Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 113: 104133, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33049621

RESUMEN

This paper reports on the process-fatigue relation of lithium disilicate glass ceramic (LDGC) using low-cycle, high-load Hertzian indentations with a rigid indenter to simulate teeth grinding/clenching of LDGC restorations with different surface asperities obtained in CAD/CAM milling, sintering, polishing and glazing. The maximum contact stresses were evaluated as functions of the number of load cycles and surface treatments using the Hertzian model. Indentation-induced surface damage was viewed using scanning electron microscopy (SEM) to understand the relationships among microstructures, surface asperities, crack morphology and propagation. Different processes and surface treatments significantly affected the maximum contact stresses of indented LDGC surfaces (ANOVA, p < 0.05), which were all significantly reduced with the number of cycles (ANOVA, p < 0.05). Quasi-plastic deformation was dominant in single-cycle indentation of all processed and treated surfaces. In higher cycle indentations, inner cone cracks were formed on all surfaces; median and transverse cracks were formed on the roughest surfaces processed by CAD/CAM milling and sintering. Ring cracks, fretting, pulverization, micro-bridges, surface smearing and wedging, and edge chippings were also propagated on all surfaces. The process-fatigue relation provides an understanding of the mechanical functions of surface asperities produced in different processes and treatments. It indicates that the mechanically assisted growth of surface asperities with different roughness strongly affected the indentation-induced surface damage. Finally, the smoothest surfaces produced by CAD/CAM milling, polishing and sintering sustained the highest contact stresses and the least fatigue damage at higher cycles, ensuring their superior fatigue performance compared to other processed LDGC surfaces.


Asunto(s)
Cerámica , Diseño Asistido por Computadora , Porcelana Dental , Ensayo de Materiales , Propiedades de Superficie
2.
Dent Mater ; 36(5): 645-659, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32278481

RESUMEN

OBJECTIVE: To elucidate the compositional and microstructural developments of a novel lithium silicate glass-ceramic during its crystallization cycle. METHODS: Blocks of a lithium silicate glass-ceramic (Obsidian®, Glidewell Laboratories) were cut into 1mm thick plates and polished to 1µm finish. Some of them were crystallized prior to polishing. Firstly, ex situ compositional and microstructural characterizations of both the pre- and post-crystallized samples were performed by wavelength dispersive X-ray fluorescence, field-emission scanning electron microscopy, and X-ray diffractometry. Secondly, the pre-crystallized samples were subjected to in situ compositional and microstructural characterizations under non-isothermal heating by simultaneous thermogravimetry/differential scanning calorimetry, X-ray thermo-diffractometry, and field-emission scanning electron thermo-microscopy. RESULTS: The microstructure of pre-crystallized Obsidian® consists of an abundant population of perlitic-like/dendritic lithium silicate (Li2SiO3) nanocrystals in a glass matrix. Upon heating, the residual glassy matrix does not crystallize into any form of SiO2; elemental oxides do not precipitate unless over-heated above 820°C; and the Li2SiO3 nanocrystals do not react with the glassy matrix to form typical lithium disilicate (Li2Si2O5) crystals. Nonetheless, the Li2SiO3 nanocrystals grow and spheroidize through the solution-reprecipitation process in the softened glass, and new lithium orthophosphate (Li3PO4) nanocrystals precipitate from the glass matrix. SIGNIFICANCE: The identification of compositional and microstructural developments of Obsidian® indicates that, by controlling the firing conditions, it is possible to tailor its microstructure, which in turn could affect its mechanical and optical properties, and ultimately its clinical performance.


Asunto(s)
Litio , Dióxido de Silicio , Cerámica , Cristalización , Porcelana Dental , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Silicatos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA