Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 65(9): 100607, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067520

RESUMEN

Blood plasma is one of the most commonly analyzed and easily accessible biological samples. Here, we describe an automated liquid-liquid extraction platform that generates accurate, precise, and reproducible samples for metabolomic, lipidomic, and proteomic analyses from a single aliquot of plasma while minimizing hands-on time and avoiding contamination from plasticware. We applied mass spectrometry to examine the metabolome, lipidome, and proteome of 90 plasma samples to determine the effects of age, time of day, and a high-fat diet in mice. From 25 µl of mouse plasma, we identified 907 lipid species from 16 different lipid classes and subclasses, 233 polar metabolites, and 344 proteins. We found that the high-fat diet induced only mild changes in the polar metabolome, upregulated apolipoproteins, and induced substantial shifts in the lipidome, including a significant increase in arachidonic acid and a decrease in eicosapentaenoic acid content across all lipid classes.

2.
Biodegradation ; 34(5): 461-475, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37329399

RESUMEN

The degradation of the prevalent environmental contaminants benzene, toluene, ethylbenzene, and xylenes (BTEX) along with a common co-contaminant methyl tert-butyl ether (MTBE) by Rhodococcus rhodochrous ATCC Strain 21198 was investigated. The ability of 21198 to degrade these contaminants individually and in mixtures was evaluated with resting cells grown on isobutane, 1-butanol, and 2-butanol. Growth of 21198 in the presence of BTEX and MTBE was also studied to determine the growth substrate that best supports simultaneous microbial growth and contaminants degradation. Cells grown on isobutane, 1-butanol, and 2-butanol were all capable of degrading the contaminants, with isobutane grown cells exhibiting the most rapid degradation rates and 1-butanol grown cells exhibiting the slowest. However, in conditions where BTEX and MTBE were present during microbial growth, 1-butanol was determined to be an effective substrate for supporting concurrent growth and contaminant degradation. Contaminant degradation was found to be a combination of metabolic and cometabolic processes. Evidence for growth of 21198 on benzene and toluene is presented along with a possible transformation pathway. MTBE was cometabolically transformed to tertiary butyl alcohol, which was also observed to be transformed by 21198. This work demonstrates the possible utility of primary and secondary alcohols to support biodegradation of monoaromatic hydrocarbons and MTBE. Furthermore, the utility of 21198 for bioremediation applications has been expanded to include BTEX and MTBE.


Asunto(s)
Benceno , Éteres Metílicos , Benceno/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo , 1-Butanol , Derivados del Benceno/metabolismo , Éteres Metílicos/metabolismo , Biodegradación Ambiental
3.
Ecotoxicol Environ Saf ; 255: 114763, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37032576

RESUMEN

Methyl tertiary-butyl ether (MTBE) is a new unleaded gasoline additive, which is considered to be associated with abnormal lipid metabolism in many studies, but the metabolic characteristics and mechanism are still unclear. To observe the characteristics of lipid metabolism induced by MTBE and possible pathways, 21 male Wistar rats got intragastric administration for 24 weeks. The serum lipid metabolism indexes and metabolites were analyzed separately by a biochemical analyzer and untargeted metabolomics. And found that serum high-density lipoprotein cholesterol (HDL-C) levels in the exposure group were significantly reduced, and serum very low-density lipoprotein (VLDL) levels were significantly increased. In untargeted metabolomics, 190 differential metabolites were obtained. Among them, 23 metabolites were found to show the same trend in MTBE exposure groups, which might play a key role in systemic energy metabolism. Further metabolic pathways analysis showed that D-Glutamine, D-glutamate metabolism, and the other three pathways were affected by MTBE significantly. Therefore, we evaluated serum glutamine and glutamate levels and found that MTBE exposure significantly reduced glutamine levels and increased glutamate levels in rat serum and L-02 cells. Further, the key regulatory gene of glutamine metabolism, glutaminase 1 isoform (GLS1), was significantly up-regulated in rat liver and L-02 cells exposed to MTBE. While the effect of glutamine and glutamate metabolism induced by MTBE could be weakened by BPTES, an antagonist of GLS1. In conclusion, our results indicated that MTBE exposure could change the level of glutamine metabolism by promoting GLS1 expression and ultimately lead to abnormal lipid metabolism.


Asunto(s)
Contaminantes Atmosféricos , Trastornos del Metabolismo de los Lípidos , Éteres Metílicos , Ratas , Masculino , Animales , Contaminantes Atmosféricos/metabolismo , Glutaminasa/metabolismo , Metabolismo de los Lípidos , Glutamina , Regulación hacia Arriba , Ratas Wistar , Éteres Metílicos/metabolismo , Isoformas de Proteínas/metabolismo
4.
J Toxicol Environ Health B Crit Rev ; 25(4): 135-161, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35291916

RESUMEN

Methyl-tert-butyl ether (MTBE) is a fuel oxygenate used in non-United States geographies. Multiple health reviews conclude that MTBE is not a human-relevant carcinogen, and this review provides updated mode of action (MOA), exposure, dosimetry and risk perspectives supporting those conclusions. MTBE is non-genotoxic and has large margins of exposure between blood concentrations at the overall rat 400 ppm inhalation NOAEL and blood concentrations in typical workplace or general population exposures. Non-cancer and threshold cancer hazard quotients range from a high of 0.046 for fuel-pump gasoline station attendants and are 100-1,000-fold lower for general population exposures. Cancer risks conservatively assuming genotoxicity for these same scenarios are all less than 1 × 10-6. The onset of MTBE nonlinear toxicokinetics (TK) in rats at inhalation exposures less than 3,000 ppm, a dose that is also not practically achievable in fuel-use scenarios, indicates that high-dose specific male rat kidney and testes (3,000 and 8,000 ppm) and female mouse liver tumors (8000 ppm) are not quantitatively relevant to humans. Mode of action analyses also indicate MTBE male rat kidney tumors, and lesser so female mouse liver tumors, are not qualitatively relevant to humans. Thus, an integrated analysis of the toxicology, exposure/dosimetry, TK, and MOA data indicates that MTBE presents minimal human cancer and non-cancer risks.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias Hepáticas , Éteres Metílicos , Contaminantes Atmosféricos/toxicidad , Animales , Bioensayo , Carcinógenos/toxicidad , Femenino , Gasolina , Humanos , Masculino , Éteres Metílicos/farmacocinética , Éteres Metílicos/toxicidad , Ratones , Ratas , Roedores , Toxicocinética
5.
Ecotoxicol Environ Saf ; 232: 113282, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131586

RESUMEN

Methyl tert-butyl ether (MTBE) is a widely used gasoline additive. It is considered an endocrine-disrupting chemical. Whether MTBE affects the development of Leydig cells in late puberty of males and its underlying mechanism remains unclear. Twenty-four male Sprague-Dawley rats (35 days old) were randomly allocated into four groups and were orally given MTBE (0, 300, 600, and 1200 mg/kg/day) from postnatal day (PND) 35-56. MTBE markedly reduced serum testosterone levels at 300 mg/kg and higher doses without altering the serum levels of luteinizing hormone and follicle-stimulating hormone. It mainly inhibited cell proliferation, induced mitochondrial autophagy and apoptosis, and indirectly stimulated Sertoli cells to secrete anti-Müllerian hormones, thereby significantly reducing the number of Leydig cells at 1200 mg/kg. MTBE also markedly down-regulated the expression of mature Leydig cell biomarker Cyp11a1 and Hsd3b1 and their proteins, while up-regulating the expression of immature Leydig cell biomarker Akr1c14 and its protein at 600 mg/kg and higher. MTBE significantly down-regulated the expression of cell cycle gene Ccnd1, antioxidant gene Gpx1, and anti-apoptotic gene Bcl2, while increasing pro-apoptotic gene Bax level at 1200 mg/kg. In vitro study further confirmed that MTBE can inhibit testosterone synthesis by inducing reactive oxygen species (ROS) generation, mitophagy, and apoptosis at 200 and 300 mM. In conclusion, exposure to MTBE compromises the development of Leydig cells in late puberty in male rats.


Asunto(s)
Células Intersticiales del Testículo , Testosterona , Animales , Apoptosis , Células Intersticiales del Testículo/metabolismo , Masculino , Éteres Metílicos , Mitofagia , Ratas , Ratas Sprague-Dawley
6.
Physiol Mol Biol Plants ; 28(2): 533-543, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35400881

RESUMEN

Studies on specialized metabolites like phenolics are of immense interest owing to their significance to agriculture, nutrition and health. In plants, phenolics accumulate and exhibit spatial and temporal regulations in response to growth conditions. Robust methodologies aimed at efficient extraction of plant phenolics, their qualitative and quantitative analysis is desired. We optimized the analytical and experimental bottlenecks that captured free, ester, glycoside and wall-bound phenolics after acid or alkali treatments of the tissue extracts and subsequent GC-MS analysis. Higher recovery of phenolics from the methanolic extracts was achieved through (a) Ultrasonication assisted extraction along with Methyl tert-butyl ether (MTBE) enrichment (b) nitrogen gas drying and (c) their derivatization using MSTFA for GC-MS analysis. The optimized protocol was tested on Arabidopsis rosette exposed to UV-B radiation (280-315 nm) which triggered enhanced levels of 11 monophenols and might be attributed to photoprotection and other physiological roles. Interestingly, coumaric acid (308 m/z) and caffeic acid (396 m/z) levels were enhanced by 12-14 folds under UV-B. Other phenolics such as cinnamic acid (220 m/z), hydroxybenzoic acid (282 m/z), vanillic acid (312 m/z, gallic acid (458 m/z), ferulic acid (338 m/z), benzoic acid (194 m/z), sinapinic acid (368 m/z) and protocatechuic acid (370 m/z) also showed elevated levels by about 1 to 4 folds. The protocol also comprehensively captured the variations in the levels of ester, glycoside and wall-bounded phenolics with high reproducibility and sensitivity. The robust method of extraction and GC-MS analysis can readily be adopted for studying phenolics in plant systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01150-2.

7.
J Environ Sci (China) ; 122: 41-49, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35717089

RESUMEN

The co-contamination of metals and organic pollutants, such as Pb and methyl tert-butyl ether (MTBE), in groundwater, has become a common and major phenomenon in many contaminated sites. This study evaluated the feasibility of their simultaneous removal with permeable reactive barrier (PRB) packed with mixed zeolites (clinoptilolite and ZSM-5) using fixed-bed column tests and breakthrough curve modeling. The effect of grain size on the permeability of PRB and removal efficacy was also assessed by granular and power clinoptilolite. The replacement of granular clinoptilolite by powder clinoptilolite largely reduced the breakthrough time but increased the saturation time nearly fourfold. The column adsorption capacity of clinoptilolite powders almost tripled that of clinoptilolite granules (130.6 mg/g versus 45.3 mg/g) due to higher specific surface areas. The minimum thickness and corresponding longevity of PRB were calculated as 7.12 cm and 321.5 min when 5% of granular clinoptilolite was mixed with 5% ZSM-5 and 90% sand as mixed PRB reactive media compared with 10.86 cm and 1230.2 min for the application of powder clinoptilolite. This study is expected to provide theoretical support and guidance for the practical application of mixed adsorbents in PRBs.


Asunto(s)
Agua Subterránea , Éteres Metílicos , Contaminantes Químicos del Agua , Zeolitas , Adsorción , Plomo , Polvos
8.
J Environ Sci (China) ; 101: 236-247, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33334519

RESUMEN

The biosafety of methyl tertiary-butyl ether (MTBE), mainly used as a gasoline additive, has long been a contentious topic. In addition to its routine toxicities, MTBE has been demonstrated to disrupt glucose and lipid metabolism and contribute to the development of type 2 diabetes as well as obesity. As one of the morbidities related to dyslipidemia, atherosclerosis is worthy of being investigated under MTBE exposure. Since foam cells derived from macrophages play pivotal roles during atherosclerosis development, we studied the effects of MTBE on macrophages in vitro and assessed the effect of MTBE on atherosclerosis plaque formation with the ApoE-/- mouse model in vivo for the first time. Our results demonstrated that exposure to MTBE at environmentally relevant concentrations decreased the expression of ABCA1 and ABCG1, which are responsible for macrophage cholesterol efflux, at both mRNA and protein levels in THP-1 macrophages. Consequently, treatment with MTBE inhibited the transport of cholesterol from macrophages to High-density lipoprotein. ApoE-/- mice exposed to MTBE at environmentally relevant concentrations (100, 1000 µg/kg) displayed significant increases in lesion area in the aorta and aortic root compared to vehicle-treated ones. Further analysis indicated that MTBE exposure enhanced the macrophage-specific marker Mac-2 contents within plaques in the aortic root, implying that MTBE could promote macrophage-derived foam cell formation and thus accelerate atherosclerosis plaque formation. We for the first time demonstrated the pro-atherogenic effect of MTBE via eliciting disruption of macrophage cholesterol efflux and accelerating foam cell formation and atherosclerosis plaque development.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Animales , Apolipoproteínas E/genética , Colesterol , Éteres , Macrófagos , Ratones
9.
J Environ Manage ; 239: 103-113, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30897476

RESUMEN

This study aimed to investigate the comparative effects of oxygenates such as ethanol (EA), methyl tertiary-butyl ether (MTBE), and ethyl tertiary butyl ether (ETBE) by fixing the oxygen contents as 0.82 wt% 1.65 wt%, and 2.74 wt% of the fuels on the regulated (CO, NMHC and NOx) and unregulated (formaldehyde, acetaldehyde and BTEX) exhaust emissions in gasoline-powered vehicles. The most widely used type of vehicles (light-duty, medium-duty, heavy-duty) in Korea were tested on a chassis dynamometer under the CVS-75 Cycle. When EA, MTBE and ETBE percentage increased, the CO and NMHC concentration decreased. The NOx emission decreased at 1.65 wt% and 2.74 wt% oxygen content of MTBE and ETBE. The emissions of CO decreased by 0.363 g/km, 0.266 g/km and 0.356 g/km for light-duty vehicle when EA, MTBE and ETBE oxygenates blending ratio increased. Increased EA, MTBE and ETBE oxygenates blending ratio demonstrated no specific reducing effect on CO emissions from low-mileage vehicle, but NMHC emissions decreased by 0.011 g/km (medium-duty), 0.015 g/km (light-duty) and 0.018 g/km (heavy-duty). More CO was emitted from MTBE among three oxygenates at same oxygen content. The emitted concentrations of NMHC from three oxygenates at same oxygen content were almost similar, but reduced NOx emissions from EA (10%) to MTBE (20.4%) and ETBE (23.6%) were observed at 2.74 wt% oxygen content. Reducing effect on CO emissions was order of EA > ETBE > MTBE. Formaldehyde emissions increased up to 54.3% as MTBE ratio increased. When oxygen content of ETBE, EA, and MTBE increased from 0.82 wt% to 2.74 wt%, the acetaldehyde emissions increased up to 177.4%, 39.5% and 31.0%, respectively. There was significant formaldehyde concentration difference between high emission vehicle type (light-duty and medium-duty) and low emission vehicle type (heavy-duty and low-mileage) for three oxygenates. Reduction effect of MTBE and ETBE on BTEX was the order of toluene > benzene > ethylbenzene > xylene, and MTBE showed more reduction effect than ETBE at same oxygen content.


Asunto(s)
Contaminantes Atmosféricos , Éteres Metílicos , Éteres , Gasolina , República de Corea , Emisiones de Vehículos
10.
J Environ Sci (China) ; 85: 208-219, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31471028

RESUMEN

Methyl tert-butyl ether (MTBE), as a widely used gasoline additive, is suspected of being environmentally toxic. MTBE accumulates mainly in adipose tissue, but its effect on obesity or obesity-related metabolic disorders has not been well understood yet. Therefore, we examined the effect of MTBE on the adipose function and the related metabolic processes with both 3T3-L1 cell line and C57BL/6J mice model. We found that exposure to MTBE at the environmental relevant concentration (100 µmol/L) could significantly induce differentiation of preadipocyte and disturb insulin-stimulated glucose uptake of mature adipocyte. The in vivo observation in male mice showed a positive correlation of visceral white adipose tissue (vWAT) expansion and cell size increase with MTBE treatment in 14 weeks. Glucose tolerance and insulin sensitivity tests demonstrated that MTBE at 1000 µg/(kg·day) disturbed the systemic glucose metabolism in a gender-specific manner, which might be partly attributed to the alterations of gut microbiota community at genus level with respect to Akkermansia, Clostridium XlVb, and Megamonas. In summary, our study characterized the effect of MTBE on adipose tissue function and glucose homeostasis in vitro and in vivo, and revealed that systemic disorders of the glucose metabolism might be modulated by the related gut microbiota.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Éteres Metílicos/toxicidad , Animales , Gasolina , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas de Toxicidad
11.
Appl Microbiol Biotechnol ; 102(7): 3387-3397, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29478141

RESUMEN

The increasing use of biobased fuels and fuel additives can potentially change the typical fuel-related contamination in soil and groundwater. Anaerobic biotransformation of the biofuel additive ethyl tert-butyl ether (EtBE), as well as of methyl tert-butyl ether (MtBE), benzene, and tert-butyl alcohol (TBA, a possible oxygenate metabolite), was studied at an industrially contaminated site and in the laboratory. Analysis of groundwater samples indicated that in the field MtBE was degraded, yielding TBA as major product. In batch microcosms, MtBE was degraded under different conditions: unamended control, with medium without added electron acceptors, or with ferrihydrite or sulfate (with or without medium) as electron acceptor, respectively. Degradation of EtBE was not observed under any of these conditions tested. TBA was partially depleted in parallel with MtBE. Results of microcosm experiments with MtBE substrate analogues, i.e., syringate, vanillate, or ferulate, were in line with the hypothesis that the observed TBA degradation is a cometabolic process. Microcosms with ferulate, syringate, isopropanol, or diethyl ether showed EtBE depletion up to 86.5% of the initial concentration after 83 days. Benzene was degraded in the unamended controls, with medium without added electron acceptors and with ferrihydrite, sulfate, or chlorate as electron acceptor, respectively. In the presence of nitrate, benzene was only degraded after addition of an anaerobic benzene-degrading community. Nitrate and chlorate hindered MtBE, EtBE, and TBA degradation.


Asunto(s)
Biodegradación Ambiental , Microbiología Industrial/métodos , Contaminantes Químicos del Agua/metabolismo , Anaerobiosis , Éteres de Etila/metabolismo , Éteres Metílicos/metabolismo , Oxidación-Reducción , Alcohol terc-Butílico/metabolismo
12.
J Mol Recognit ; 30(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917590

RESUMEN

Because of the extensive use of methyl tert-butyl ether (MTBE) as an additive to increase the octane quality of gasoline, the environmental pollution by this compound has increased in recent decades. Environmental release of MTBE may lead to its entry to the blood stream through inhalation or drinking of contaminated water, and its interactions with biological molecules such as proteins. The present study was proposed to comparatively investigate the interactions of MTBE with hemoglobin (Hb) from diabetic and nondiabetic individuals using various spectroscopic methods including UV-visible, fluorescence, chemiluminescence, and circular dichroism. These results demonstrated the effects of MTBE on heme degradation of Hb and the reaction of these degradation products with water generating reactive oxygen species. Interaction of Hb with MTBE enhanced its aggregation rate and decreased lag time, indicating the antichaperone activity of MTBE upon interaction with Hb. Furthermore, the diabetic Hb showed more severe effects of MTBE, including heme degradation, reactive oxygen species production, unfolding, and antichaperone behavior than the nondiabetic Hb. The results from molecular docking suggested that the special interaction site of MTBE in the vicinity of Hb heme group is responsible for heme degradation.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Hemo/química , Hemoglobinas/efectos de los fármacos , Éteres Metílicos/efectos adversos , Contaminantes Atmosféricos/farmacología , Animales , Dicroismo Circular , Diabetes Mellitus , Hemoglobinas/química , Humanos , Luminiscencia , Éteres Metílicos/química , Éteres Metílicos/farmacología , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Desplegamiento Proteico , Especies Reactivas de Oxígeno/metabolismo
13.
Br J Nutr ; 118(9): 698-706, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29185931

RESUMEN

Carotenoid bioavailability from plant and animal food is highly variable depending on numerous factors such as the physical deposition form of carotenoids. As the carotenoid zeaxanthin is believed to play an important role in eye and brain health, we sought to compare the human bioavailability of an H-aggregated with that of a J-aggregated deposition form of zeaxanthin encapsulated into identical formulation matrices. A randomised two-way cross-over study with sixteen participants was designed to compare the post-prandial bioavailability of an H-aggregated zeaxanthin and a J-aggregated zeaxanthin dipalmitate formulation, both delivering 10 mg of free zeaxanthin. Carotenoid levels in TAG-rich lipoprotein fractions were analysed over 9·5 h after test meal consumption. Bioavailability from the J-aggregated formulation (AUC=55·9 nmol h/l) was 23 % higher than from the H-aggregated one (AUC=45·5 nmol h/l), although being only marginally significant (P=0·064). Furthermore, the same formulations were subjected to an internationally recognised in vitro digestion protocol to reveal potential strengths and weaknesses of simulated digestions. In agreement with our human study, liberation of zeaxanthin from the J-aggregated formulation into the simulated duodenal fluids was superior to that from the H-aggregated form. However, micellization rate (bioaccessibility) of the J-aggregated zeaxanthin dipalmitate was lower than that of the H-aggregated zeaxanthin, being contradictory to our in vivo results. An insufficient ester cleavage during simulated digestion was suggested to be the root cause for these observations. In brief, combining our in vitro and in vivo observations, the effect of the different aggregation forms on human bioavailability was lower than expected.


Asunto(s)
Zeaxantinas/farmacocinética , Adulto , Disponibilidad Biológica , Índice de Masa Corporal , Estudios Cruzados , Suplementos Dietéticos , Femenino , Humanos , Lycium/química , Masculino , Palmitatos , Método Simple Ciego , Xantófilas , Adulto Joven , Zeaxantinas/administración & dosificación , Zeaxantinas/sangre
14.
Xenobiotica ; 47(5): 423-430, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-26678376

RESUMEN

1. Methyl tert-butyl ether (MTBE) is commonly used as an octane booster and oxygenate additive to gasoline. The assumed toxic effects of MTBE on human health are a matter of great debate. Exposure to MTBE has been shown to induce oxidative damage and no mechanistic explanation is available so far. Our goals were to determine whether MTBE is a mitochondrial toxicant, if so, what mechanism(s) is involved. 2. Male Sprague-Dawley rats were received MTBE in drinking water for 3 months. At the end of treatments, animals were killed, liver and blood samples were collected for biochemical and histopathological studies, and oxidative stress biomarkers. The rat liver mitochondria were isolated and several mitochondrial indices were measured. 3. We found that zinc plasma levels were remarkably declined with MTBE and N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN; a zinc chelator) exposure. MTBE induced oxidative damage and caused mitochondrial dysfunctions in rats. Supplementation with zinc was able to protect against MTBE-induced cellular and sub-cellular toxicity. 4. Our results demonstrated that long-term exposure to MTBE is associated with zinc deficiency, oxidative stress, and mitochondrial energy failure in rat.


Asunto(s)
Sustancias Peligrosas/toxicidad , Éteres Metílicos/toxicidad , Animales , Biomarcadores/metabolismo , Gasolina , Masculino , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Pruebas de Toxicidad
15.
Xenobiotica ; 47(6): 547-552, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27389249

RESUMEN

1. The prevalence of diabetes and the other metabolic disorders has noticeably increased worldwide. A causal link between increasing risk of type 2 diabetes and exposure to environmental pollutants has been reported. 2. We hypothesized that exposure to methyl tert-butyl ether (MTBE), an oxygenate additive to gasoline would hinder zinc and glucose homeostasis in rats. 3. Male Sprague-Dawley rats received MTBE in drinking water for 90 days. At the end of the treatment, pancreas and blood samples were collected for biochemical and molecular examinations. Expression of four candidate genes, including Insulin1, Insulin2, MT1A, SLC30A8 by Real-Time Quantitative PCR (Q-PCR) as well as biochemical parameters, including fasting blood glucose (FBS), triglycerides (TG), cholesterol (CHO), low-density lipoprotein (LDL), high-density lipoprotein (HDL), copper (Cu2+) and calcium (Ca2+) levels as well as High-sensitive C-reactive protein were assessed as endpoints. 4. This study suggested that MTBE exposure can be associated with disruption in zinc homeostasis and glucose tolerance.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Diabetes Mellitus Tipo 2/inducido químicamente , Homeostasis/efectos de los fármacos , Éteres Metílicos/toxicidad , Animales , Glucosa/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Zinc/metabolismo
16.
Ann Occup Hyg ; 60(3): 318-33, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26667482

RESUMEN

OBJECTIVE: To assess exposure to benzene (BEN) and other aromatic compounds (toluene, ethylbenzene, m+p-xylene, o-xylene) (BTEX), methyl tert-butyl ether (MTBE), and ethyl tert-butyl ether (ETBE) in petrol station workers using air sampling and biological monitoring and to propose biological equivalents to occupational limit values. METHODS: Eighty-nine petrol station workers and 90 control subjects were investigated. Personal exposure to airborne BTEX and ethers was assessed during a mid-week shift; urine samples were collected at the beginning of the work week, prior to and at the end of air sampling. RESULTS: Petrol station workers had median airborne exposures to benzene and MTBE of 59 and 408 µg m(-3), respectively, with urinary benzene (BEN-U) and MTBE (MTBE-U) of 339 and 780 ng l(-1), respectively. Concentrations in petrol station workers were higher than in control subjects. There were significant positive correlations between airborne exposure and the corresponding biological marker, with Pearson's correlation coefficient (r) values of 0.437 and 0.865 for benzene and MTBE, respectively. There was also a strong correlation between airborne benzene and urinary MTBE (r = 0.835). Multiple linear regression analysis showed that the urinary levels of benzene were influenced by personal airborne exposure, urinary creatinine, and tobacco smoking [determination coefficient (R(2)) 0.572], while MTBE-U was influenced only by personal exposure (R(2) = 0.741). CONCLUSIONS: BEN-U and MTBE-U are sensitive and specific biomarkers of low occupational exposures. We propose using BEN-U as biomarker of exposure to benzene in nonsmokers and suggest 1457 ng l(-1) in end shift urine samples as biological exposure equivalent to the EU occupational limit value of 1 p.p.m.; for both smokers and nonsmokers, MTBE-U may be proposed as a surrogate biomarker of benzene exposure, with a biological exposure equivalent of 22 µg l(-1) in end shift samples. For MTBE exposure, we suggest the use of MTBE-U with a biological exposure equivalent of 22 µg l(-1) corresponding to the occupational limit value of 50 p.p.m.


Asunto(s)
Derivados del Benceno/orina , Benceno/análisis , Biomarcadores/orina , Gasolina , Éteres Metílicos/orina , Exposición Profesional , Adolescente , Adulto , Anciano , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/orina , Monitoreo del Ambiente/métodos , Éteres de Etila/orina , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
17.
J Environ Manage ; 184(Pt 1): 120-131, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27511828

RESUMEN

Sustainable management practices can be applied to the remediation of contaminated land to maximise the economic, environmental and social benefits of the process. The Sustainable Remediation Forum UK (SuRF-UK) have developed a framework to support the implementation of sustainable practices within contaminated land management and decision making. This study applies the framework, including qualitative (Tier 1) and semi-quantitative (Tier 2) sustainability assessments, to a complex site where the principal contaminant source is unleaded gasoline, giving rise to a dissolved phase BTEX and MTBE plume. The pathway is groundwater migration through a chalk aquifer and the receptor is a water supply borehole. A hydraulic containment system (HCS) has been installed to manage the MTBE plume migration. The options considered to remediate the MTBE source include monitored natural attenuation (MNA), air sparging/soil vapour extraction (AS/SVE), pump and treat (PT) and electrokinetic-enhanced bioremediation (EK-BIO). A sustainability indictor set from the SuRF-UK framework, including priority indicator categories selected during a stakeholder engagement workshop, was used to frame the assessments. At Tier 1 the options are ranked based on qualitative supporting information, whereas in Tier 2 a multi-criteria analysis is applied. Furthermore, the multi-criteria analysis was refined for scenarios where photovoltaics (PVs) are included and amendments are excluded from the EK-BIO option. Overall, the analysis identified AS/SVE and EK-BIO as more sustainable remediation options at this site than either PT or MNA. The wider implications of this study include: (1) an appraisal of the management decision from each Tier of the assessment with the aim to highlight areas for time and cost savings for similar assessments in the future; (2) the observation that EK-BIO performed well against key indicator categories compared to the other intensive treatments; and (3) introducing methods to improve the sustainability of the EK-BIO treatment design (such as PVs) did not have a significant effect in this instance.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Contaminación por Petróleo , Biodegradación Ambiental , Carbonato de Calcio , Conservación de los Recursos Naturales , Toma de Decisiones , Agua Subterránea , Éteres Metílicos/análisis , Petróleo , Suelo , Contaminantes del Suelo/análisis , Reino Unido , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
18.
Crit Rev Toxicol ; 45(2): 142-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25629921

RESUMEN

A screening level risk assessment has been performed for tertiary-butyl acetate (TBAC) examining its primary uses as a solvent in industrial and consumer products. Hazard quotients (HQ) were developed by merging TBAC animal toxicity and dose-response data with population-level, occupational and consumer exposure scenarios. TBAC has a low order of toxicity following subchronic inhalation exposure, and neurobehavioral changes (hyperactivity) in mice observed immediately after termination of exposure were used as conservative endpoints for derivation of acute and chronic reference concentration (RfC) values. TBAC is not genotoxic but has not been tested for carcinogenicity. However, TBAC is unlikely to be a human carcinogen in that its non-genotoxic metabolic surrogates tertiary-butanol (TBA) and methyl tertiary butyl ether (MTBE) produce only male rat α-2u-globulin-mediated kidney cancer and high-dose specific mouse thyroid tumors, both of which have little qualitative or quantitative relevance to humans. Benchmark dose (BMD)-modeling of the neurobehavioral responses yielded acute and chronic RfC values of 1.5 ppm and 0.3 ppm, respectively. After conservative modeling of general population and near-source occupational and consumer product exposure scenarios, almost all HQs were substantially less than 1. HQs exceeding 1 were limited to consumer use of automotive products and paints in a poorly ventilated garage-sized room (HQ = 313) and occupational exposures in small and large brake shops using no personal protective equipment or ventilation controls (HQs = 3.4-126.6). The screening level risk assessments confirm low human health concerns with most uses of TBAC and indicate that further data-informed refinements can address problematic health/exposure scenarios. The assessments also illustrate how tier-based risk assessments using read-across toxicity information to metabolic surrogates reduce the need for comprehensive animal testing.


Asunto(s)
Acetatos/toxicidad , Exposición a Riesgos Ambientales , Sustancias Peligrosas/toxicidad , Medición de Riesgo/métodos , Pruebas de Toxicidad Aguda/métodos , Pruebas de Toxicidad Crónica/métodos , Acetatos/farmacocinética , Animales , Biotransformación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Sustancias Peligrosas/farmacocinética , Humanos , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Nivel sin Efectos Adversos Observados
19.
Regul Toxicol Pharmacol ; 69(3): 348-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24813373

RESUMEN

Endocrine-related endpoints in animals have been reported to respond to high doses of methyl tertiary-butyl ether (MTBE), however, a systematic and transparent evaluation of endocrine potential has not been published. Resolving whether MTBE exhibits endocrine activity is important given regulatory and public interest in endocrine disrupting substances and their potential for causing adverse effects in humans or wildlife. A weight-of-evidence (WoE) analysis was conducted, focusing on hypotheses related to the potential for MTBE to interact with estrogen, androgen, and thyroid pathways, and steroidogenesis. To reach scientifically justified conclusions based on the totality of evidence, this WoE procedure involved a semi-quantitative relevance weighting of each endpoint for each hypothesis and systematic consideration of each endpoint in various study designs. This procedure maximized use of an extensive body of relevant and reliable literature on MTBE with evidence supporting or opposing a given mode of action hypothesis. Evaluating the strength and consistency of observations from many MTBE studies also provided a way to assess whether high doses used in experiments with MTBE confound identification of direct endocrine system responses. Based on results of studies using mammalian and fish models and in vitro screening assays, this WoE assessment reveals that MTBE lacks direct endocrine activity.


Asunto(s)
Disruptores Endocrinos/efectos adversos , Sistema Endocrino/efectos de los fármacos , Éteres Metílicos/efectos adversos , Andrógenos/metabolismo , Animales , Estrógenos/metabolismo , Humanos , Glándula Tiroides/efectos de los fármacos
20.
Regul Toxicol Pharmacol ; 70(2 Suppl): S58-68, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24979735

RESUMEN

CD-1 mice were exposed to baseline gasoline vapor condensate (BGVC) alone or to vapors of gasoline blended with methyl tertiary butyl ether (G/MTBE). Inhalation exposures were 6h/d on GD 5-17 at levels of 0, 2000, 10,000, and 20,000mg/m(3). Dams were evaluated for evidence of maternal toxicity, and fetuses were weighed, sexed, and evaluated for external, visceral, and skeletal anomalies. Exposure to 20,000mg/m(3) of BGVC produced slight reductions in maternal body weight/gain and decreased fetal body weight. G/MTBE exposure did not produce statistically significant maternal or developmental effects; however, two uncommon ventral wall closure defects occurred: gastroschisis (1 fetus at 10,000mg/m(3)) and ectopia cordis (1 fetus at 2000mg/m(3); 2 fetuses/1 litter at 10,000mg/m(3)). A second study (G/MTBE-2) evaluated similar exposure levels on GD 5-16 and an additional group exposed to 30,000mg/m(3) from GD 5-10. An increased incidence of cleft palate was observed at 30,000mg/m(3) G/MTBE. No ectopia cordis occurred in the replicate study, but a single observation of gastroschisis was observed at 30,000mg/m(3). The no observed adverse effect levels for maternal/developmental toxicity in the BGVC study were 10,000/2000mg/m(3), 20,000/20,000 for the G/MTBE study, and 10,000/20,000 for the G/MTBE-2 study.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Desarrollo Fetal/efectos de los fármacos , Gasolina/toxicidad , Animales , Femenino , Inhalación , Masculino , Ratones , Medición de Riesgo , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA