Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.305
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 35: 177-198, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28125358

RESUMEN

The discovery of long noncoding RNAs (lncRNA) has provided a new perspective on gene regulation in diverse biological contexts. lncRNAs are remarkably versatile molecules that interact with RNA, DNA, or proteins to promote or restrain the expression of protein-coding genes. Activation of immune cells is associated with dynamic changes in expression of genes, the products of which combat infectious microorganisms, initiate repair, and resolve inflammatory responses in cells and tissues. Recent evidence indicates that lncRNAs play important roles in directing the development of diverse immune cells and controlling the dynamic transcriptional programs that are a hallmark of immune cell activation. The importance of these molecules is underscored by their newly recognized roles in inflammatory diseases. In this review, we discuss the contribution of lncRNAs in the development and activation of immune cells and their roles in immune-related diseases. We also discuss challenges faced in identifying biological functions for this large and complex class of genes.


Asunto(s)
Enfermedades del Sistema Inmune/genética , Inmunidad/genética , ARN Largo no Codificante/inmunología , Animales , Regulación de la Expresión Génica , Humanos
2.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181737

RESUMEN

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Asunto(s)
Genes Ligados a X , ARN Largo no Codificante , Cromosoma X , Animales , Femenino , Humanos , Masculino , Ratones , Silenciador del Gen , ARN Largo no Codificante/genética , Cromosoma X/genética , Células Madre Pluripotentes/metabolismo
3.
Cell ; 184(10): 2633-2648.e19, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33864768

RESUMEN

Long non-coding RNA (lncRNA) genes have well-established and important impacts on molecular and cellular functions. However, among the thousands of lncRNA genes, it is still a major challenge to identify the subset with disease or trait relevance. To systematically characterize these lncRNA genes, we used Genotype Tissue Expression (GTEx) project v8 genetic and multi-tissue transcriptomic data to profile the expression, genetic regulation, cellular contexts, and trait associations of 14,100 lncRNA genes across 49 tissues for 101 distinct complex genetic traits. Using these approaches, we identified 1,432 lncRNA gene-trait associations, 800 of which were not explained by stronger effects of neighboring protein-coding genes. This included associations between lncRNA quantitative trait loci and inflammatory bowel disease, type 1 and type 2 diabetes, and coronary artery disease, as well as rare variant associations to body mass index.


Asunto(s)
Enfermedad/genética , Herencia Multifactorial/genética , Población/genética , ARN Largo no Codificante/genética , Transcriptoma , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Perfilación de la Expresión Génica , Variación Genética , Humanos , Enfermedades Inflamatorias del Intestino/genética , Especificidad de Órganos/genética , Sitios de Carácter Cuantitativo
4.
Annu Rev Biochem ; 89: 283-308, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569523

RESUMEN

We have known for decades that long noncoding RNAs (lncRNAs) can play essential functions across most forms of life. The maintenance of chromosome length requires an lncRNA (e.g., hTERC) and two lncRNAs in the ribosome that are required for protein synthesis. Thus, lncRNAs can represent powerful RNA machines. More recently, it has become clear that mammalian genomes encode thousands more lncRNAs. Thus, we raise the question: Which, if any, of these lncRNAs could also represent RNA-based machines? Here we synthesize studies that are beginning to address this question by investigating fundamental properties of lncRNA genes, revealing new insights into the RNA structure-function relationship, determining cis- and trans-acting lncRNAs in vivo, and generating new developments in high-throughput screening used to identify functional lncRNAs. Overall, these findings provide a context toward understanding the molecular grammar underlying lncRNA biology.


Asunto(s)
Genoma , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN/genética , Telomerasa/genética , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Eucariotas/citología , Células Eucariotas/metabolismo , Humanos , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN/metabolismo , ARN Largo no Codificante/química , ARN Largo no Codificante/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Relación Estructura-Actividad , Telomerasa/metabolismo , Homeostasis del Telómero , Transcripción Genética
5.
Cell ; 181(3): 621-636.e22, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259487

RESUMEN

Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase ß-TrCP and blocks its interaction with phosphorylated ß-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.


Asunto(s)
Espacio Intracelular/genética , ARN Largo no Codificante/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Empalme del ARN/genética , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Células Madre/patología
6.
Cell ; 172(3): 393-407, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29373828

RESUMEN

Over the last decade, it has been increasingly demonstrated that the genomes of many species are pervasively transcribed, resulting in the production of numerous long noncoding RNAs (lncRNAs). At the same time, it is now appreciated that many types of DNA regulatory elements, such as enhancers and promoters, regularly initiate bi-directional transcription. Thus, discerning functional noncoding transcripts from a vast transcriptome is a paramount priority, and challenge, for the lncRNA field. In this review, we aim to provide a conceptual and experimental framework for classifying and elucidating lncRNA function. We categorize lncRNA loci into those that regulate gene expression in cis versus those that perform functions in trans and propose an experimental approach to dissect lncRNA activity based on these classifications. These strategies to further understand lncRNAs promise to reveal new and unanticipated biology with great potential to advance our understanding of normal physiology and disease.


Asunto(s)
ARN Largo no Codificante/genética , Animales , Humanos , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética
7.
Cell ; 173(3): 649-664.e20, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677511

RESUMEN

Resistance to chemotherapy plays a significant role in cancer mortality. To identify genetic units affecting sensitivity to cytarabine, the mainstay of treatment for acute myeloid leukemia (AML), we developed a comprehensive and integrated genome-wide platform based on a dual protein-coding and non-coding integrated CRISPRa screening (DICaS). Putative resistance genes were initially identified using pharmacogenetic data from 760 human pan-cancer cell lines. Subsequently, genome scale functional characterization of both coding and long non-coding RNA (lncRNA) genes by CRISPR activation was performed. For lncRNA functional assessment, we developed a CRISPR activation of lncRNA (CaLR) strategy, targeting 14,701 lncRNA genes. Computational and functional analysis identified novel cell-cycle, survival/apoptosis, and cancer signaling genes. Furthermore, transcriptional activation of the GAS6-AS2 lncRNA, identified in our analysis, leads to hyperactivation of the GAS6/TAM pathway, a resistance mechanism in multiple cancers including AML. Thus, DICaS represents a novel and powerful approach to identify integrated coding and non-coding pathways of therapeutic relevance.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a Antineoplásicos , Genoma Humano , ARN Largo no Codificante/genética , Animales , Citarabina/farmacología , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Masculino , Ratones , Farmacogenética , Proteínas/genética , ARN/análisis , ARN Mensajero/genética , Transducción de Señal
8.
Cell ; 173(4): 906-919.e13, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706547

RESUMEN

The innate RNA sensor RIG-I is critical in the initiation of antiviral type I interferons (IFNs) production upon recognition of "non-self" viral RNAs. Here, we identify a host-derived, IFN-inducible long noncoding RNA, lnc-Lsm3b, that can compete with viral RNAs in the binding of RIG-I monomers and feedback inactivate the RIG-I innate function at late stage of innate response. Mechanistically, binding of lnc-Lsm3b restricts RIG-I protein's conformational shift and prevents downstream signaling, thereby terminating type I IFNs production. Multivalent structural motifs and long-stem structure are critical features of lnc-Lsm3b for RIG-I binding and inhibition. These data reveal a non-canonical self-recognition mode in the regulation of immune response and demonstrate an important role of an inducible "self" lncRNA acting as a potent molecular decoy actively saturating RIG-I binding sites to restrict the duration of "non-self" RNA-induced innate immune response and maintaining immune homeostasis, with potential utility in inflammatory disease management.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , ARN Largo no Codificante/metabolismo , Animales , Células HEK293 , Humanos , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Células RAW 264.7 , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Vesiculovirus/patogenicidad
9.
Cell ; 173(6): 1398-1412.e22, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29731168

RESUMEN

Noncoding mutations in cancer genomes are frequent but challenging to interpret. PVT1 encodes an oncogenic lncRNA, but recurrent translocations and deletions in human cancers suggest alternative mechanisms. Here, we show that the PVT1 promoter has a tumor-suppressor function that is independent of PVT1 lncRNA. CRISPR interference of PVT1 promoter enhances breast cancer cell competition and growth in vivo. The promoters of the PVT1 and the MYC oncogenes, located 55 kb apart on chromosome 8q24, compete for engagement with four intragenic enhancers in the PVT1 locus, thereby allowing the PVT1 promoter to regulate pause release of MYC transcription. PVT1 undergoes developmentally regulated monoallelic expression, and the PVT1 promoter inhibits MYC expression only from the same chromosome via promoter competition. Cancer genome sequencing identifies recurrent mutations encompassing the human PVT1 promoter, and genome editing verified that PVT1 promoter mutation promotes cancer cell growth. These results highlight regulatory sequences of lncRNA genes as potential disease-associated DNA elements.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Genes myc , ARN Largo no Codificante/genética , Animales , Neoplasias de la Mama/metabolismo , Sistemas CRISPR-Cas , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Cromatina , ADN de Neoplasias/genética , Elementos de Facilitación Genéticos , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Mutación , Trasplante de Neoplasias , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Transcripción Genética
10.
Cell ; 175(7): 1796-1810.e20, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30528432

RESUMEN

The 9p21.3 cardiovascular disease locus is the most influential common genetic risk factor for coronary artery disease (CAD), accounting for ∼10%-15% of disease in non-African populations. The ∼60 kb risk haplotype is human-specific and lacks coding genes, hindering efforts to decipher its function. Here, we produce induced pluripotent stem cells (iPSCs) from risk and non-risk individuals, delete each haplotype using genome editing, and generate vascular smooth muscle cells (VSMCs). Risk VSMCs exhibit globally altered transcriptional networks that intersect with previously identified CAD risk genes and pathways, concomitant with aberrant adhesion, contraction, and proliferation. Unexpectedly, deleting the risk haplotype rescues VSMC stability, while expressing the 9p21.3-associated long non-coding RNA ANRIL induces risk phenotypes in non-risk VSMCs. This study shows that the risk haplotype selectively predisposes VSMCs to adopt a cell state associated with CAD phenotypes, defines new VSMC-based networks of CAD risk genes, and establishes haplotype-edited iPSCs as powerful tools for functionally annotating the human genome.


Asunto(s)
Cromosomas Humanos Par 9 , Enfermedad de la Arteria Coronaria , Edición Génica , Haplotipos , Células Madre Pluripotentes Inducidas , Polimorfismo de Nucleótido Simple , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 9/genética , Cromosomas Humanos Par 9/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Femenino , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcripción Genética
11.
Cell ; 174(3): 564-575.e18, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033362

RESUMEN

The prostate cancer (PCa) risk-associated SNP rs11672691 is positively associated with aggressive disease at diagnosis. We showed that rs11672691 maps to the promoter of a short isoform of long noncoding RNA PCAT19 (PCAT19-short), which is in the third intron of the long isoform (PCAT19-long). The risk variant is associated with decreased and increased levels of PCAT19-short and PCAT19-long, respectively. Mechanistically, the risk SNP region is bifunctional with both promoter and enhancer activity. The risk variants of rs11672691 and its LD SNP rs887391 decrease binding of transcription factors NKX3.1 and YY1 to the promoter of PCAT19-short, resulting in weaker promoter but stronger enhancer activity that subsequently activates PCAT19-long. PCAT19-long interacts with HNRNPAB to activate a subset of cell-cycle genes associated with PCa progression, thereby promoting PCa tumor growth and metastasis. Taken together, these findings reveal a risk SNP-mediated promoter-enhancer switching mechanism underlying both initiation and progression of aggressive PCa.


Asunto(s)
Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Alelos , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Isoformas de ARN/genética , Factores de Riesgo , Factores de Transcripción/metabolismo , Factor de Transcripción YY1/metabolismo
12.
Cell ; 174(2): 350-362.e17, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29887379

RESUMEN

Noncoding RNAs (ncRNAs) play increasingly appreciated gene-regulatory roles. Here, we describe a regulatory network centered on four ncRNAs-a long ncRNA, a circular RNA, and two microRNAs-using gene editing in mice to probe the molecular consequences of disrupting key components of this network. The long ncRNA Cyrano uses an extensively paired site to miR-7 to trigger destruction of this microRNA. Cyrano-directed miR-7 degradation is much more effective than previously described examples of target-directed microRNA degradation, which come primarily from studies of artificial and viral RNAs. By reducing miR-7 levels, Cyrano prevents repression of miR-7-targeted mRNAs and enables accumulation of Cdr1as, a circular RNA known to regulate neuronal activity. Without Cyrano, excess miR-7 causes cytoplasmic destruction of Cdr1as in neurons, in part through enhanced slicing of Cdr1as by a second miRNA, miR-671. Thus, several types of ncRNAs can collaborate to establish a sophisticated regulatory network.


Asunto(s)
Encéfalo/metabolismo , Redes Reguladoras de Genes , ARN no Traducido/metabolismo , Animales , Citoplasma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
13.
Annu Rev Cell Dev Biol ; 35: 407-431, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31403819

RESUMEN

A large and significant portion of eukaryotic transcriptomes consists of noncoding RNAs (ncRNAs) that have minimal or no protein-coding capacity but are functional. Diverse ncRNAs, including both small RNAs and long ncRNAs (lncRNAs), play essential regulatory roles in almost all biological processes by modulating gene expression at the transcriptional and posttranscriptional levels. In this review, we summarize the current knowledge of plant small RNAs and lncRNAs, with a focus on their biogenesis, modes of action, local and systemic movement, and functions at the nexus of plant development and environmental responses. The complex connections among small RNAs, lncRNAs, and small peptides in plants are also discussed, along with the challenges of identifying and investigating new classes of ncRNAs.


Asunto(s)
Desarrollo de la Planta/genética , Plantas/genética , ARN Largo no Codificante/metabolismo , ARN de Planta/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
14.
Cell ; 169(4): 664-678.e16, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475895

RESUMEN

Dysregulated rRNA synthesis by RNA polymerase I (Pol I) is associated with uncontrolled cell proliferation. Here, we report a box H/ACA small nucleolar RNA (snoRNA)-ended long noncoding RNA (lncRNA) that enhances pre-rRNA transcription (SLERT). SLERT requires box H/ACA snoRNAs at both ends for its biogenesis and translocation to the nucleolus. Deletion of SLERT impairs pre-rRNA transcription and rRNA production, leading to decreased tumorigenesis. Mechanistically, SLERT interacts with DEAD-box RNA helicase DDX21 via a 143-nt non-snoRNA sequence. Super-resolution images reveal that DDX21 forms ring-shaped structures surrounding multiple Pol I complexes and suppresses pre-rRNA transcription. Binding by SLERT allosterically alters individual DDX21 molecules, loosens the DDX21 ring, and evicts DDX21 suppression on Pol I transcription. Together, our results reveal an important control of ribosome biogenesis by SLERT lncRNA and its regulatory role in DDX21 ring-shaped arrangements acting on Pol I complexes.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Polimerasa I/metabolismo , Precursores del ARN/genética , ARN Largo no Codificante/metabolismo , Sitio Alostérico , Animales , Carcinogénesis , Línea Celular , Línea Celular Tumoral , ARN Helicasas DEAD-box/química , Femenino , Técnicas de Inactivación de Genes , Humanos , Ratones , Ratones Desnudos , Precursores del ARN/metabolismo , Transcripción Genética
15.
Cell ; 171(7): 1559-1572.e20, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29245011

RESUMEN

Large-scale transcriptome sequencing efforts have vastly expanded the catalog of long non-coding RNAs (lncRNAs) with varying evolutionary conservation, lineage expression, and cancer specificity. Here, we functionally characterize a novel ultraconserved lncRNA, THOR (ENSG00000226856), which exhibits expression exclusively in testis and a broad range of human cancers. THOR knockdown and overexpression in multiple cell lines and animal models alters cell or tumor growth supporting an oncogenic role. We discovered a conserved interaction of THOR with IGF2BP1 and show that THOR contributes to the mRNA stabilization activities of IGF2BP1. Notably, transgenic THOR knockout produced fertilization defects in zebrafish and also conferred a resistance to melanoma onset. Likewise, ectopic expression of human THOR in zebrafish accelerated the onset of melanoma. THOR represents a novel class of functionally important cancer/testis lncRNAs whose structure and function have undergone positive evolutionary selection.


Asunto(s)
Modelos Animales de Enfermedad , Melanoma/metabolismo , ARN Largo no Codificante/metabolismo , Pez Cebra , Animales , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Proteínas de Unión al ARN/metabolismo , Testículo/metabolismo
16.
Cell ; 168(5): 843-855.e13, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28215706

RESUMEN

The transcription-related DNA damage response was analyzed on a genome-wide scale with great spatial and temporal resolution. Upon UV irradiation, a slowdown of transcript elongation and restriction of gene activity to the promoter-proximal ∼25 kb is observed. This is associated with a shift from expression of long mRNAs to shorter isoforms, incorporating alternative last exons (ALEs) that are more proximal to the transcription start site. Notably, this includes a shift from a protein-coding ASCC3 mRNA to a shorter ALE isoform of which the RNA, rather than an encoded protein, is critical for the eventual recovery of transcription. The non-coding ASCC3 isoform counteracts the function of the protein-coding isoform, indicating crosstalk between them. Thus, the ASCC3 gene expresses both coding and non-coding transcript isoforms with opposite effects on transcription recovery after UV-induced DNA damage.


Asunto(s)
Empalme Alternativo/efectos de la radiación , ADN Helicasas/genética , ARN no Traducido/genética , Transcripción Genética , Rayos Ultravioleta , Línea Celular , Exones , Humanos , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elongación de la Transcripción Genética/efectos de la radiación , Iniciación de la Transcripción Genética/efectos de la radiación
17.
Cell ; 171(3): 540-556.e25, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28988769

RESUMEN

We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, long non-coding RNA (lncRNA), and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma in situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments.


Asunto(s)
Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Anciano , Análisis por Conglomerados , Metilación de ADN , Humanos , MicroARNs/genética , Persona de Mediana Edad , Músculo Liso/patología , ARN Largo no Codificante/genética , Análisis de Supervivencia , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/epidemiología , Neoplasias de la Vejiga Urinaria/terapia
18.
Genes Dev ; 38(7-8): 291-293, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688680

RESUMEN

The Malat1 (metastasis-associated lung adenocarcinoma transcript 1) long noncoding RNA is highly and broadly expressed in mammalian tissues, accumulating in the nucleus where it modulates expression and pre-mRNA processing of many protein-coding genes. In this issue of Genes & Development, Xiao and colleagues (doi:10.1101/gad.351557.124) report that a significant fraction of Malat1 transcripts in cultured mouse neurons are surprisingly exported from the nucleus. These transcripts are packaged with Staufen proteins in RNA granules and traffic down the lengths of neurites. They then can be released in a stimulus-dependent manner to be locally translated into a microprotein that alters neuronal gene expression patterns.


Asunto(s)
Núcleo Celular , Neuronas , Biosíntesis de Proteínas , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neuronas/metabolismo , Ratones , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
19.
Genes Dev ; 38(7-8): 294-307, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688681

RESUMEN

Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5' region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.


Asunto(s)
Citoplasma , Neuronas , ARN Largo no Codificante , ARN Mensajero , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones , Neuronas/metabolismo , Citoplasma/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células Cultivadas , Diferenciación Celular , Péptidos/metabolismo , Péptidos/genética
20.
Annu Rev Cell Dev Biol ; 33: 391-416, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28759257

RESUMEN

A large body of evidence indicates that genome annotation pipelines have biased our view of coding sequences because they generally undersample small proteins and peptides. The recent development of genome-wide translation profiling reveals the prevalence of small/short open reading frames (smORFs or sORFs), which are scattered over all classes of transcripts, including both mRNAs and presumptive long noncoding RNAs. Proteomic approaches further confirm an unexpected variety of smORF-encoded peptides (SEPs), representing an overlooked reservoir of bioactive molecules. Indeed, functional studies in a broad range of species from yeast to humans demonstrate that SEPs can harbor key activities for the control of development, differentiation, and physiology. Here we summarize recent advances in the discovery and functional characterization of smORF/SEPs and discuss why these small players can no longer be ignored with regard to genome function.


Asunto(s)
Péptidos/metabolismo , Animales , Genoma , Humanos , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , ARN no Traducido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA