Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 35: 501-521, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31590586

RESUMEN

The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.


Asunto(s)
Leucina Zippers/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Neuronas/metabolismo , Estrés Fisiológico/genética , Animales , Axones/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/virología , Neuroglía/metabolismo , Neuronas/virología , Regeneración/genética , Regeneración/fisiología , Células Madre/metabolismo , Estrés Fisiológico/fisiología , Heridas y Lesiones/genética , Heridas y Lesiones/metabolismo
2.
Mol Cell ; 84(1): 142-155, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38118452

RESUMEN

Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Quinasas Quinasa Quinasa PAM , Animales , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Mamíferos/metabolismo
3.
Mol Cell ; 73(1): 22-35.e6, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30527665

RESUMEN

Aberrant expression of programmed death ligand-1 (PD-L1) in tumor cells promotes cancer progression by suppressing cancer immunity. The retinoblastoma protein RB is a tumor suppressor known to regulate the cell cycle, DNA damage response, and differentiation. Here, we demonstrate that RB interacts with nuclear factor κB (NF-κB) protein p65 and that their interaction is primarily dependent on CDK4/6-mediated serine-249/threonine-252 (S249/T252) phosphorylation of RB. RNA-seq analysis shows a subset of NF-κB pathway genes including PD-L1 are selectively upregulated by RB knockdown or CDK4/6 inhibitor. S249/T252-phosphorylated RB inversely correlates with PD-L1 expression in patient samples. Expression of a RB-derived S249/T252 phosphorylation-mimetic peptide suppresses radiotherapy-induced upregulation of PD-L1 and augments therapeutic efficacy of radiation in vivo. Our findings reveal a previously unrecognized tumor suppressor function of hyperphosphorylated RB in suppressing NF-κB activity and PD-L1 expression and suggest that the RB-NF-κB axis can be exploited to overcome cancer immune evasion triggered by conventional or targeted therapies.


Asunto(s)
Antígeno B7-H1/metabolismo , Neoplasias de la Próstata/metabolismo , Proteína de Retinoblastoma/metabolismo , Factor de Transcripción ReIA/metabolismo , Escape del Tumor , Animales , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Quimioradioterapia/métodos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Células PC-3 , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/terapia , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Tolerancia a Radiación , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/inmunología , Transducción de Señal , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Biol Chem ; 300(7): 107486, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897570

RESUMEN

Aberrant regulation of signal transduction pathways can adversely derail biological processes for tissue development. One such process is the embryonic eyelid closure that is dependent on the mitogen-activated protein kinase kinase kinase 1 (MAP3K1). Map3k1 KO in mice results in defective eyelid closure and an autosomal recessive eye-open at birth phenotype. We have shown that in utero exposure to dioxin, a persistent environmental toxicant, induces the same eye defect in Map3k1+/- heterozygous but not WT pups. Here, we explore the mechanisms of the Map3k1 (gene) and dioxin (environment) interactions (GxE) underlying defective eyelid closure. We show that, acting through the aryl hydrocarbon receptor, dioxin activates epidermal growth factor receptor signaling, which in turn depresses MAP3K1-dependent Jun N-terminal kinase (JNK) activity. The dioxin-mediated JNK repression is moderate but is exacerbated by Map3k1 heterozygosity. Therefore, dioxin exposed Map3k1+/- embryonic eyelids have a marked reduction of JNK activity, accelerated differentiation and impeded polarization in the epithelial cells. Knocking out Ahr or Egfr in eyelid epithelium attenuates the open-eye defects in dioxin-treated Map3k1+/- pups, whereas knockout of Jnk1 and S1pr that encodes the sphigosin-1-phosphate (S1P) receptors upstream of the MAP3K1-JNK pathway potentiates the dioxin toxicity. Our novel findings show that the crosstalk of aryl hydrocarbon receptor, epidermal growth factor receptor, and S1P-MAP3K1-JNK pathways determines the outcome of dioxin exposure. Thus, gene mutations targeting these pathways are potential risk factors for the toxicity of environmental chemicals.


Asunto(s)
Dioxinas , Receptores ErbB , Quinasa 1 de Quinasa de Quinasa MAP , Receptores de Hidrocarburo de Aril , Animales , Femenino , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dioxinas/toxicidad , Receptores ErbB/metabolismo , Receptores ErbB/genética , Párpados/metabolismo , Párpados/anomalías , Interacción Gen-Ambiente , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Noqueados , Receptor Cross-Talk , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/efectos de los fármacos
5.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476515

RESUMEN

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Asunto(s)
Quinasa 1 de Quinasa de Quinasa MAP , Neoplasias Pancreáticas , Humanos , Quinasa I-kappa B/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas , Neoplasias Pancreáticas
6.
Am J Hum Genet ; 108(5): 942-950, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33891857

RESUMEN

Cerebral cavernous malformations (CCMs) are vascular disorders that affect up to 0.5% of the total population. About 20% of CCMs are inherited because of familial mutations in CCM genes, including CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10, whereas the etiology of a majority of simplex CCM-affected individuals remains unclear. Here, we report somatic mutations of MAP3K3, PIK3CA, MAP2K7, and CCM genes in CCM lesions. In particular, somatic hotspot mutations of PIK3CA are found in 11 of 38 individuals with CCMs, and a MAP3K3 somatic mutation (c.1323C>G [p.Ile441Met]) is detected in 37.0% (34 of 92) of the simplex CCM-affected individuals. Strikingly, the MAP3K3 c.1323C>G mutation presents in 95.7% (22 of 23) of the popcorn-like lesions but only 2.5% (1 of 40) of the subacute-bleeding or multifocal lesions that are predominantly attributed to mutations in the CCM1/2/3 signaling complex. Leveraging mini-bulk sequencing, we demonstrate the enrichment of MAP3K3 c.1323C>G mutation in CCM endothelium. Mechanistically, beyond the activation of CCM1/2/3-inhibited ERK5 signaling, MEKK3 p.Ile441Met (MAP3K3 encodes MEKK3) also activates ERK1/2, JNK, and p38 pathways because of mutation-induced MEKK3 kinase activity enhancement. Collectively, we identified several somatic activating mutations in CCM endothelium, and the MAP3K3 c.1323C>G mutation defines a primary CCM subtype with distinct characteristics in signaling activation and magnetic resonance imaging appearance.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central/genética , MAP Quinasa Quinasa Quinasa 3/genética , Mutación , Secuencia de Aminoácidos , Fosfatidilinositol 3-Quinasa Clase I/genética , Células Endoteliales/metabolismo , Mutación de Línea Germinal , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , MAP Quinasa Quinasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas , Modelos Moleculares
7.
J Gene Med ; 26(1): e3606, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282157

RESUMEN

BACKGROUND: Ovarian cancer (OVC) has emerged as a fatal gynecological malignancy as a result of a lack of reliable methods for early detection, limited biomarkers and few treatment options. Immune cell-related telomeric genes (ICRTGs) show promise as potential biomarkers. METHODS: ICRTGs were discovered using weighted gene co-expression network analysis (WGCNA). ICRTGs were screened for significant prognosis using one-way Cox regression analysis. Subsequently, molecular subtypes of prognosis-relevant ICRTGs were constructed and validated for OVC, and the immune microenvironment's landscape across subtypes was compared. OVC prognostic models were built and validated using prognosis-relevant ICRTGs. Additionally, chemotherapy susceptibility drugs for OVC patients in the low- and high-risk groups of ICRTGs were screened using genomics of drug susceptibility to cancer (GDSC). Finally, the immunotherapy response in the low- and high-risk groups was detected using the data from GSE78220. We conducted an immune index correlation analysis of ICRTGs with significant prognoses. The MAP3K4 gene, for which the prognostic correlation coefficient is the highest, was validated using tissue microarrays for a prognostic-immune index correlation. RESULTS: WGCNA analysis constructed a gene set of ICRTGs and screened 22 genes with prognostic significance. Unsupervised clustering analysis revealed the best molecular typing for two subtypes. The Gene Set Variation Analysis algorithm was used to calculate telomere scores and validate the molecular subtyping. A prognostic model was constructed using 17 ICRTGs. In the The Cancer Genome Atlas-OVC training set and the Gene Expression Omnibus validation set (GSE30161), the risk score model's predicted risk groups and the actual prognosis were shown to be significantly correlated. GDSC screened Axitinib, Bexarotene, Embelin and the GSE78220 datasets and demonstrated that ICRTGs effectively distinguished the group that responds to immunotherapy from the non-responsive group. Additionally, tissue microarray validation results revealed that MAP3K4 significantly predicted patient prognosis. Furthermore, MAP3K4 exhibited a positive association with PD-L1 and a negative relationship with the M1 macrophage markers CD86 and INOS. CONCLUSIONS: ICRTGs may be reliable biomarkers for the molecular typing of patients with OVC, enabling the prediction of prognosis and immunotherapy efficacy.


Asunto(s)
Neoplasias Ováricas , Telómero , Humanos , Femenino , Telómero/genética , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Algoritmos , Axitinib , Biomarcadores , Microambiente Tumoral/genética
8.
EMBO Rep ; 23(5): e54049, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35253958

RESUMEN

The healthy prostate is a relatively quiescent tissue. Yet, prostate epithelium overgrowth is a common condition during aging, associated with urinary dysfunction and tumorigenesis. For over thirty years, TGF-ß ligands have been known to induce cytostasis in a variety of epithelia, but the intracellular pathway mediating this signal in the prostate, and its relevance for quiescence, have remained elusive. Here, using mouse prostate organoids to model epithelial progenitors, we find that intra-epithelial non-canonical Activin A signaling inhibits cell proliferation in a Smad-independent manner. Mechanistically, Activin A triggers Tak1 and p38 ΜAPK activity, leading to p16 and p21 nuclear import. Spontaneous evasion from this quiescent state occurs upon prolonged culture, due to reduced Activin A secretion, a condition associated with DNA replication stress and aneuploidy. Organoids capable to escape quiescence in vitro are also able to implant with increased frequency into immunocompetent mice. This study demonstrates that non-canonical Activin A signaling safeguards epithelial quiescence in the healthy prostate, with potential implications for the understanding of cancer initiation, and the development of therapies targeting quiescent tumor progenitors.


Asunto(s)
Activinas , Próstata , Activinas/metabolismo , Animales , Masculino , Ratones , Próstata/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
9.
Brain ; 146(9): 3634-3647, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995941

RESUMEN

Cerebral cavernous malformations (CCMs) and spinal cord cavernous malformations (SCCMs) are common vascular abnormalities of the CNS that can lead to seizure, haemorrhage and other neurological deficits. Approximately 85% of patients present with sporadic (versus congenital) CCMs. Somatic mutations in MAP3K3 and PIK3CA were recently reported in patients with sporadic CCM, yet it remains unknown whether MAP3K3 mutation is sufficient to induce CCMs. Here we analysed whole-exome sequencing data for patients with CCM and found that ∼40% of them have a single, specific MAP3K3 mutation [c.1323C>G (p.Ile441Met)] but not any other known mutations in CCM-related genes. We developed a mouse model of CCM with MAP3K3I441M uniquely expressed in the endothelium of the CNS. We detected pathological phenotypes similar to those found in patients with MAP3K3I441M. The combination of in vivo imaging and genetic labelling revealed that CCMs were initiated with endothelial expansion followed by disruption of the blood-brain barrier. Experiments with our MAP3K3I441M mouse model demonstrated that CCM can be alleviated by treatment with rapamycin, the mTOR inhibitor. CCM pathogenesis has usually been attributed to acquisition of two or three distinct genetic mutations involving the genes CCM1/2/3 and/or PIK3CA. However, our results demonstrate that a single genetic hit is sufficient to cause CCMs.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Proteínas Proto-Oncogénicas , Animales , Ratones , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Mutación/genética , Fenotipo , Médula Espinal/patología
10.
Cell Mol Biol Lett ; 29(1): 75, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755530

RESUMEN

BACKGROUND: Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS: Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS: The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS: Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.


Asunto(s)
Proteínas ADAM , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana , Microglía , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal , Animales , Ratones , Proteínas ADAM/metabolismo , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Antígenos CD , Movimiento Celular/efectos de los fármacos , Inflamación/patología , Inflamación/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico
11.
Drug Resist Updat ; 66: 100908, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493511

RESUMEN

Non-small cell lung cancer is the leading cause of cancer related mortality worldwide, and lung adenocarcinoma (LUAD) is one of the most common subtypes. The role of N6-methyladenosine (m6A) modification in tumorigenesis and drug resistance in LUAD remains unclear. In this study, we evaluated the effects of vir-like m6A methyltransferase-associated protein (KIAA1429) depletion on proliferation, migration, invasion, and drug resistance of LUAD cells, and identified m6A-dependent downstream genes influenced by KIAA1429. We found that KIAA1429 activated Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway as a novel signaling event, which is responsible for tumorigenesis and resistance to gefitinib in LUAD cells. KIAA1429 and MAP3K2 showed high expression in LUAD patients' tissues. Knockdown of KIAA1429 inhibited MAP3K2 expression in an m6A methylation-dependent manner, restraining the progression of LUAD cells and inhibiting growth of gefitinib-resistant HCC827 cells. KIAA1429 positively regulated MAP3K2 expression, activated JNK/ MAPK pathway, and promoted drug resistance in gefitinib-resistant HCC827 cells. We reproduced the in vitro results in nude mouse xenografted with KIAA1429 knockdown cells. Our study showed that the mechanism of m6A KIAA1429-mediated gefitinib resistance in LUAD cells occurs by activating JNK/ MAPK signaling pathway. These findings provide potential targets for molecular therapy and clinical treatment in LUAD patients with gefitinib resistance.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Gefitinib/farmacología , Gefitinib/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Transformación Celular Neoplásica/genética , Carcinogénesis/genética , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
12.
Genomics ; 115(5): 110683, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453477

RESUMEN

This study explored whether EGR1-MAP3K14-NF-κB axis regulated ferroptosis and IVD cartilage generation. EGR1 and MAP3K14 expression levels were determined in CEP tissues of IVDD patients and intermittent cyclic mechanical tension (ICMT)-treated CEP cells. After EGR1 and MAP3K14 were altered in ICMT-treated CEP cells, the expression levels of degeneration- and ferroptosis-related proteins were measured. Binding relationship between EGR1 and MAP3K14 was evaluated. Additionally, the impacts of EFR1 knockdown on ferroptosis and cartilage degeneration in vivo were analyzed. EGR1 and MAP3K14 were overexpressed in clinical samples and cell models of IVDD. In IVDD cell models, EGR1 knockdown reduced ferroptosis and cartilage degeneration, which was reversed by MAP3K14 overexpression or Erastin treatment. NF-κB pathway inhibition nullified these effects of sh-EGR1 + oe-MAP3K14 treatment. EGR1 knockdown inhibited ferroptosis and relieved CEP degeneration via MAP3K14-NF-κB axis inactivation in vivo. Collectively, our findings highlighted that EGR1 promoted ferroptosis and IVD cartilage degeneration through MAP3K14-NF-κB axis.

13.
Cesk Patol ; 60(1): 35-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38697826

RESUMEN

Spitz tumors represent a heterogeneous group of challenging melanocytic neoplasms, displaying a range of biological behaviors, spanning from benign lesions, Spitz nevi (SN) to Spitz melanomas (SM), with intermediate lesions in between known as atypical Spitz tumors (AST). They are histologically characterized by large epithelioid and/or spindled melanocytes arranged in fascicles or nests, often associated with characteristic epidermal hyperplasia and fibrovascular stromal changes. In the last decade, the detection of mutually exclusive structural rearrangements involving receptor tyrosine kinases ROS1, ALK, NTRK1, NTRK2, NTRK3, RET, MET, serine threonine kinases BRAF and MAP3K8, or HRAS mutation, led to a clinical, morphological and molecular based classification of Spitz tumors. The recognition of some reproducible histological features can help dermatopathologist in assessing these lesions and can provide clues to predict the underlying molecular driver. In this review, we will focus on clinical and morphological findings in molecular Spitz tumor subgroups.


Asunto(s)
Nevo de Células Epitelioides y Fusiformes , Neoplasias Cutáneas , Humanos , Nevo de Células Epitelioides y Fusiformes/patología , Nevo de Células Epitelioides y Fusiformes/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/diagnóstico , Melanoma/patología , Melanoma/genética , Melanoma/diagnóstico
14.
J Biol Chem ; 298(3): 101647, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101451

RESUMEN

The dual leucine zipper kinase (DLK) is a key regulator of axon regeneration and degeneration in response to neuronal injury; however, regulatory mechanisms of the DLK function via its interacting proteins are largely unknown. To better understand the molecular mechanism of DLK function, we performed yeast two-hybrid screening analysis and identified FK506-binding protein-like (FKBPL, also known as WAF-1/CIP1 stabilizing protein 39) as a DLK-binding protein. FKBPL binds to the kinase domain of DLK and inhibits its kinase activity. In addition, FKBPL induces DLK protein degradation through ubiquitin-dependent pathways. We further assessed other members in the FKBP protein family and found that FK506-binding protein 8 (FKBP8) also induced DLK degradation. We identified the lysine 271 residue in the kinase domain as a major site of DLK ubiquitination and SUMO3 conjugation and was thus responsible for regulating FKBP8-mediated proteasomal degradation that was inhibited by the substitution of the lysine 271 to arginine. FKBP8-mediated degradation of DLK is mediated by autophagy pathway because knockdown of Atg5 inhibited DLK destabilization. We show that in vivo overexpression of FKBP8 delayed the progression of axon degeneration and suppressed neuronal death after axotomy in sciatic and optic nerves. Taken together, this study identified FKBPL and FKBP8 as novel DLK-interacting proteins that regulate DLK stability via the ubiquitin-proteasome and lysosomal protein degradation pathways.


Asunto(s)
Axones , Quinasas Quinasa Quinasa PAM , Degeneración Nerviosa , Proteínas de Unión a Tacrolimus , Axones/enzimología , Axones/metabolismo , Axones/patología , Leucina Zippers , Lisina/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Regeneración Nerviosa , Proteínas de Unión a Tacrolimus/metabolismo , Ubiquitina/metabolismo
15.
J Biol Chem ; 298(9): 102310, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35921893

RESUMEN

Disruption of fetal growth results in severe consequences to human health, including increased fetal and neonatal morbidity and mortality, as well as potential lifelong health problems. Molecular mechanisms promoting fetal growth represent potential therapeutic strategies to treat and/or prevent fetal growth restriction (FGR). Here, we identify a previously unknown role for the mitogen-activated protein kinase kinase kinase 4 (MAP3K4) in promoting fetal and placental growth. We demonstrate that inactivation of MAP3K4 kinase activity causes FGR due in part to placental insufficiency. Significantly, MAP3K4 kinase-inactive mice display highly penetrant lethality prior to weaning and persistent growth reduction of surviving adults. Additionally, we elucidate molecular mechanisms by which MAP3K4 promotes growth through control of the insulin-like growth factor 1 receptor (IGF1R), insulin receptor (IR), and Akt signaling pathway. Specifically, MAP3K4 kinase inactivation in trophoblast stem (TS) cells results in reduced IGF1R and IR expression and decreased Akt activation. We observe these changes in TS cells also occur in differentiated trophoblasts created through in vitro differentiation of cultured TS cells and in vivo in placental tissues formed by TS cells. Furthermore, we show that MAP3K4 controls this pathway by promoting Igf1r transcript expression in TS cells through activation of CREB-binding protein (CBP). In the MAP3K4 kinase-inactive TS cells, Igf1r transcripts are repressed because of reduced CBP activity and increased histone deacetylase 6 expression and activity. Together, these data demonstrate a critical role for MAP3K4 in promoting fetal and placental growth by controlling the activity of the IGF1R/IR and Akt signaling pathway.


Asunto(s)
Desarrollo Fetal , MAP Quinasa Quinasa Quinasa 4 , Placenta , Placentación , Receptor IGF Tipo 1 , Receptor de Insulina , Adulto , Animales , Proteína de Unión a CREB/metabolismo , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Histona Desacetilasa 6/metabolismo , Humanos , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Ratones , Placenta/enzimología , Embarazo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal
16.
Angiogenesis ; 26(2): 295-312, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36719480

RESUMEN

Cerebral cavernous malformations (CCMs) refer to a common vascular abnormality that affects up to 0.5% of the population. A somatic gain-of-function mutation in MAP3K3 (p.I441M) was recently reported in sporadic CCMs, frequently accompanied by somatic activating PIK3CA mutations in diseased endothelium. However, the molecular mechanisms of these driver genes remain elusive. In this study, we performed whole-exome sequencing and droplet digital polymerase chain reaction to analyze CCM lesions and the matched blood from sporadic patients. 44 of 94 cases harbored mutations in KRIT1/CCM2 or MAP3K3, of which 75% were accompanied by PIK3CA mutations (P = 0.006). AAV-BR1-mediated brain endothelial-specific MAP3K3I441M overexpression induced CCM-like lesions throughout the brain and spinal cord in adolescent mice. Interestingly, over half of lesions disappeared at adulthood. Single-cell RNA sequencing found significant enrichment of the apoptosis pathway in a subset of brain endothelial cells in MAP3K3I441M mice compared to controls. We then demonstrated that MAP3K3I441M overexpression activated p38 signaling that is associated with the apoptosis of endothelial cells in vitro and in vivo. In contrast, the mice simultaneously overexpressing PIK3CA and MAP3K3 mutations had an increased number of CCM-like lesions and maintained these lesions for a longer time compared to those with only MAP3K3I441M. Further in vitro and in vivo experiments showed that activating PI3K signaling increased proliferation and alleviated apoptosis of endothelial cells. By using AAV-BR1, we found that MAP3K3I441M mutation can provoke CCM-like lesions in mice and the activation of PI3K signaling significantly enhances and maintains these lesions, providing a preclinical model for the further mechanistic and therapeutic study of CCMs.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Hemangioma Cavernoso del Sistema Nervioso Central , MAP Quinasa Quinasa Quinasa 3 , Animales , Ratones , Células Endoteliales/metabolismo , Endotelio/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , MAP Quinasa Quinasa Quinasa 3/genética , MAP Quinasa Quinasa Quinasa 3/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo
17.
Phytopathology ; 113(10): 1994-2005, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37311734

RESUMEN

Grapevine leafroll disease (GLD) is a globally important disease that affects the metabolic composition and biomass of grapes, leading to a reduction in grape yield and quality of wine produced. Grapevine leafroll-associated virus 3 (GLRaV-3) is the main causal agent for GLD. This study aimed to identify protein-protein interactions between GLRaV-3 and its host. A yeast two-hybrid (Y2H) library was constructed from Vitis vinifera mRNA and screened against GLRaV-3 open reading frames encoding structural proteins and those potentially involved in systemic spread and silencing of host defense mechanisms. Five interacting protein pairs were identified, three of which were demonstrated in planta. The minor coat protein of GLRaV-3 was shown to interact with 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 02, a protein involved in primary carbohydrate metabolism and the biosynthesis of aromatic amino acids. Interactions were also identified between GLRaV-3 p20A and an 18.1-kDa class I small heat shock protein, as well as MAP3K epsilon protein kinase 1. Both proteins are involved in the response of plants to various stressors, including pathogen infections. Two additional proteins, chlorophyll a-b binding protein CP26 and a SMAX1-LIKE 6 protein, were identified as interacting with p20A in yeast but these interactions could not be demonstrated in planta. The findings of this study advance our understanding of the functions of GLRaV-3-encoded proteins and how the interaction between these proteins and those of V. vinifera could lead to GLD.


Asunto(s)
Closteroviridae , Vitis , Saccharomyces cerevisiae , Clorofila A , Enfermedades de las Plantas , Closteroviridae/genética
18.
Childs Nerv Syst ; 39(7): 1945-1948, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36917268

RESUMEN

Cavernous malformations (CM) have long been considered congenital of central nervous system, while the mechanism of CMs detailed development process associated with genetic factors remains unclear. We reported an uncommon case which suffered spinal cord cavernous malformations. In this work, representative samples were obtained, and the sequenced results were described for the first time. A 9-year-old boy was found oblique shoulder with slightly weakness of left limbs; MRI indicated spinal cord cavernous malformations (CMs) located at the C4-C6 vertebral level. On genetic analysis, a shared mutation of PIK3CA (p.H1047R) in CMs and associated developmental venous anomalies (DVAs) was detected, with a different abundance (2% and 7%, respectively), and a somatic mutation of MAP3K3 (p.I441M) was detected in the CM tissue samples. This case provides better knowledge of the formation history and genetic triggers of the DVA-associated CMs. This evidence allows us to speculate the developmental history of the CM lesion: The DVA with PIK3CA mutation might be genetic precursor, and then the associated CM could be derived from terminal cell population of the DVA by acquiring a somatic mutation in MAP3K3.


Asunto(s)
Malformaciones Vasculares del Sistema Nervioso Central , Hemangioma Cavernoso del Sistema Nervioso Central , Malformaciones del Sistema Nervioso , Masculino , Humanos , Niño , Hemangioma Cavernoso del Sistema Nervioso Central/complicaciones , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Malformaciones Vasculares del Sistema Nervioso Central/diagnóstico por imagen , Malformaciones Vasculares del Sistema Nervioso Central/genética , Malformaciones Vasculares del Sistema Nervioso Central/complicaciones , Imagen por Resonancia Magnética , Malformaciones del Sistema Nervioso/complicaciones , Médula Espinal/diagnóstico por imagen
19.
Anim Biotechnol ; 34(3): 686-697, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37014133

RESUMEN

MAP3K1 is a significant member of the MAPK family, and its expressed MEKK1 protein has a wide range of biological activities and is an essential node in the MAPK signaling pathway. A significant number of studies have revealed that MAP3K1 plays a complicated function in the control of cell proliferation, apoptosis, invasion and movement, participates in the regulation of the immune system, and plays an important role in wound healing, tumorigenesis and other processes. In this study, we looked at the involvement of MAP3K1 in the control of hair follicle stem cells (HFSCs). Overexpression of MAP3K1 significantly promoted the proliferation of HFSCs by inhibiting apoptosis and promoting the transition from S phase to G2 phase. The transcriptome identified 189 (MAP3K1_OE) and 414 (MAP3K1_sh) differential genes. The two pathways with the most significant enrichment of differentially expressed genes were the IL-17 signaling pathway and TNF signaling pathway, and the significantly enriched terms in the GO enrichment analysis involved regulation of response of external stimulus, inflammatory and cytokine. Indicate that MAP3K1 can function as a promoting factor in HFSCs through the induction of cell cycle transition from S phase to G2 phase can inhibition apoptosis by mediating crosstalk among several pathways and cytokines.HIGHLIGHTSAbnormal MAP3K1 expression in hair follicle stem cells (HFSCs) can impair HFSC proliferation and apoptosis.MAP3K1 controls hair follicle stem cell proliferation via modulating cell apoptosis and the ratio of cells in S phase/G2 phase.The differential genes shared by MAP3K1_sh and MAP3K1_OE are enriched in GO terms such as inflammation, adipocyte differentiation, acute inflammation, and so on.


Asunto(s)
Folículo Piloso , Quinasa 1 de Quinasa de Quinasa MAP , Animales , Folículo Piloso/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Células Madre/metabolismo , Perfilación de la Expresión Génica , Citocinas/genética , Citocinas/metabolismo , Inflamación/metabolismo
20.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768307

RESUMEN

Super-enhancers (SEs) regulate gene expressions, which are critical for cell type-identity and tumorigenesis. Although genome wide H3K27ac profiling have revealed the presence of SE-associated genes in gastric cancer (GC), their roles remain unclear. In this study, ChIP-seq and HiChIP-seq experiments revealed mitogen-activated protein kinase 8 (MAP3K8) to be an SE-associated gene with chromosome interactions in Epstein-Barr virus-associated gastric carcinoma (EBVaGC) cells. CRISPRi mediated repression of the MAP3K8 SEs attenuated MAP3K8 expression and EBVaGC cell proliferation. The results were validated by treating EBVaGC cells with bromodomain and the extra-terminal motif (BET) inhibitor, OTX015. Further, functional analysis of MAP3K8 in EBVaGC revealed that silencing MAP3K8 could inhibit the cell proliferation, colony formation, and migration of EBVaGC cells. RNA-seq and pathway analysis indicated that knocking down MAP3K8 obstructed the notch signaling pathway and epithelial-mesenchymal transition (EMT) in EBVaGC cells. Further, analysis of the cancer genome atlas (TCGA) and GSE51575 databases exhibited augmented MAP3K8 expression in gastric cancer and it was found to be inversely correlated with the disease-free progression of GC. Moreover, Spearman's correlation revealed that MAP3K8 expression was positively correlated with the expressions of notch pathway and EMT related genes, such as, Notch1, Notch2, C-terminal binding protein 2 (CTBP2), alpha smooth muscle actin isotype 2 (ACTA2), transforming growth factor beta receptor 1 (TGFßR1), and snail family transcriptional repressors 1/2 (SNAI1/SNAI2) in GC. Taken together, we are the first to functionally interrogate the mechanism of SE-mediated regulation of MAP3K8 in EBVaGC cell lines.


Asunto(s)
Epigénesis Genética , Infecciones por Virus de Epstein-Barr , Quinasas Quinasa Quinasa PAM , Neoplasias Gástricas , Humanos , Epigénesis Genética/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Regulación Neoplásica de la Expresión Génica/genética , Herpesvirus Humano 4/genética , Quinasas Quinasa Quinasa PAM/genética , Proteínas Proto-Oncogénicas/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA