Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 774, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152426

RESUMEN

BACKGROUND: Colorectal cancer is the third most common tumour entity in the world and up to 50% of the patients develop liver metastases (CRLM) within five years. To improve and personalize therapeutic strategies, new diagnostic tools are urgently needed. For instance, biomechanical tumour properties measured by magnetic resonance elastography (MRE) could be implemented as such a diagnostic tool. We postulate that ex vivo MRE combined with histological and radiological evaluation of CRLM could provide biomechanics-based diagnostic markers for cell viability in tumours. METHODS: 34 CRLM specimens from patients who had undergone hepatic resection were studied using ex vivo MRE in a frequency range from 500 Hz to 5300 Hz with increments of 400 Hz. Single frequency evaluation of shear wave speed and wave penetration rate as proxies for stiffness and viscosity was performed, along with rheological model fitting based on the spring-pot model and powerlaw exponent α, ranging between 0 (complete solid behaviour) and 1 (complete fluid behaviour). For histological analysis, samples were stained with H&E and categorized according to the degree of regression. Quantitative histologic analysis was performed to analyse nucleus size, aspect ratio, and density. Radiological response was assessed according to RECIST-criteria. RESULTS: Five samples showed major response to chemotherapy, six samples partial response and 23 samples no response. For higher frequencies (> 2100 Hz), shear wave speed correlated significantly with the degree of regression (p ≤ 0.05) indicating stiffer properties with less viable tumour cells. Correspondingly, rheological analysis of α revealed more elastic-solid tissue properties at low cell viability and major response (α = 0.43 IQR 0.36, 0.47) than at higher cell viability and no response (α = 0.51 IQR 0.48, 0.55; p = 0.03). Quantitative histological analysis showed a decreased nuclear area and density as well as a higher nuclear aspect ratio in patients with major response to treatment compared to patients with no response (all p < 0.05). DISCUSSION: Our results suggest that MRE could be useful in the characterization of biomechanical property changes associated with cell viability in CRLM. In the future, MRE could be applied in clinical diagnosis to support individually tailored therapy plans for patients with CRLM.


Asunto(s)
Supervivencia Celular , Neoplasias Colorrectales , Diagnóstico por Imagen de Elasticidad , Elasticidad , Neoplasias Hepáticas , Humanos , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/diagnóstico por imagen , Masculino , Viscosidad , Femenino , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años
2.
Magn Reson Med ; 91(5): 1923-1935, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098427

RESUMEN

PURPOSE: To demonstrate a novel MR elastography (MRE) technique, termed here wavelet MRE. With this technique, broadband motion sensitivity is achievable. Moreover, the true tissue displacement can be reconstructed with a simple inverse transform. METHODS: A wavelet MRE sequence was developed with motion-encoding gradients based on Haar wavelets. From the phase images' displacement was estimated using an inverse transform. Simulations were performed using a frequency sweep and a transient as ground-truth motions. A PVC phantom was scanned using wavelet MRE and standard MRE with both transient (one and 10 cycles of 90-Hz motion) and steady-state dual-frequency motion (30 and 60 Hz) for comparison. The technique was tested in a human brain, and motion trajectories were estimated for each voxel. RESULTS: In simulation, the displacement information estimated from wavelet MRE closely matched the true motion. In the phantom test, the MRE phase data generated from the displacement information derived from wavelet MRE agreed well with standard MRE data. Testing of wavelet MRE to assess transient motion waveforms in the brain was successful, and the tissue motion observed was consistent with a previous study. CONCLUSION: The uniform and broadband frequency response of wavelet MRE makes it a promising method for imaging transient, multifrequency motion, or motion with unknown frequency content. One potential application is measuring the response of brain tissue undergoing low-amplitude, transient vibrations as a model for the study of traumatic brain injury.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Sonido
3.
NMR Biomed ; 37(2): e5047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37813110

RESUMEN

Magnetic resonance elastography (MRE) is an accurate noninvasive diagnostic tool for assessing the stiffness of parenchymal organs, including the spleen. However, this measurement may be biased due to postprandial changes in splenic stiffness. The aim of the current study was to evaluate postprandial changes in spleen stiffness assessed by MRE in a large sample of healthy volunteers. This was a prospective institutional research ethics board-approved study. Healthy volunteers with no history of liver disease were recruited for an MRE test and blood draw from December 2018 to July 2019. Each participant underwent spleen MRE after at least 4 h of fasting and again 30 min after a 1000 kcal meal. Also, 14 randomly selected volunteers underwent additional MRE examinations at 1.5 and 2.5 h after food intake. The MRE data were acquired at 60 Hz using a 1.5-T MRI scanner. The spleen stiffness was assessed using a weighted mean of stiffness values from regions of interest manually drawn on three to five spleen slices. Spearman's rank correlation, Wilcoxon signed-rank, Friedman, and Mann-Whitney tests were used for statistical analysis. A total of 100 volunteers met the inclusion criteria and were eventually enrolled in this study (age 23 ± 2 years; 65 women). The mean spleen stiffness for the whole group increased by 7.9% (p < 0.001) from the mean ± SD value of 5.09 ± 0.63 (95% CI: 4.96-5.21) kPa in the fasting state to 5.47 ± 0.66 (95% CI 5.34-5.60) kPa 30 min after the meal and then gradually decreased. However, even 2 h 30 min after the meal, the spleen stiffness was higher than in the fasting state. This difference was statistically significant at p less than 0.001. It was concluded that meal intake results in a statistically significant elevation of spleen stiffness that persists for 2.5 h. This finding supports the recommendation for routine fasting for more than 2.5 h prior to assessing MRE-based spleen stiffness.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Bazo , Humanos , Femenino , Adulto Joven , Adulto , Bazo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Estudios Prospectivos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos
4.
Acta Neuropathol ; 147(1): 8, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175305

RESUMEN

Multiple sclerosis (MS) is a chronic neuroinflammatory disease that involves both white and gray matter. Although gray matter damage is a major contributor to disability in MS patients, conventional clinical magnetic resonance imaging (MRI) fails to accurately detect gray matter pathology and establish a clear correlation with clinical symptoms. Using magnetic resonance elastography (MRE), we previously reported global brain softening in MS and experimental autoimmune encephalomyelitis (EAE). However, it needs to be established if changes of the spatiotemporal patterns of brain tissue mechanics constitute a marker of neuroinflammation. Here, we use advanced multifrequency MRE with tomoelastography postprocessing to investigate longitudinal and regional inflammation-induced tissue changes in EAE and in a small group of MS patients. Surprisingly, we found reversible softening in synchrony with the EAE disease course predominantly in the cortex of the mouse brain. This cortical softening was associated neither with a shift of tissue water compartments as quantified by T2-mapping and diffusion-weighted MRI, nor with leukocyte infiltration as seen by histopathology. Instead, cortical softening correlated with transient structural remodeling of perineuronal nets (PNNs), which involved abnormal chondroitin sulfate expression and microgliosis. These mechanisms also appear to be critical in humans with MS, where tomoelastography for the first time demonstrated marked cortical softening. Taken together, our study shows that neuroinflammation (i) critically affects the integrity of PNNs in cortical brain tissue, in a reversible process that correlates with disease disability in EAE, (ii) reduces the mechanical integrity of brain tissue rather than leading to water accumulation, and (iii) shows similar spatial patterns in humans and mice. These results raise the prospect of leveraging MRE and quantitative MRI for MS staging and monitoring treatment in affected patients.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Animales , Ratones , Enfermedades Neuroinflamatorias , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Agua
5.
J Magn Reson Imaging ; 59(2): 688-698, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37194646

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) stromal disposition is thought to influence chemotherapy efficacy and increase tissue stiffness, which could be quantified noninvasively via MR elastography (MRE). Current methods cause position-based errors in pancreas location over time, hampering accuracy. It would be beneficial to have a single breath-hold acquisition. PURPOSE: To develop and test a single breath-hold three-dimensional MRE technique utilizing prospective undersampling and a compressed sensing reconstruction (CS-MRE). STUDY TYPE: Prospective. POPULATION: A total of 30 healthy volunteers (HV) (31 ± 9 years; 33% male) and five patients with PDAC (69 ± 5 years; 80% male). FIELD STRENGTH/SEQUENCE: 3-T, GRE Ristretto MRE. ASSESSMENT: First, optimization of multi breath-hold MRE was done in 10 HV using four combinations of vibration frequency, number of measured wave-phase offsets, and TE and looking at MRE quality measures in the pancreas head. Second, viscoelastic parameters delineated in the pancreas head or tumor of CS-MRE were compared against (I) 2D and (II) 3D four breath-hold acquisitions in HV (N = 20) and PDAC patients. Intrasession repeatability was assessed for CS-MRE in a subgroup of healthy volunteers (N = 15). STATISTICAL TESTS: Tests include repeated measures analysis of variance (ANOVA), Bland-Altman analysis, and coefficients of variation (CoVs). A P-value <.05 was considered statistically significant. RESULTS: Optimization of the four breath-hold acquisitions resulted in 40 Hz vibration frequency, five wave-phases, and echo time (TE) = 6.9 msec as the preferred method (4BH-MRE). CS-MRE quantitative results did not differ from 4BH-MRE. Shear wave speed (SWS) and phase angle differed significantly between HV and PDAC patients using 4BH-MRE or CS-MRE. The limits of agreement for SWS were [-0.09, 0.10] m/second and the within-subject CoV was 4.8% for CS-MRE. DATA CONCLUSION: CS-MRE might allow a single breath-hold MRE acquisition with comparable SWS and phase angle as 4BH-MRE, and it may still enable to differentiate between HV and PDAC. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias Pancreáticas , Humanos , Masculino , Femenino , Estudios Prospectivos , Diagnóstico por Imagen de Elasticidad/métodos , Reproducibilidad de los Resultados , Contencion de la Respiración , Páncreas/diagnóstico por imagen , Neoplasias Pancreáticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
6.
J Magn Reson Imaging ; 59(5): 1582-1592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37485870

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) stromal viscoelasticity can be measured using MR elastography (MRE). Bowel preparation regimens could affect MRE quality and knowledge on repeatability is crucial for clinical implementation. PURPOSE: To assess effects of four bowel preparation regimens on MRE quality and to evaluate repeatability and differentiate patients from healthy controls. STUDY TYPE: Prospective. POPULATION: 15 controls (41 ± 16 years; 47% female), 16 PDAC patients (one excluded, 66 ± 12 years; 40% female) with 15 age-/sex-matched controls (65 ± 11 years; 40% female). Final sample size was 25 controls and 15 PDAC. FIELD STRENGTH/SEQUENCE: 3-T, spin-echo echo-planar-imaging, turbo spin-echo, and fast field echo gradient-echo. ASSESSMENT: Four different regimens were used: fasting; scopolaminebutyl; drinking 0.5 L water; combination of 0.5 L water and scopolaminebutyl. MRE signal-to-noise ratio (SNR) was compared between all regimens. MRE repeatability (test-retest) and differences in shear wave speed (SWS) and phase angle (ϕ) were assessed in PDAC and controls. Regions-of-interest were defined for tumor, nontumorous (n = 8) tissue in PDAC, and whole pancreas in controls. Two radiologists delineated tumors twice for evaluation of intraobserver and interobserver variability. STATISTICAL TESTS: Repeated measures analysis of variance, coefficients of variation (CoVs), Bland-Altman analysis, (un)paired t-test, Mann-Whitney U-test, and Wilcoxon signed-rank test. P-value<0.05 was considered statistically significant. RESULTS: Preparation regimens did not significantly influence MRE-SNR. Therefore, the least burdensome preparation (fasting only) was continued. CoVs for tumor SWS were: intrasession (12.8%) and intersession (21.7%), and intraobserver (7.9%) and interobserver (10.3%) comparisons. For controls, CoVs were intrasession (4.6%) and intersession (6.4%). Average SWS for tumor, nontumor, and healthy tissue were: 1.74 ± 0.58, 1.38 ± 0.27, and 1.18 ± 0.16 m/sec (ϕ: 1.02 ± 0.17, 0.91 ± 0.07, and 0.85 ± 0.08 rad), respectively. Significant differences were found between all groups, except for ϕ between healthy-nontumor (P = 0.094). DATA CONCLUSION: The proposed bowel preparation regimens may not influence MRE quality. MRE may be able to differentiate between healthy tissue-tumor and tumor-nontumor. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias Pancreáticas , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Imagen por Resonancia Magnética/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Estudios Prospectivos , Páncreas/diagnóstico por imagen , Neoplasias Pancreáticas/diagnóstico por imagen , Reproducibilidad de los Resultados , Agua
7.
J Magn Reson Imaging ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449389

RESUMEN

BACKGROUND: Different MR elastography (MRE) systems may produce different stiffness measurements, making direct comparison difficult in multi-center investigations. PURPOSE: To assess the repeatability and reproducibility of liver stiffness measured by three typical MRE systems. STUDY TYPE: Prospective. POPULATION/PHANTOMS: Thirty volunteers without liver disease history (20 males, aged 21-28)/5 gel phantoms. FIELD STRENGTH/SEQUENCE: 3.0 T United Imaging Healthcare (UIH), 1.5 T Siemens Healthcare, 3.0 T General Electric Healthcare (GE)/Echo planar imaging-based MRE sequence. ASSESSMENT: Wave images of volunteers and phantoms were acquired by three MRE systems. Tissue stiffness was evaluated by two observers, while phantom stiffness was assessed automatically by code. The reproducibility across three MRE systems was quantified based on the mean stiffness of each volunteer and phantom. STATISTICAL TESTS: Intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman analyses were used to assess the interobserver reproducibility, the interscan repeatability, and the intersystem reproducibility. Paired t-tests were performed to assess the interobserver and interscan variation. Friedman tests with Dunn's multiple comparison correction were performed to assess the intersystem variation. P values less than 0.05 indicated significant difference. RESULTS: The reproducibility of stiffness measured by the two observers demonstrated consistency with ICC > 0.92, CV < 4.32%, Mean bias < 2.23%, and P > 0.06. The repeatability of measurements obtained using the electromagnetic system for the liver revealed ICC > 0.96, CV < 3.86%, Mean bias < 0.19%, P > 0.90. When considering the range of reproducibility across the three systems for liver evaluations, results ranged with ICCs from 0.70 to 0.87, CVs from 6.46% to 10.99%, and Mean biases between 1.89% and 6.30%. Phantom studies showed similar results. The values of measured stiffness differed across all three systems significantly. DATA CONCLUSION: Liver stiffness values measured from different MRE systems can be different, but the measurements across the three MRE systems produced consistent results with excellent reproducibility. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

8.
J Magn Reson Imaging ; 59(1): 97-107, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37158252

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is increasing worldwide and is a growing cause of liver cirrhosis and cancer. The performance of the magnetic resonance elastography (MRE) visco-elastic parameters in diagnosing progressive forms of NAFLD, including nonalcoholic steatohepatitis (NASH) and substantial fibrosis (F ≥ 2), needs to be clarified. PURPOSE: To assess the value of three-dimensional MRE visco-elastic parameters as markers of NASH and substantial fibrosis in mice with NAFLD. STUDY TYPE: Prospective. ANIMAL MODEL: Two mouse models of NAFLD were induced by feeding with high fat diet or high fat, choline-deficient, amino acid-defined diet. FIELD STRENGTH/SEQUENCE: 7T/multi-slice multi-echo spin-echo MRE at 400 Hz with motion encoding in the three spatial directions. ASSESSMENT: Hepatic storage and loss moduli were calculated. Histological analysis was based on the NASH Clinical Research Network criteria. STATISTICAL TESTS: Mann-Whitney, Kruskal-Wallis tests, Spearman rank correlations and multiple regressions were used. Diagnostic performance was assessed with areas under the receiver operating characteristic curves (AUCs). P value <0.05 was considered significant. RESULTS: Among the 59 mice with NAFLD, 21 had NASH and 20 had substantial fibrosis (including 8 mice without and 12 mice with NASH). The storage and loss moduli had similar moderate accuracy for diagnosing NASH with AUCs of 0.67 and 0.66, respectively. For diagnosing substantial fibrosis, the AUC of the storage modulus was 0.73 and the AUC of the loss modulus was 0.81, indicating good diagnostic performance. Using Spearman correlations, histological fibrosis, inflammation and steatosis, but not ballooning, were significantly correlated with the visco-elastic parameters. Using multiple regression, fibrosis was the only histological feature independently associated with the visco-elastic parameters. CONCLUSION: MRE in mice with NAFLD suggests that the storage and loss moduli have good diagnostic performance for detecting progressive NAFLD defined as substantial fibrosis rather than NASH. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Estudios Prospectivos , Biopsia , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/etiología , Fibrosis
9.
J Magn Reson Imaging ; 59(1): 82-96, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37084171

RESUMEN

Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) present a major health burden to society. Changes in brain structure and cognition are generally only observed at the late stage of the disease. Although advanced magnetic resonance imaging (MRI) techniques such as diffusion imaging may allow identification of biomarkers at earlier stages of neurodegeneration, early diagnosis is still challenging. Magnetic resonance elastography (MRE) is a noninvasive MRI technique for studying the mechanical properties of tissues by measuring the wave propagation induced in the tissues using a purpose-built actuator. Here, we present a systematic review of preclinical and clinical studies in which MRE has been applied to study neurodegenerative diseases. Actuator systems for data acquisition, inversion algorithms for data analysis, and sample demographics are described and tissue stiffness measures obtained for the whole brain and internal structures are summarized. A total of six animal studies and eight human studies have been published. The animal studies refer to 123 experimental animals (68 AD and 55 PD) and 121 wild-type animals, while the human studies refer to 142 patients with neurodegenerative disease (including 56 AD and 17 PD) and 166 controls. The animal studies are consistent in the reporting of decreased stiffness of the hippocampal region in AD mice. However, in terms of disease progression, although consistent decreases in either storage modulus or shear modulus magnitude are reported for whole brain, there is variation in the results reported for the hippocampal region. The clinical studies are consistent in reports of a significant decrease in either whole brain storage modulus or shear modulus magnitude, in both AD and PD and with different brain structures affected in different neurodegenerative diseases. MRE studies of neurodegenerative diseases are still in their infancy, and in future it will be interesting to investigate potential relationships between brain mechanical properties and clinical measures, which may help elucidate the mechanisms underlying onset and progression of neurodegenerative diseases. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Enfermedad de Alzheimer , Diagnóstico por Imagen de Elasticidad , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedades Neurodegenerativas/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico por imagen
10.
Liver Int ; 44(7): 1700-1714, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38558221

RESUMEN

BACKGROUND & AIMS: The predictors of progression from steatosis to more advanced stages of metabolic dysfunction-associated steatotic liver disease (MASLD) remain unclear. We evaluated the association between the quantity of hepatic steatosis and longitudinal changes in liver stiffness measurements (LSMs) using magnetic resonance elastography (MRE) in patients with MASLD. METHODS: We retrospectively analysed patients with MASLD who underwent at least two serial MRE and magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) examinations at least 1 year apart. Fine-Gray competitive proportional hazard regression was used to identify LSM progression and regression factors. RESULTS: A total of 471 patients were enrolled. Factors linked to LSM progression were steatosis grade 3 (MRI-PDFF ≥17.1%, adjusted hazard ratio [aHR] 2.597; 95% confidence interval [CI] 1.483-4.547) and albumin-bilirubin grade 2 or 3 (aHR 2.790; 95% CI 1.284-6.091), while the only factor linked to LSM regression was % decrease rate of MRI-PDFF ≥5% (aHR 2.781; 95% CI 1.584-4.883). Steatosis grade 3 correlated with a higher incidence rate of LSM progression than steatosis grade 1 (MRI-PDFF <11.3%) in patients with LSM stage 0 (<2.5 kilopascal [kPa]), and a % annual decrease rate of MRI-PDFF ≥5% correlated with a higher incidence rate of LSM regression than that of MRI-PDFF >-5% and <5% in patients with LSM stage 1 or 2-4 (≥2.5 kPa). CONCLUSIONS: Severe hepatic steatosis was linked to significant LSM progression in patients with MASLD and low LSM (<2.5 kPa).


Asunto(s)
Progresión de la Enfermedad , Diagnóstico por Imagen de Elasticidad , Hígado Graso , Hígado , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Hígado/patología , Hígado/diagnóstico por imagen , Hígado Graso/diagnóstico por imagen , Hígado Graso/patología , Anciano , Adulto , Índice de Severidad de la Enfermedad , Modelos de Riesgos Proporcionales , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/patología
11.
Eur Radiol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767658

RESUMEN

OBJECTIVES: To investigate associations between tissue diffusion, stiffness, and different tumor microenvironment features in resected hepatocellular carcinoma (HCC). METHODS: Seventy-two patients were prospectively included for preoperative magnetic resonance (MR) diffusion-weighted imaging and MR elastography examination. The mean apparent diffusion coefficient (ADC) and stiffness value were measured on the central three slices of the tumor and peri-tumor area. Cell density, tumor-stroma ratio (TSR), lymphocyte-rich HCC (LR-HCC), and CD8 + T cell infiltration were estimated in resected tumors. The interobserver agreement of MRI measurements and subjective pathological evaluation was assessed. Variables influencing ADC and stiffness were screened with univariate analyses, and then identified with multivariable linear regression. The potential relationship between explored imaging biomarkers and histopathological features was assessed with linear regression after adjustment for other influencing factors. RESULTS: Seventy-two patients (male/female: 59/13, mean age: 56 ± 10.2 years) were included for analysis. Inter-reader agreement was good or excellent regarding MRI measurements and histopathological evaluation. No correlation between tumor ADC and tumor stiffness was found. Multivariable linear regression confirmed that cell density was the only factor associated with tumor ADC (Estimate = -0.03, p = 0.006), and tumor-stroma ratio was the only factor associated with tumor stiffness (Estimate = -0.18, p = 0.03). After adjustment for fibrosis stage (Estimate = 0.43, p < 0.001) and age (Estimate = 0.04, p < 0.001) in the multivariate linear regression, intra-tumoral CD8 + T cell infiltration remained a significant factor associated with peri-tumor stiffness (Estimate = 0.63, p = 0.02). CONCLUSIONS: Tumor ADC surpasses tumor stiffness as a biomarker of cellularity. Tumor stiffness is associated with tumor-stroma ratio and peri-tumor stiffness might be an imaging biomarker of intra-tumoral immune microenvironment. CLINICAL RELEVANCE STATEMENT: Tissue stiffness could potentially serve as an imaging biomarker of the intra-tumoral immune microenvironment of hepatocellular carcinoma and aid in patient selection for immunotherapy. KEY POINTS: Apparent diffusion coefficient reflects cellularity of hepatocellular carcinoma. Tumor stiffness reflects tumor-stroma ratio of hepatocellular carcinoma and is associated with tumor-infiltrating lymphocytes. Tumor and peri-tumor stiffness might serve as imaging biomarkers of intra-tumoral immune microenvironment.

12.
Hepatol Res ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349813

RESUMEN

AIM: This study aimed to establish the shear wave measurement (SWM) cut-off value for each fibrosis stage using magnetic resonance (MR) elastography values as a reference standard. METHODS: We prospectively analyzed 594 patients with chronic liver disease who underwent SWM and MR elastography. Correlation coefficients (were analyzed, and the diagnostic value was evaluated by the area under the receiver operating characteristic curve. Liver stiffness was categorized by MR elastography as F0 (<2.61 kPa), F1 (≥2.61 kPa, <2.97 kPa, any fibrosis), F2 (≥2.97 kPa, <3.62 kPa, significant fibrosis), F3 (≥3.62 kPa, <4.62 kPa, advanced fibrosis), or F4 (≥4.62 kPa, cirrhosis). RESULTS: The median SWM values increased significantly with increasing fibrosis stage (p < 0.001). The correlation coefficient between SWM and MR elastography values was 0.793 (95% confidence interval 0.761-0.821). The correlation coefficients between SWM and MR elastography values significantly decreased with increasing body mass index and skin-capsular distance; skin-capsular distance values were associated with significant differences in sensitivity, specificity, accuracy, or positive predictive value, whereas body mass index values were not. The best cut-off values for any fibrosis, significant fibrosis, advanced fibrosis, and cirrhosis were 6.18, 7.09, 8.05, and 10.89 kPa, respectively. CONCLUSIONS: This multicenter study in a large number of patients established SWM cut-off values for different degrees of fibrosis in chronic liver diseases using MR elastography as a reference standard. It is expected that these cut-off values will be applied to liver diseases in the future.

13.
Acta Radiol ; 65(5): 414-421, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38342993

RESUMEN

BACKGROUND: Current liver magnetic resonance elastography (MRE) scans often require adjustments to driver amplitude to produce acceptable images. This could lead to time wastage and the potential loss of an opportunity to capture a high-quality image. PURPOSE: To construct a linear regression model of individualized driver amplitude to improve liver MRE image quality. MATERIAL AND METHODS: Data from 95 liver MRE scans of 61 participants, including abdominal missing volume ratio (AMVR), breath-holding status, the distance from the passive driver on the skin surface to the liver edge (Dd-l), body mass index (BMI), and lateral deflection of the passive driver with respect to the human sagittal plane (Angle α), were continuously collected. The Spearman correlation analysis and lasso regression were conducted to screen the independent variables. Multiple linear regression equations were developed to determine the optimal amplitude prediction model. RESULTS: The optimal formula for linear regression models: driver amplitude (%) = -16.80 + 78.59 × AMVR - 11.12 × breath-holding (end of expiration = 1, end of inspiration = 0) + 3.16 × Dd-l + 1.94 × BMI + 0.34 × angle α, with the model passing the F test (F = 22.455, P <0.001) and R2 value of 0.558. CONCLUSION: The individualized amplitude prediction model based on AMVR, breath-holding status, Dd-l, BMI, and angle α is a valuable tool in liver MRE examination.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hígado , Imagen por Resonancia Magnética , Humanos , Diagnóstico por Imagen de Elasticidad/métodos , Masculino , Femenino , Modelos Lineales , Hígado/diagnóstico por imagen , Persona de Mediana Edad , Adulto , Imagen por Resonancia Magnética/métodos , Anciano , Contencion de la Respiración , Adulto Joven
14.
Pediatr Radiol ; 54(2): 250-259, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38133654

RESUMEN

BACKGROUND: Liver involvement is an important cause of morbidity and mortality in patients with cystic fibrosis (CF). While liver biopsy is the gold standard for demonstrating involvement, its invasiveness prompts a search for noninvasive alternatives. OBJECTIVE: To evaluate liver involvement in pediatric patients with CF (versus healthy controls) using magnetic resonance (MR) elastography/spectroscopy and to correlate the imaging findings with clinical/laboratory characteristics. MATERIALS AND METHODS: This was a single-center, prospective cross-sectional study conducted between April 2020 and March 2022 in patients with CF versus healthy controls. Patients with CF were divided into two subgroups: those with CF-related liver disease and those without. MR images were acquired on a 1.5-tesla machine. Kilopascal (kPa) values were derived from processing MR elastography images. MR spectroscopy was used to measure liver fat fraction, as an indication of hepatosteatosis. Groups were compared using either the Student's t test or the Mann‒Whitney U test. The chi-square test or Fisher's exact test were used to compare qualitative variables. RESULTS: Fifty-one patients with CF (12 ± 3.3 years, 32 boys) and 24 healthy volunteers (11.1 ± 2.4 years, 15 boys) were included in the study. Median liver stiffness (P=0.003) and fat fraction (P=0.03) were higher in the CF patients than in the controls. Median liver stiffness values were higher in CF patients with CF-related liver disease than in those without CF-related liver disease (P=0.002). Liver stiffness values of CF patients with high alanine aminotransferase (ALT), high gamma-glutamyl transferase, and thrombocytopenia were found to be higher than those without (P=0.004, P<0.001, P<0.001, respectively). Only the high ALT group showed a high fat fraction (P=0.002). CONCLUSIONS: Patients with CF had higher liver stiffness than the control group, and patients with CF-related liver disease had higher liver stiffness than both the CF patients without CF-related liver disease and the control group. Patients with CF had a higher fat fraction than the control group. Noninvasive assessment of liver involvement using MR elastography/spectroscopy can support the diagnosis of CF-related liver disease and the follow-up of patients with CF.


Asunto(s)
Fibrosis Quística , Diagnóstico por Imagen de Elasticidad , Hepatopatías , Masculino , Humanos , Niño , Diagnóstico por Imagen de Elasticidad/métodos , Cirrosis Hepática/patología , Estudios Prospectivos , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/patología , Estudios Transversales , Hígado/diagnóstico por imagen , Hígado/patología , Hepatopatías/patología , Imagen por Resonancia Magnética/métodos
15.
Dentomaxillofac Radiol ; 53(4): 248-256, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38502962

RESUMEN

OBJECTIVES: Differentiation among benign salivary gland tumours, Warthin tumours (WTs), and malignant salivary gland tumours is crucial to treatment planning and predicting patient prognosis. However, differentiation of those tumours using imaging findings remains difficult. This study evaluated the usefulness of elasticity determined from diffusion-weighted image (DWI)-based virtual MR elastography (MRE) compared with conventional magnetic resonance imaging (MRI) findings in differentiating the tumours. METHODS: This study included 17 benign salivary gland tumours, 6 WTs, and 11 malignant salivary gland tumours scanned on neck MRI. The long and short diameters, T1 and T2 signal intensities, tumour margins, apparent diffusion coefficient (ADC) values, and elasticity from DWI-based virtual MRE of the tumours were evaluated. The interobserver agreement in measuring tumour elasticity and the receiver operating characteristic (ROC) curves were also assessed. RESULTS: The long and short diameters and the T1 and T2 signal intensities showed no significant difference among the 3 tumour groups. Tumour margins and the mean ADC values showed significant differences among some tumour groups. The elasticity from virtual MRE showed significant differences among all 3 tumour groups and the interobserver agreement was excellent. The area under the ROC curves of the elasticity were higher than those of tumour margins and mean ADC values. CONCLUSION: Elasticity values based on DWI-based virtual MRE of benign salivary gland tumours, WTs, and malignant salivary gland tumours were significantly different. The elasticity of WTs was the highest and that of benign tumours was the lowest. The elasticity from DWI-based virtual MRE may aid in the differential diagnosis of salivary gland tumours.


Asunto(s)
Adenolinfoma , Imagen de Difusión por Resonancia Magnética , Diagnóstico por Imagen de Elasticidad , Neoplasias de las Glándulas Salivales , Humanos , Neoplasias de las Glándulas Salivales/diagnóstico por imagen , Neoplasias de las Glándulas Salivales/patología , Diagnóstico por Imagen de Elasticidad/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Proyectos Piloto , Diagnóstico Diferencial , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adenolinfoma/diagnóstico por imagen , Adenolinfoma/patología , Adulto , Anciano de 80 o más Años
16.
Neuroimage ; 277: 120234, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37369255

RESUMEN

The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development.


Asunto(s)
Imagen de Difusión Tensora , Diagnóstico por Imagen de Elasticidad , Animales , Femenino , Porcinos , Porcinos Enanos , Diagnóstico por Imagen de Elasticidad/métodos , Anisotropía , Encéfalo/diagnóstico por imagen
17.
Clin Gastroenterol Hepatol ; 21(4): 1041-1049.e3, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35504562

RESUMEN

BACKGROUND & AIMS: The purpose of this study was to investigate the proportion of subjects with metabolic dysfunction-associated fatty liver disease (MAFLD) and to assess the degree of hepatic fibrosis and cardiovascular risk in metabolically healthy MAFLD subjects. METHODS: A total of 6740 subjects who underwent both magnetic resonance elastography and abdominal ultrasound were included in this study. Significant (≥3.0 kPa) and advanced (≥3.6 kPa) hepatic fibrosis were evaluated by magnetic resonance elastography. The metabolic unhealthy status among subjects with MAFLD was defined as the presence of diabetes or 2 or more metabolic risk abnormalities. RESULTS: The prevalence of MAFLD among the health examination cohort was 44.5% (3002 of 6740). A total of 26.6% (800 of 3002) of MAFLD subjects were metabolically healthy (≤1 risk factors and no diabetes), and 56.3% of MAFLD subjects (1691 of 3002) did not have metabolic syndrome. Hepatic fibrosis burden and cardiovascular risk were significantly higher in the metabolic unhealthy MAFLD group than in the healthy control group. However, the prevalence of significant (5.8% vs 4.3%; P = .099) and advanced hepatic fibrosis (0.8% vs 0.7%; P = .934) did not differ between the metabolically healthy MAFLD and healthy control groups. The prevalence of carotid artery plaque in the metabolically healthy MAFLD (32.7% vs 30.7%; P = .453) group was not different from that in the healthy control group. CONCLUSIONS: Contrary to the definition of MAFLD, a non-negligible number of metabolically healthy individuals are included in the MAFLD group. The metabolic healthy MAFLD group showed a comparable fibrosis burden and prevalence of carotid artery plaque compared with the healthy control group.


Asunto(s)
Estenosis Carotídea , Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Factores de Riesgo , Cirrosis Hepática/epidemiología
18.
Clin Gastroenterol Hepatol ; 21(8): 2026-2039, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37062495

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of liver-related morbidity and mortality worldwide, afflicting approximately a billion individuals. NAFLD is a slowly progressive disease that may evolve in a subset of patients toward cirrhosis, hepatocellular carcinoma, and end-stage liver disease. Liver fibrosis severity is the strongest predictor of clinical outcomes. The emergence of effective therapeutics on the horizon highlights the need to identify among patients with NAFLD, those with severe fibrosis or cirrhosis, who are the most at risk of developing complications and target them for therapy. Liver biopsy has been the reference standard for this purpose. However, it is not suitable for large-scale population evaluation, given its well-known limitations (invasiveness, rare but severe complications, and sampling variability). Thus, there have been major efforts to develop simple noninvasive tools that can be used in routine clinical settings and in drug development. Noninvasive approaches are based on the quantification of biomarkers in serum samples or on the measurement of liver stiffness, using either ultrasound- or magnetic resonance-based elastography techniques. This review provides a roadmap for future development and integration of noninvasive tools in clinical practice and in drug development in NAFLD. We discuss herein the principles for their development and validation, their use in clinical practice, including for diagnosis of NAFLD, risk stratification in primary care and hepatology settings, prediction of long-term liver-related and non-liver-related outcomes, monitoring of fibrosis progression and regression, and response to future treatment.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Cirrosis Hepática/patología , Ultrasonografía , Biopsia/efectos adversos , Neoplasias Hepáticas/complicaciones , Fibrosis
19.
Clin Gastroenterol Hepatol ; 21(2): 380-387.e3, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35123096

RESUMEN

BACKGROUND & AIMS: A two-step strategy combining a serum marker and magnetic resonance elastography (MRE) for detecting advanced fibrosis (stage 3-4) among patients with nonalcoholic fatty liver disease (NAFLD) has been proposed, but its diagnostic accuracy has not been evaluated. In this multicenter study, we aimed to investigate the diagnostic accuracy of a two-step strategy including Fibrosis-4 (FIB-4) followed by MRE. METHODS: In this multicenter study, 806 patients with biopsy-proven NAFLD who underwent contemporaneous MRE were enrolled and randomly assigned to training and validation cohorts. As a first step, patients with FIB-4 <1.3 were defined as test negative regardless of MRE. As a second step, among patients with FIB-4 ≥1.3, MRE <3.6 and ≥3.6 kPa were defined as test negative and positive. The primary outcome was the diagnostic accuracy for advanced fibrosis comparing MRE alone versus the two-step strategy. RESULTS: Area under the receiver characteristic curves of MRE alone and the two-step strategy were 0.840 and 0.853 in the training cohort (P = .4) and 0.867 and 0.834 in the validation cohort (P = .2), respectively, and the diagnostic accuracy was comparable between the 2 methods. In the entire cohort, negative predictive value (NPV) and positive predictive value (PPV) of MRE for advanced fibrosis were 92.2% and 73.7%, respectively, whereas NPV at the first and second step and PPV at the second step were 90.9%, 84.4%, and 77.0%, respectively. CONCLUSIONS: The diagnostic accuracy of the two-step strategy was comparable to MRE and could reduce cost by reducing excessive MRE. Therefore, the two-step strategy could be used as a screening method in a large population.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Diagnóstico por Imagen de Elasticidad/métodos , Fibrosis , Valor Predictivo de las Pruebas , Biopsia , Hígado/diagnóstico por imagen , Hígado/patología
20.
NMR Biomed ; 36(7): e4899, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36628624

RESUMEN

Liver magnetic resonance elastography (MRE) is a noninvasive stiffness measurement technique that captures the tissue displacement in the phase of the signal. To limit the scanning time to a single breath-hold, liver MRE usually involves advanced readout techniques such as simultaneous multislice (SMS) or multishot methods. Furthermore, all these readout techniques require additional in-plane acceleration using either parallel imaging capabilities, such as sensitivity encoding (SENSE), or k -space undersampling, such as compressed sensing (CS). However, these methods apply a single regularization function on the complex image. This study aims to design and evaluate methods that use separate regularization on the magnitude and phase of MRE to exploit their distinct spatiotemporal characteristics. Specifically, we introduce two compressed sensing methods. The first method, termed phase-regularized compressed sensing (PRCS), applies a two-dimensional total variation (TV) prior to the magnitude and two-dimensional wavelet regularization to the phase. The second method, termed displacement-regularized compressed sensing (DRCS), exploits the spatiotemporal redundancy using 3D total variation on the magnitude. Additionally, DRCS includes a displacement fitting function to apply wavelet regularization to the displacement phasor. Both DRCS and PRCS were evaluated with different levels of compression factors in three datasets: an in silico abdomen dataset, an in vitro tissue-mimicking phantom, and an in vivo liver dataset. The reconstructed images were compared with the full sampled reconstruction, zero-filling reconstruction, wavelet-regularized compressed sensing, and a low rank plus sparse reconstruction. The metrics used for quantitative evaluation were the structural similarity index (SSIM) of magnitude (M-SSIM), displacement (D-SSIM), and shear modulus (S-SSIM), and mean shear modulus. Results from highly undersampled in silico and in vitro datasets demonstrate that the DRCS method provides higher reconstruction quality than the conventional compressed sensing method for a wide range of stiffness values. Notably, DRCS provides 24% and 22% increase in D-SSIM compared with CS for the in silico and in vitro datasets, respectively. Comparison with liver stiffness measured from full sampled data and highly undersampled data (CR=4) demonstrates that the DRCS method provided the strongest correlation ( R 2 =0.95), second-lowest mean bias (-0.18 kPa, lowest for CS with -0.16 kPa), and lowest coefficient of variation (CV=3.6%). Our results demonstrate the potential of using DRCS to improve the reconstruction quality of accelerated MRE.


Asunto(s)
Compresión de Datos , Diagnóstico por Imagen de Elasticidad , Reproducibilidad de los Resultados , Compresión de Datos/métodos , Abdomen , Fantasmas de Imagen , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA