestingly, we also observed a lateral-to-medial gradient of oligodendrocyte lineage progression in the juvenile cortex, which could be linked to arealization, as well as a deep-to-superficial gradient with mature oligodendrocytes preferentially accumulating in the deeper layers of the cortex. The ISS experiments also exposed differences in abundances and population dynamics over time between GM and WM regions in the brain and spinal cord, indicating regional differences within GM and WM, and we found that neighboring preferences of some oligodendroglia populations are altered from the juvenile to the adult CNS. CONCLUSIONS: Overall, our ISS experiments reveal spatial heterogeneity of oligodendrocyte lineage progression in the brain and spinal cord and uncover differences in the timing of oligodendrocyte differentiation and myelination, which could be relevant to further investigate functional heterogeneity of oligodendroglia, especially in the context of injury or disease.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Axones/fisiología , Diferenciación Celular/genética , Linaje de la Célula , Sistema Nervioso Central/fisiología , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
4.
Semin Cell Dev Biol ; 97: 74-83, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31301357

RESUMEN

The repair and functional recovery of the nervous system is a highly regulated process that requires the coordination of many different components including the proper myelination of regenerated axons. Dysmyelination and remyelination failures after injury result in defective nerve conduction, impairing normal nervous system functions. There are many convergent regulatory networks and signaling mechanisms between development and regeneration. For instance, the regulatory mechanisms required for oligodendrocyte lineage progression could potentially play fundamental roles in myelin repair. In recent years, epigenetic chromatin modifications have been implicated in CNS myelination and functional nerve restoration. The pro-regenerative transcriptional program is likely silenced or repressed in adult neural cells including neurons and myelinating cells in the central and peripheral nervous systems limiting the capacity for repair after injury. In this review, we will discuss the roles of epigenetic mechanisms, including histone modifications, chromatin remodeling, and DNA methylation, in the maintenance and establishment of the myelination program during normal oligodendrocyte development and regeneration. We also discuss how these epigenetic processes impact myelination and axonal regeneration, and facilitate the improvement of current preclinical therapeutics for functional nerve regeneration in neurodegenerative disorders or after injury.


Asunto(s)
Cromatina/metabolismo , Epigenómica/métodos , Regeneración Nerviosa/genética , Animales , Humanos
5.
J Neurosci ; 38(7): 1802-1820, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29335358

RESUMEN

In the CNS, myelination and remyelination depend on the successful progression and maturation of oligodendroglial lineage cells, including proliferation and differentiation of oligodendroglial progenitor cells (OPCs). Previous studies have reported that Sox2 transiently regulates oligodendrocyte (OL) differentiation in the embryonic and perinatal spinal cord and appears dispensable for myelination in the postnatal spinal cord. However, the role of Sox2 in OL development in the brain has yet to be defined. We now report that Sox2 is an essential positive regulator of developmental myelination in the postnatal murine brain of both sexes. Stage-specific paradigms of genetic disruption demonstrated that Sox2 regulated brain myelination by coordinating upstream OPC population supply and downstream OL differentiation. Transcriptomic analyses further supported a crucial role of Sox2 in brain developmental myelination. Consistently, oligodendroglial Sox2-deficient mice developed severe tremors and ataxia, typical phenotypes indicative of hypomyelination, and displayed severe impairment of motor function and prominent deficits of brain OL differentiation and myelination persisting into the later CNS developmental stages. We also found that Sox2 was required for efficient OPC proliferation and expansion and OL regeneration during remyelination in the adult brain and spinal cord. Together, our genetic evidence reveals an essential role of Sox2 in brain myelination and CNS remyelination, and suggests that manipulation of Sox2 and/or Sox2-mediated downstream pathways may be therapeutic in promoting CNS myelin repair.SIGNIFICANCE STATEMENT Promoting myelin formation and repair has translational significance in treating myelin-related neurological disorders, such as periventricular leukomalacia and multiple sclerosis in which brain developmental myelin formation and myelin repair are severely affected, respectively. In this report, analyses of a series of genetic conditional knock-out systems targeting different oligodendrocyte stages reveal a previously unappreciated role of Sox2 in coordinating upstream proliferation and downstream differentiation of oligodendroglial lineage cells in the mouse brain during developmental myelination and CNS remyelination. Our study points to the potential of manipulating Sox2 and its downstream pathways to promote oligodendrocyte regeneration and CNS myelin repair.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Sistema Nervioso Central/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Factores de Transcripción SOXB1/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Enfermedades Desmielinizantes/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Trastornos del Movimiento/fisiopatología , Regeneración Nerviosa/fisiología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/fisiología , Transcriptoma
6.
J Neurochem ; 149(1): 12-26, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30276807

RESUMEN

The cerebral cortex is composed of a large variety of distinct cell-types including projection neurons, interneurons, and glial cells which emerge from distinct neural stem cell lineages. The vast majority of cortical projection neurons and certain classes of glial cells are generated by radial glial progenitor cells in a highly orchestrated manner. Recent studies employing single cell analysis and clonal lineage tracing suggest that neural stem cell and radial glial progenitor lineage progression are regulated in a profound deterministic manner. In this review we focus on recent advances based mainly on correlative phenotypic data emerging from functional genetic studies in mice. We establish hypotheses to test in future research and outline a conceptual framework how epigenetic cues modulate the generation of cell-type diversity during cortical development.


Asunto(s)
Corteza Cerebral/citología , Epigénesis Genética/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Diferenciación Celular/fisiología , Corteza Cerebral/embriología , Humanos
7.
Artículo en Inglés | MEDLINE | ID: mdl-32117910

RESUMEN

We present Clustering and Lineage Inference in Single-Cell Transcriptional Analysis (CALISTA), a numerically efficient and highly scalable toolbox for an end-to-end analysis of single-cell transcriptomic profiles. CALISTA includes four essential single-cell analyses for cell differentiation studies, including single-cell clustering, reconstruction of cell lineage specification, transition gene identification, and cell pseudotime ordering, which can be applied individually or in a pipeline. In these analyses, we employ a likelihood-based approach where single-cell mRNA counts are described by a probabilistic distribution function associated with stochastic gene transcriptional bursts and random technical dropout events. We illustrate the efficacy of CALISTA using single-cell gene expression datasets from different single-cell transcriptional profiling technologies and from a few hundreds to tens of thousands of cells. CALISTA is freely available on https://www.cabselab.com/calista.

8.
Methods Mol Biol ; 2150: 183-194, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31020634

RESUMEN

A comprehensive understanding of the mechanisms controlling the behavior of cell populations with regenerative potential is the first step to design effective therapeutic strategies for many diseases. However, a precise description of the biological events involved, such as proliferation, differentiation, cell fate decisions, migration, or viability, may be hampered by the classical use of experiments based on end-point analysis. By contrast, live imaging and single cell tracking provides researchers with an accurate readout of these features in cells throughout an experiment. Here, we describe a protocol to apply time-lapse video microscopy and post-processing of the data to study critical aspects of the biology and the lineage progression of multiple neural populations.


Asunto(s)
Rastreo Celular , Microscopía por Video , Neuronas/citología , Análisis de la Célula Individual , Imagen de Lapso de Tiempo/métodos , Animales , Linaje de la Célula , Supervivencia Celular , Células Cultivadas , Procesamiento de Imagen Asistido por Computador
9.
Trends Neurosci ; 42(4): 263-277, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30770136

RESUMEN

Myelin is a multilayer lipid membrane structure that wraps and insulates axons, allowing for the efficient propagation of action potentials. During developmental myelination of the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) proliferate and migrate to their final destination, where they terminally differentiate into mature oligodendrocytes and myelinate axons. Lineage progression and terminal differentiation of oligodendrocyte lineage cells are under tight transcriptional and post-transcriptional control. The characterization of several recently identified regulatory factors that govern these processes, which are the focus of this review, has greatly increased our understanding of oligodendrocyte development and function. These insights are critical to facilitate efforts to enhance OPC differentiation in neurological disorders that disrupt CNS myelin.


Asunto(s)
Oligodendroglía/metabolismo , Animales , Diferenciación Celular/fisiología , Humanos
10.
Cell Rep ; 29(8): 2489-2504.e4, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747615

RESUMEN

Hair follicle stem cells (HFSCs) and subsequent generations of matrix progeny make lineage choices by responding to spatiotemporal signals; however, the cues driving that specification are not well understood. Here, we demonstrate that the dynamics of microRNA (miR)-29 expression are inversely proportional to HFSC lineage progression. Furthermore, we show that sustained miR-29a/b1 overexpression in anagen or telogen in mice causes a short-hair phenotype and eventual hair loss by inhibiting the proliferation of HFSCs and matrix cells and likely preventing their differentiation. Conversely, in a loss-of-function in vivo model, miR-29a/b1 deficiency accelerates HFSC lineage progression in telogen. Mechanistically, miR-29a/b1 blocks HFSC lineage specification by spatiotemporally targeting Ctnnb1, Lrp6, Bmpr1a, and Ccna2. We further show that skin-specific Lrp6 or Bmpr1a ablation partially accounts for the short-hair phenotype. Overall, these synergistic targets reveal miR-29a/b1 as a high-fidelity antagonist of HFSC lineage progression and a potential therapeutic target for hair loss.


Asunto(s)
Folículo Piloso/citología , MicroARNs/metabolismo , Células Madre/citología , Animales , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Ciclina A2/genética , Ciclina A2/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , MicroARNs/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/genética , beta Catenina/metabolismo
11.
FEBS Lett ; 592(7): 1063-1078, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29427507

RESUMEN

Myelination by oligodendrocytes in the central nervous system permits high-fidelity saltatory conduction from neuronal cell bodies to axon terminals. Dysmyelinating and demyelinating disorders impair normal nervous system functions. Consequently, an understanding of oligodendrocyte differentiation that moves beyond the genetic code into the field of epigenetics is essential. Chromatin reprogramming is critical for steering stage-specific differentiation processes during oligodendrocyte development. Fine temporal control of chromatin remodeling through ATP-dependent chromatin remodelers and sequential histone modifiers shapes a chromatin regulatory landscape conducive to oligodendrocyte fate specification, lineage differentiation, and maintenance of cell identity. In this Review, we will focus on the biological functions of ATP-dependent chromatin remodelers and histone deacetylases in myelinating oligodendrocyte development and implications for myelin regeneration in neurodegenerative diseases.


Asunto(s)
Ensamble y Desensamble de Cromatina , Epigénesis Genética , Vaina de Mielina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Oligodendroglía/metabolismo , Remielinización , Animales , Diferenciación Celular , Humanos , Vaina de Mielina/patología , Enfermedades Neurodegenerativas/patología , Oligodendroglía/patología
12.
Curr Protoc Stem Cell Biol ; 38: 2D.18.1-2D.18.27, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27532816

RESUMEN

Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling. © 2016 by John Wiley & Sons, Inc.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Oligodendroglía/citología , Virus/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/embriología , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Células Clonales , Ectodermo/citología , Cuerpos Embrioides/citología , Feto/citología , Congelación , Humanos , Células-Madre Neurales/citología , Neuronas/citología , Ratas , Trasplante de Células Madre
13.
Curr Protoc Stem Cell Biol ; 39(1): 2D.18.1-2D.18.28, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31816188

RESUMEN

Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling. © 2016 by John Wiley & Sons, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA