RESUMEN
Apolipoprotein AV (APOA5) lowers plasma triglyceride (TG) levels by binding to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppressing its capacity to inhibit lipoprotein lipase (LPL) catalytic activity and its ability to detach LPL from binding sites within capillaries. However, the sequences in APOA5 that are required for suppressing ANGPTL3/8 activity have never been defined. A clue to the identity of those sequences was the presence of severe hypertriglyceridemia in two patients harboring an APOA5 mutation that truncates APOA5 by 35 residues ("APOA5Δ35"). We found that wild-type (WT) human APOA5, but not APOA5Δ35, suppressed ANGPTL3/8's ability to inhibit LPL catalytic activity. To pursue that finding, we prepared a mutant mouse APOA5 protein lacking 40 C-terminal amino acids ("APOA5Δ40"). Mouse WT-APOA5, but not APOA5Δ40, suppressed ANGPTL3/8's capacity to inhibit LPL catalytic activity and sharply reduced plasma TG levels in mice. WT-APOA5, but not APOA5Δ40, increased intracapillary LPL levels and reduced plasma TG levels in Apoa5-/- mice (where TG levels are high and intravascular LPL levels are low). Also, WT-APOA5, but not APOA5Δ40, blocked the ability of ANGPTL3/8 to detach LPL from cultured cells. Finally, an antibody against a synthetic peptide corresponding to the last 26 amino acids of mouse APOA5 reduced intracapillary LPL levels and increased plasma TG levels in WT mice. We conclude that C-terminal sequences in APOA5 are crucial for suppressing ANGPTL3/8 activity in vitro and for regulating intracapillary LPL levels and plasma TG levels in vivo.
Asunto(s)
Apolipoproteínas , Lipoproteína Lipasa , Ratones , Humanos , Animales , Proteínas Similares a la Angiopoyetina/genética , Proteínas Similares a la Angiopoyetina/metabolismo , Lipoproteína Lipasa/metabolismo , Proteína 3 Similar a la Angiopoyetina , Aminoácidos , Triglicéridos/metabolismo , Apolipoproteína A-V/genéticaRESUMEN
Triglyceride (TG) metabolism is highly regulated by angiopoietin-like protein (ANGPTL) family members [Y. Q. Chen et al., J. Lipid Res. 61, 1203-1220 (2020)]. During feeding, ANGPTL8 forms complexes with the fibrinogen-like domain-containing protein ANGPTL4 in adipose tissue to decrease ANGPTL3/8- and ANGPTL4-mediated lipoprotein lipase (LPL)-inhibitory activity and promote TG hydrolysis and fatty acid (FA) uptake. The ANGPTL4/8 complex, however, tightly binds LPL and partially inhibits it in vitro. To try to reconcile the in vivo and in vitro data on ANGPTL4/8, we aimed to find novel binding partners of ANGPTL4/8. To that end, we performed pulldown experiments and found that ANGPTL4/8 bound both tissue plasminogen activator (tPA) and plasminogen, the precursor of the fibrinolytic enzyme plasmin. Remarkably, ANGPTL4/8 enhanced tPA activation of plasminogen to generate plasmin in a manner like that observed with fibrin, while minimal plasmin generation was observed with ANGPTL4 alone. The addition of tPA and plasminogen to LPL-bound ANGPTL4/8 caused rapid, complete ANGPTL4/8 cleavage and increased LPL activity. Restoration of LPL activity in the presence of ANGPTL4/8 was also achieved with plasmin but was blocked when catalytically inactive plasminogen (S760A) was added to tPA or when plasminogen activator inhibitor-1 was added to tPA + plasminogen, indicating that conversion of plasminogen to plasmin was essential. Together, these results suggest that LPL-bound ANGPTL4/8 mimics fibrin to recruit tPA and plasminogen to generate plasmin, which then cleaves ANGPTL4/8, enabling LPL activity to be increased. Our observations thus reveal a unique link between the ANGPTL4/8 complex and plasmin generation.
Asunto(s)
Proteína 4 Similar a la Angiopoyetina , Proteína 8 Similar a la Angiopoyetina , Fibrinolisina , Lipoproteína Lipasa , Plasminógeno , Lipoproteína Lipasa/metabolismo , Serina Proteasas , Activador de Tejido Plasminógeno , Triglicéridos/metabolismo , HumanosRESUMEN
Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing. In the current studies, we examined the validity of that assumption. We found that an LPL-specific monoclonal antibody (mAb), 88B8, which lacks the ability to detect GPIHBP1-bound LPL, binds avidly to LPL within capillaries. We further demonstrated, by confocal microscopy, immunogold electron microscopy, and nanoscale secondary ion mass spectrometry analyses, that the LPL detected by mAb 88B8 is located within the EC glycocalyx, distant from the GPIHBP1 on the EC plasma membrane. The LPL within the glycocalyx mediates the margination of TRLs along capillaries and is active in TRL processing, resulting in the delivery of lipoprotein-derived lipids to immediately adjacent parenchymal cells. Thus, the LPL that GPIHBP1 transports into capillaries can detach and move into the EC glycocalyx, where it functions in the intravascular processing of TRLs.
Asunto(s)
Lipoproteína Lipasa , Receptores de Lipoproteína , Anticuerpos Monoclonales/metabolismo , Capilares/metabolismo , Células Endoteliales/metabolismo , Glicocálix/metabolismo , Lipoproteína Lipasa/metabolismo , Lipoproteínas/metabolismo , Receptores de Lipoproteína/metabolismo , Triglicéridos/metabolismo , Humanos , AnimalesRESUMEN
BACKGROUND: ANGPTL3/4/8 (angiopoietin-like proteins 3, 4, and 8) are important regulators of LPL (lipoprotein lipase). ANGPTL8 forms complexes with ANGPTL3 and ANGPTL4. ANGPTL4/8 complex formation converts ANGPTL4 from a furin substrate to a plasmin substrate, and both cleavages generate similar C-terminal domain-containing (CD)-ANGPTL4 fragments. Whereas several studies have investigated associations of free ANGPTL proteins with cardiovascular risk, there are no data describing associations of the complexes and CD-ANGPTL4 with outcomes or describing the effects of the complexes on LPL bound to GPIHBP1 (glycosylphosphatidylinositol HDL-binding protein 1). METHODS: Recombinant protein assays were used to study ANGPTL protein and complex effects on GPIHBP1-LPL activity. ANGPTL3/8, ANGPTL3, ANGPTL4/8, and CD-ANGPTL4 were measured with dedicated immunoassays in 2394 LURIC (Ludwigshafen Risk and Cardiovascular Health) study participants undergoing coronary angiography and 6188 getABI study (German Epidemiological Trial on Ankle Brachial Index) participants undergoing ankle brachial index measurement. There was a follow-up for cardiovascular death with a median (interquartile range) duration of 9.80 (8.75-10.40) years in the LURIC study and 7.06 (7.00-7.14) years in the getABI study. RESULTS: ANGPTL3/8 potently inhibited GPIHBP1-LPL activity and showed positive associations with LDL-C (low-density lipoprotein cholesterol) and triglycerides (both P<0.001). However, in neither study did ANGPTL3/8 correlate with cardiovascular death. Free ANGPTL3 was positively associated with cardiovascular death in the getABI study but not the LURIC study. ANGPTL4/8 and especially CD-ANGPTL4 were positively associated with the prevalence of diabetes, CRP (C-reactive protein; all P<0.001), and cardiovascular death in both studies. In the LURIC and getABI studies, respective hazard ratios for cardiovascular mortality comparing the third with the first ANGPTL4/8 tertile were 1.47 (1.15-1.88) and 1.68 (1.25-2.27) when adjusted for sex, age, body mass index, and diabetes. For CD-ANGPTL4, these hazard ratios were 2.44 (1.86-3.20) and 2.76 (2.00-3.82). CONCLUSIONS: ANGPTL3/8 potently inhibited GPIHBP1-LPL enzymatic activity, consistent with its positive association with serum lipids. However, ANGPTL3/8, LDL-C, and triglyceride levels were not associated with cardiovascular death in the LURIC and getABI cohorts. In contrast, concentrations of ANGPTL4/8 and particularly CD-ANGPTL4 were positively associated with inflammation, the prevalence of diabetes, and cardiovascular mortality.
RESUMEN
Dyslipidemia is characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and TG-rich lipoprotein (TGRLs) in circulation, and is closely associated with the incidence and development of cardiovascular disease. Angiopoietin-like protein 3 (ANGPTL3) deficiency has been identified as a cause of familial combined hypolipidemia in humans, which allows it to be an important therapeutic target for reducing plasma lipids. Here, we report the discovery and characterization of a novel fully human antibody F1519-D95aA against N-terminal ANGPTL3 (NT-ANGPTL3), which potently inhibits NT-ANGPTL3 with a KD as low as 9.21 nM. In hyperlipidemic mice, F1519-D95aA shows higher apolipoprotein B (ApoB) and TG-lowering, and similar LDL-C reducing activity as compared to positive control Evinacumab (56.50% vs 26.01% decrease in serum ApoB levels, 30.84% vs 25.28% decrease in serum TG levels, 23.32% vs 22.52% decrease in serum LDLC levels, relative to vehicle group). Molecular docking and binding energy calculations reveal that the F1519-D95aA-ANGPTL3 complex (10 hydrogen bonds, -65.51 kcal/mol) is more stable than the Evinacumab-ANGPTL3 complex (4 hydrogen bonds, -63.76 kcal/mol). Importantly, F1519-D95aA binds to ANGPTL3 with different residues in ANGPTL3 from Evinacumab, suggesting that F1519-D95aA may be useful for the treatment of patients resistant to Evinacumab. In conclusion, F1519-D95aA is a novel fully human anti-NT-ANGPTL3 antibody with potent plasma ApoB, TG, and LDL-C lowering activities, which can potentially serve as a therapeutic agent for hyperlipidemia and relevant cardiovascular diseases.
Asunto(s)
Bacteriófagos , Enfermedades Cardiovasculares , Hiperlipidemias , Enfermedades Metabólicas , Humanos , Ratones , Animales , Proteína 3 Similar a la Angiopoyetina , LDL-Colesterol , Proteínas Similares a la Angiopoyetina/metabolismo , Hiperlipidemias/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Triglicéridos , Apolipoproteínas BRESUMEN
BACKGROUND: Pathogenic variants in PLIN1-encoding PLIN1 (perilipin-1) are responsible for an autosomal dominant form of familial partial lipodystrophy (FPL) associated with severe insulin resistance, hepatic steatosis, and important hypertriglyceridemia. This study aims to decipher the mechanisms of hypertriglyceridemia associated with PLIN1-related FPL. METHODS: We performed an in vivo lipoprotein kinetic study in 6 affected patients compared with 13 healthy controls and 8 patients with type 2 diabetes. Glucose and lipid parameters, including plasma LPL (lipoprotein lipase) mass, were measured. LPL mRNA and protein expression were evaluated in abdominal subcutaneous adipose tissue from patients with 5 PLIN1-mutated FPL and 3 controls. RESULTS: Patients with PLIN1-mutated FPL presented with decreased fat mass, insulin resistance, and diabetes (glycated hemoglobin A1c, 6.68±0.70% versus 7.48±1.63% in patients with type 2 diabetes; mean±SD; P=0.27). Their plasma triglycerides were higher (5.96±3.08 mmol/L) than in controls (0.76±0.27 mmol/L; P<0.0001) and patients with type 2 diabetes (2.94±1.46 mmol/L, P=0.006). Compared with controls, patients with PLIN1-related FPL had a significant reduction of the indirect fractional catabolic rate of VLDL (very-low-density lipoprotein)-apoB100 toward IDL (intermediate-density lipoprotein)/LDL (low-density lipoprotein; 1.79±1.38 versus 5.34±2.45 pool/d; P=0.003) and the indirect fractional catabolic rate of IDL-apoB100 toward LDL (2.14±1.44 versus 7.51±4.07 pool/d; P=0.005). VLDL-apoB100 production was not different between patients with PLIN1-related FPL and controls. Compared with patients with type 2 diabetes, patients with PLIN1-related FPL also showed a significant reduction of the catabolism of both VLDL-apoB100 (P=0.031) and IDL-apoB100 (P=0.031). Plasma LPL mass was significantly lower in patients with PLIN1-related FPL than in controls (21.03±10.08 versus 55.76±13.10 ng/mL; P<0.0001), although the LPL protein expression in adipose tissue was similar. VLDL-apoB100 and IDL-apoB100 indirect fractional catabolic rates were negatively correlated with plasma triglycerides and positively correlated with LPL mass. CONCLUSIONS: We show that hypertriglyceridemia associated with PLIN1-related FPL results from a marked decrease in the catabolism of triglyceride-rich lipoproteins (VLDL and IDL). This could be due to a pronounced reduction in LPL availability, related to the decreased adipose tissue mass.
Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertrigliceridemia , Resistencia a la Insulina , Lipodistrofia Parcial Familiar , Lipoproteína Lipasa , Lipoproteínas , Perilipina-1 , Triglicéridos , Humanos , Masculino , Perilipina-1/genética , Perilipina-1/metabolismo , Perilipina-1/sangre , Triglicéridos/sangre , Hipertrigliceridemia/sangre , Hipertrigliceridemia/genética , Femenino , Adulto , Persona de Mediana Edad , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Lipoproteínas/sangre , Lipoproteína Lipasa/sangre , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/sangre , Lipodistrofia Parcial Familiar/metabolismo , Mutación , Glucemia/metabolismo , Lipoproteínas VLDL/sangre , Lipoproteínas VLDL/metabolismo , Biomarcadores/sangre , Fenotipo , Predisposición Genética a la Enfermedad , Lipólisis , ARN Mensajero/metabolismo , ARN Mensajero/genéticaRESUMEN
GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.
Asunto(s)
Hipertrigliceridemia , Pancreatitis , Receptores de Lipoproteína , Animales , Humanos , Ratones , Ratas , Enfermedad Aguda , Dependovirus/genética , Dependovirus/metabolismo , Hipertrigliceridemia/genética , Hipertrigliceridemia/terapia , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Hígado/metabolismo , Pancreatitis/genética , Pancreatitis/terapia , Pancreatitis/metabolismo , Receptores de Lipoproteína/genética , Receptores de Lipoproteína/metabolismo , Triglicéridos/metabolismoRESUMEN
Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.
Asunto(s)
Lipoproteína Lipasa , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Humanos , Animales , Unión Proteica , Triglicéridos/metabolismo , Metabolismo de los LípidosRESUMEN
GPIHBP1, a protein of capillary endothelial cells (ECs), is a crucial partner for lipoprotein lipase (LPL) in the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1, which contains a three-fingered cysteine-rich LU (Ly6/uPAR) domain and an intrinsically disordered acidic domain (AD), captures LPL from within the interstitial spaces (where it is secreted by parenchymal cells) and shuttles it across ECs to the capillary lumen. Without GPIHBP1, LPL remains stranded within the interstitial spaces, causing severe hypertriglyceridemia (chylomicronemia). Biophysical studies revealed that GPIHBP1 stabilizes LPL structure and preserves LPL activity. That discovery was the key to crystallizing the GPIHBP1-LPL complex. The crystal structure revealed that GPIHBP1's LU domain binds, largely by hydrophobic contacts, to LPL's C-terminal lipid-binding domain and that the AD is positioned to project across and interact, by electrostatic forces, with a large basic patch spanning LPL's lipid-binding and catalytic domains. We uncovered three functions for GPIHBP1's AD. First, it accelerates the kinetics of LPL binding. Second, it preserves LPL activity by inhibiting unfolding of LPL's catalytic domain. Third, by sheathing LPL's basic patch, the AD makes it possible for LPL to move across ECs to the capillary lumen. Without the AD, GPIHBP1-bound LPL is trapped by persistent interactions between LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the abluminal surface of ECs. The AD interrupts the HSPG interactions, freeing LPL-GPIHBP1 complexes to move across ECs to the capillary lumen. GPIHBP1 is medically important; GPIHBP1 mutations cause lifelong chylomicronemia, and GPIHBP1 autoantibodies cause some acquired cases of chylomicronemia.
Asunto(s)
Hipertrigliceridemia , Receptores de Lipoproteína , Triglicéridos , Células Endoteliales/metabolismo , Humanos , Hipertrigliceridemia/metabolismo , Lipoproteína Lipasa/metabolismo , Unión Proteica , Receptores de Lipoproteína/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismoRESUMEN
BACKGROUND: Severe hypertriglyceridemia (HTG) has predominantly multifactorial causes (MCS). Yet a small subset of patients have the monogenetic form (FCS). It remains a challenge to distinguish patients clinically, since decompensated MCS might mimic FCS´s severity. Aim of the current study was to determine clinical criteria that could sufficiently distinguish both forms as well as to apply the FCS score proposed by Moulin and colleagues. METHODS: We retrospectively studied 72 patients who presented with severe HTG in our clinic during a time span of seven years and received genetic testing. We classified genetic variants (ACMG-criteria), followed by genetic categorization into MCS or FCS. Clinical data were gathered from the medical records and the FCS score was calculated for each patient. RESULTS: Molecular genetic screening revealed eight FCS patients and 64 MCS patients. Altogether, we found 13 pathogenic variants of which four have not been described before. The FCS patients showed a significantly higher median triglyceride level compared to the MCS. The FCS score yielded a sensitivity of 75% and a specificity of 93.7% in our cohort, and significantly differentiated between the FCS and MCS group (p<0.001). CONCLUSIONS: In our cohort we identified several variables that significantly differentiated FCS from MCS. The FCS score performed similar to the original study by Moulin, thereby further validating the discriminatory power of the FCS score in an independent cohort.
RESUMEN
Apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia in mice and humans. For years, the cause remained a mystery, but the mechanisms have now come into focus. Here, we review progress in defining APOA5's function in plasma triglyceride metabolism. Biochemical studies revealed that APOA5 binds to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppresses its ability to inhibit the activity of lipoprotein lipase (LPL). Thus, APOA5 deficiency is accompanied by increased ANGPTL3/8 activity and lower levels of LPL activity. APOA5 deficiency also reduces amounts of LPL in capillaries of oxidative tissues (e.g., heart, brown adipose tissue). Cell culture experiments revealed the likely explanation: ANGPTL3/8 detaches LPL from its binding sites on the surface of cells, and that effect is blocked by APOA5. Both the low intracapillary LPL levels and the high plasma triglyceride levels in Apoa5-/- mice are normalized by recombinant APOA5. Carboxyl-terminal sequences in APOA5 are crucial for its function; a mutant APOA5 lacking 40-carboxyl-terminal residues cannot bind to ANGPTL3/8 and lacks the ability to change intracapillary LPL levels or plasma triglyceride levels in Apoa5-/- mice. Also, an antibody against the last 26 amino acids of APOA5 reduces intracapillary LPL levels and increases plasma triglyceride levels in wild-type mice. An inhibitory ANGPTL3/8-specific antibody functions as an APOA5-mimetic reagent, increasing intracapillary LPL levels and lowering plasma triglyceride levels in both Apoa5-/- and wild-type mice. That antibody is a potentially attractive strategy for treating elevated plasma lipid levels in human patients.
Asunto(s)
Apolipoproteína A-V , Hipertrigliceridemia , Lipoproteína Lipasa , Animales , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/genética , Humanos , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Apolipoproteína A-V/genética , Apolipoproteína A-V/metabolismo , Capilares/metabolismo , Ratones , Triglicéridos/metabolismo , Triglicéridos/sangreRESUMEN
RATIONALE: Lipoprotein lipase (LPL) deficiency, a rare inherited metabolic disorder, is characterized by high triglyceride (TG) levels and life-threatening acute pancreatitis. Current treatment for pediatric patients involves a lifelong severely fat-restricted diet, posing adherence challenges. Volanesorsen, an EMA-approved RNA therapy for adults, effectively reduces TG levels by decreasing the production of apolipoprotein C-III. This 96-week observational open-label study explores Volanesorsen's safety and efficacy in a 13-year-old female with LPL deficiency. METHODS: The patient, with a history of severe TG elevations, 53 hospital admissions, and life-threatening recurrent pancreatitis despite dietary restrictions, received weekly subcutaneous Volanesorsen injections. We designed a protocol for this investigator-initiated study, primarily focusing on changes in fasting TG levels and hospital admissions. RESULTS: While the injections caused occasional pain and swelling, no other adverse events were observed. TG levels decreased during treatment, with more measurements below the pancreatitis risk threshold compared to pre-treatment. No hospital admissions occurred in the initial 14 months of treatment, contrasting with 21 admissions in the 96 weeks before. In the past 10 months, two pancreatitis episodes may have been linked to dietary noncompliance. Dietary restrictions were relaxed, increasing fat intake by 65% compared to baseline. While not fully reflected in the PedsQL, both parents and the patient narratively reported an improved quality of life. CONCLUSION: This study demonstrates, for the first time, that Volanesorsen is tolerated in a pediatric patient with severe LPL deficiency and effectively lowers TG levels, preventing life-threatening complications. This warrants consideration for expanded access in this population.
Asunto(s)
Hiperlipoproteinemia Tipo I , Oligonucleótidos , Pancreatitis , Triglicéridos , Humanos , Femenino , Adolescente , Hiperlipoproteinemia Tipo I/tratamiento farmacológico , Hiperlipoproteinemia Tipo I/genética , Pancreatitis/tratamiento farmacológico , Triglicéridos/sangre , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/deficiencia , Resultado del Tratamiento , Apolipoproteína C-IIIRESUMEN
PURPOSE OF REVIEW: To provide a comprehensive overview of hypertriglyceridemia (HTG) in youth, identifying gaps in categorizing triglyceride (TG) levels and management strategies, and exploring new therapies for TG reduction. RECENT FINDINGS: Non-fasting TG levels as important cardiovascular (CV) risk indicators, with HTG's pathophysiology involving genetic and secondary factors affecting TG metabolism. Emerging treatments, including those affecting the lipoprotein lipase complex and inhibiting proteins like apoC3 and ANGPTL3, show promise. The review highlights the need for specific management approaches for youth, the significance of non-fasting TG levels, and the potential of new therapies in reducing CV and pancreatitis risks, advocating for further research on these treatments' efficacy and safety.
Asunto(s)
Hipertrigliceridemia , Humanos , Hipertrigliceridemia/terapia , Niño , Triglicéridos/sangre , Triglicéridos/metabolismo , Guías de Práctica Clínica como Asunto , Adolescente , Manejo de la Enfermedad , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/terapiaRESUMEN
BACKGROUND: Lipoprotein lipase (LPL) plays a crucial role in triglyceride hydrolysis. Rare biallelic variants in the LPL gene leading to complete or near-complete loss of function cause autosomal recessive familial chylomicronemia syndrome. However, rare biallelic LPL variants resulting in significant but partial loss of function are rarely documented. This study reports a novel occurrence of such rare biallelic LPL variants in a Chinese patient with hypertriglyceridemia-induced acute pancreatitis (HTG-AP) during pregnancy and provides an in-depth functional characterization. METHODS: The complete coding sequences and adjacent intronic regions of the LPL, APOC2, APOA5, LMF1, and GPIHBP1 genes were analyzed by Sanger sequencing. The aim was to identify rare variants, including nonsense, frameshift, missense, small in-frame deletions or insertions, and canonical splice site mutations. The functional impact of identified LPL missense variants on protein expression, secretion, and activity was assessed in HEK293T cells through single and co-transfection experiments, with and without heparin treatment. RESULTS: Two rare LPL missense variants were identified in the patient: the previously reported c.809G > A (p.Arg270His) and a novel c.331G > C (p.Val111Leu). Genetic testing confirmed these variants were inherited biallelically. Functional analysis showed that the p.Arg270His variant resulted in a near-complete loss of LPL function due to effects on protein synthesis/stability, secretion, and enzymatic activity. In contrast, the p.Val111Leu variant retained approximately 32.3% of wild-type activity, without impacting protein synthesis, stability, or secretion. Co-transfection experiments indicated a combined activity level of 20.7%, suggesting no dominant negative interaction between the variants. The patient's post-heparin plasma LPL activity was about 35% of control levels. CONCLUSIONS: This study presents a novel case of partial but significant loss-of-function biallelic LPL variants in a patient with HTG-AP during pregnancy. Our findings enhance the understanding of the nuanced relationship between LPL genotypes and clinical phenotypes, highlighting the importance of residual LPL function in disease manifestation and severity. Additionally, our study underscores the challenges in classifying partial loss-of-function variants in classical Mendelian disease genes according to the American College of Medical Genetics and Genomics (ACMG)'s variant classification guidelines.
Asunto(s)
Hiperlipidemias , Hipertrigliceridemia , Pancreatitis , Humanos , Lipoproteína Lipasa/genética , Enfermedad Aguda , Células HEK293 , Pancreatitis/genética , HeparinaRESUMEN
AIMS: Apolipoprotein C-II (ApoC-II) is thought to activate lipoprotein lipase (LPL) and is therefore a possible target for treating hypertriglyceridemia. Its relationship with cardiovascular risk has not been investigated in large-scale epidemiologic studies, particularly allowing for apolipoprotein C-III (ApoC-III), an LPL antagonist. Furthermore, the exact mechanism of ApoC-II-mediated LPL activation is unclear. METHODS AND RESULTS: ApoC-II was measured in 3141 LURIC participants of which 590 died from cardiovascular diseases during a median (inter-quartile range) follow-up of 9.9 (8.7-10.7) years. Apolipoprotein C-II-mediated activation of the glycosylphosphatidylinositol high-density lipoprotein binding protein 1 (GPIHBP1)-LPL complex was studied using enzymatic activity assays with fluorometric lipase and very low-density lipoprotein (VLDL) substrates. The mean ApoC-II concentration was 4.5 (2.4) mg/dL. The relationship of ApoC-II quintiles with cardiovascular mortality exhibited a trend toward an inverse J-shape, with the highest risk in the first (lowest) quintile and lowest risk in the middle quintile. Compared with the first quintile, all other quintiles were associated with decreased cardiovascular mortality after multivariate adjustments including ApoC-III as a covariate (all P < 0.05). In experiments using fluorometric substrate-based lipase assays, there was a bell-shaped relationship for the effect of ApoC-II on GPIHBP1-LPL activity when exogenous ApoC-II was added. In ApoC-II-containing VLDL substrate-based lipase assays, GPIHBP1-LPL enzymatic activity was almost completely blocked by a neutralizing anti-ApoC-II antibody. CONCLUSION: The present epidemiologic data suggest that increasing low circulating ApoC-II levels may reduce cardiovascular risk. This conclusion is supported by the observation that optimal ApoC-II concentrations are required for maximal GPIHBP1-LPL enzymatic activity.
Asunto(s)
Enfermedades Cardiovasculares , Lipoproteína Lipasa , Humanos , Apolipoproteína C-III , Lipasa , Lipoproteína Lipasa/metabolismo , Lipoproteínas VLDL/metabolismo , Triglicéridos/metabolismo , Apolipoproteína C-IIRESUMEN
The objective of the study was to assess the expression of proteins responsible for placental lipid transport in term pregnancies complicated by well-controlled gestational (GDM) and type 1 diabetes mellitus (PGDM). A total of 80 placental samples were obtained from patients diagnosed with PGDM (n = 20), GDM treated with diet (GDMG1, n = 20), GDM treated with diet and insulin (GDMG2, n = 20), and a non-diabetic control group (n = 20). Umbilical and uterine artery blood flows were assessed by means of ultrasound in the period prior to delivery and computer-assisted quantitative morphometry of immunostained placental sections was performed to determine the expression of selected proteins. The morphometric analysis performed for the vascular density-matched placental samples demonstrated a significant increase in the expression of fatty acid translocase (CD36), fatty acid binding proteins (FABP1, FABP4 and FABP5), as well as a decrease in the expression of endothelial lipase (EL) and fatty acid transport protein (FATP4) in the PGDM-complicated pregnancies as compared to the GDMG1 and control groups (p < 0.05). No significant differences with regard to the placental expression of lipoprotein lipase (LPL) and FATP6 protein between GDM/PGDM and non-diabetic patients were noted. Maternal pre-pregnancy weight, body mass index, placental weight as well as the expression of LPL and FABP4 were selected by the linear regression model as the strongest contributors to the fetal birth weight. To conclude, in placentas derived from pregnancies complicated by well-controlled PGDM, the expression of several lipid transporters, including EL, CD36, FATP4, FABP1, FABP4 and FABP5, is altered. Nonetheless, only LPL and FABP4 were significant predictors of the fetal birth weight.
Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Gestacional , Embarazo , Humanos , Femenino , Placenta/metabolismo , Diabetes Gestacional/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Peso al Nacer , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Peso Fetal , Lípidos , Proteínas de Unión a Ácidos Grasos/metabolismoRESUMEN
Vitamin D is known to have a positive effect on bone health. Despite the greater frequency of vitamin D deficiency in African Americans (AA), they have a higher bone mineral density (BMD) compared to whites, demonstrating a disconnect between BMD and vitamin D levels in AA. Another intriguing relationship seen in AA is the triglyceride (TG) paradox, an unusual phenomenon in which a normal TG status is observed even when patients house conditions known to be characterized by high TG levels, such as Type II diabetes. To the best of our knowledge, no study has examined whether these two paradoxical relationships exist simultaneously in AA subjects with Type II diabetes. In this study, we compared levels of blood markers, including HbA1c, TG, and vitamin D, measured as serum 25-hydroxyvitamin D [25(OH)VD] µM/mL, [25(OH)VD]/TG, calcium, and BMD in AA (n = 56) and white (n = 26) subjects with Type II diabetes to see whether these relationships exist concurrently. We found that AA subjects had significantly lower TG and [25(OH)VD] levels and a significantly higher BMD status compared to white subjects, even when the ages, BMI, duration of diabetes, HbA1c, and calcium levels were similar between the two groups. This demonstrates that these two paradoxical relationships exist simultaneously in Type II diabetic AA subjects. In addition to these findings, we discuss the current hypotheses in the literature that attempt to explain why these two intriguing relationships exist. This review also discusses four novel hypotheses, such as altered circulating levels and the potential role of estrogen and hydrogen sulfide on BMD and HMG-CoA reductase as a possible contributor to the TG paradox in AA subjects. This manuscript demonstrates that there are still many unanswered questions regarding these two paradoxical relationships and further research is needed to determine why they exist and how they can be implemented to improve healthcare.
Asunto(s)
Diabetes Mellitus Tipo 2 , Deficiencia de Vitamina D , Humanos , Densidad Ósea , Estudios Transversales , Calcio , Negro o Afroamericano , Hemoglobina Glucada , Vitamina D , Vitaminas , Hormona ParatiroideaRESUMEN
After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain-containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur.
RESUMEN
During obesity, tissue macrophages increase in number and become proinflammatory, thereby contributing to metabolic dysfunction. Lipoprotein lipase (LPL), which hydrolyzes triglyceride in lipoproteins, is secreted by macrophages. However, the role of macrophage-derived LPL in adipose tissue remodeling and lipoprotein metabolism is largely unknown. To clarify these issues, we crossed leptin-deficient Lepob/ob mice with mice lacking the Lpl gene in myeloid cells (Lplm-/m-) to generate Lplm-/m-;Lepob/ob mice. We found the weight of perigonadal white adipose tissue (WAT) was increased in Lplm-/m-;Lepob/ob mice compared with Lepob/ob mice due to substantial accumulation of both adipose tissue macrophages and collagen that surrounded necrotic adipocytes. In the fibrotic epidydimal WAT of Lplm-/m-;Lepob/ob mice, we observed an increase in collagen VI and high mobility group box 1, while α-smooth muscle cell actin, a marker of myofibroblasts, was almost undetectable, suggesting that the adipocytes were the major source of the collagens. Furthermore, the adipose tissue macrophages from Lplm-/m-;Lepob/ob mice showed increased expression of genes related to fibrosis and inflammation. In addition, we determined Lplm-/m-;Lepob/ob mice were more hypertriglyceridemic than Lepob/ob mice. Lplm-/m-;Lepob/ob mice also showed slower weight gain than Lepob/ob mice, which was primarily due to reduced food intake. In conclusion, we discovered that the loss of myeloid Lpl led to extensive fibrosis of perigonadal WAT and hypertriglyceridemia. In addition to illustrating an important role of macrophage LPL in regulation of circulating triglyceride levels, these data show that macrophage LPL protects against fibrosis in obese adipose tissues.
Asunto(s)
Tejido Adiposo Blanco , Colágeno Tipo IV , Hipertrigliceridemia , Lipoproteína Lipasa , Obesidad , Actinas/metabolismo , Tejido Adiposo Blanco/patología , Animales , Colágeno Tipo IV/metabolismo , Fibrosis , Hipertrigliceridemia/genética , Hipertrigliceridemia/patología , Leptina/deficiencia , Leptina/genética , Lipoproteína Lipasa/genética , Lipoproteínas/metabolismo , Ratones , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Triglicéridos/sangreRESUMEN
BACKGROUND: Obesity is associated with chronic inflammation and is a risk factor for insufficient milk production. Inflammation-mediated suppression of LPL could inhibit mammary uptake of long-chain fatty acids (LCFAs; >16 carbons). OBJECTIVES: In an ancillary case-control analysis, we investigated whether women with low milk production despite regular breast emptying have elevated inflammation and disrupted transfer of LCFAs from plasma into milk. METHODS: Data and specimens from a low milk supply study and an exclusively breastfeeding control group were analyzed, with milk production measured by 24-h test-weighing at 2-10 wk postpartum. Low milk supply groups were defined as very low (VL; <300 mL/d; n = 23) or moderate (MOD; ≥300 mL/d; n = 20) milk production, and compared with controls (≥699 mL/d; n = 18). Serum and milk fatty acids (weight% of total) were measured by GC, serum and milk TNF-α by ELISA, and serum high-sensitivity C-reactive protein (hsCRP) by clinical analyzer. Group differences were assessed by linear regression models, chi-square exact tests, and Kruskal-Wallis nonparametric tests. RESULTS: VL cases, as compared with MOD cases and controls, had higher prevalence of elevated serum hsCRP (>5 mg/L; 57%, 15%, and 22%, respectively; P = 0.004), detectable milk TNF-α (67%, 32%, and 33%, respectively; P = 0.04), and obesity (78%, 40%, and 22%, respectively; P = 0.003). VL cases had lower mean ± SD LCFAs in milk (60% ± 3%) than MOD cases (65% ± 4%) and controls (66% ± 5%) (P < 0.001). Milk and serum LCFAs were strongly correlated in controls (r = 0.82, P < 0.001), but not in the MOD (r = 0.25, P = 0.30) or VL (r = 0.20, P = 0.41) groups (Pint < 0.001). CONCLUSIONS: Mothers with very low milk production have significantly higher obesity and inflammatory biomarkers, lower LCFAs in milk, and disrupted association between plasma and milk LCFAs. These data support the hypothesis that inflammation disrupts normal mammary gland fatty acid uptake. Further research should address impacts of inflammation and obesity on mammary fatty acid uptake for milk production.