RESUMEN
Methane is one of the most important greenhouse gases on Earth and holds an important place in the global carbon cycle. Archaea are the only organisms that use methanogenesis to produce energy and rely on the methyl-coenzyme M reductase complex (Mcr). Over the last decade, new results have significantly reshaped our view of the diversity of methane-related pathways in the Archaea. Many new lineages that synthesize or use methane have been identified across the whole archaeal tree, leading to a greatly expanded diversity of substrates and mechanisms. In this review, we present the state of the art of these advances and how they challenge established scenarios of the origin and evolution of methanogenesis, and we discuss the potential trajectories that may have led to this strikingly wide range of metabolisms.
Asunto(s)
Archaea , Metano , Metano/metabolismo , Oxidación-Reducción , FilogeniaRESUMEN
Deep sea cold seeps are sites where hydrogen sulfide, methane, and other hydrocarbon-rich fluids vent from the ocean floor. They are an important component of Earth's carbon cycle in which subsurface hydrocarbons form the energy source for highly diverse benthic micro- and macro-fauna in what is otherwise vast and spartan sea scape. Passive continental margin cold seeps are typically attributed to the migration of hydrocarbons generated from deeply buried source rocks. Many of these seeps occur over salt tectonic provinces, where the movement of salt generates complex fault systems that can enable fluid migration or create seals and traps associated with reservoir formation. The elevated advective heat transport of the salt also produces a chimney effect directly over these structures. Here, we provide geophysical and geochemical evidence that the salt chimney effect in conjunction with diapiric faulting drives a subsurface groundwater circulation system that brings dissolved inorganic carbon, nutrient-rich deep basinal fluids, and potentially overlying seawater onto the crests of deeply buried salt diapirs. The mobilized fluids fuel methanogenic archaea locally enhancing the deep biosphere. The resulting elevated biogenic methane production, alongside the upward heat-driven fluid transport, represents a previously unrecognized mechanism of cold seep formation and regulation.
RESUMEN
Approximately two-thirds of the estimated one-billion metric tons of methane produced annually by methanogens is derived from the cleavage of acetate. Acetate is broken down by a Ni-Fe-S-containing A-cluster within the enzyme acetyl-CoA synthase (ACS) to carbon monoxide (CO) and a methyl group (CH3+). The methyl group ultimately forms the greenhouse gas methane, whereas CO is converted to the greenhouse gas carbon dioxide (CO2) by a Ni-Fe-S-containing C-cluster within the enzyme carbon monoxide dehydrogenase (CODH). Although structures have been solved of CODH/ACS from acetogens, which use these enzymes to make acetate from CO2, no structure of a CODH/ACS from a methanogen has been reported. In this work, we use cryo-electron microscopy to reveal the structure of a methanogenic CODH and CODH/ACS from Methanosarcina thermophila (MetCODH/ACS). We find that the N-terminal domain of acetogenic ACS, which is missing in all methanogens, is replaced by a domain of CODH. This CODH domain provides a channel for CO to travel between the two catalytic Ni-Fe-S clusters. It generates the binding surface for ACS and creates a remarkably similar CO alcove above the A-cluster using residues from CODH rather than ACS. Comparison of our MetCODH/ACS structure with our MetCODH structure reveals a molecular mechanism to restrict gas flow from the CO channel when ACS departs, preventing CO escape into the cell. Overall, these long-awaited structures of a methanogenic CODH/ACS reveal striking functional similarities to their acetogenic counterparts despite a substantial difference in domain organization.
Asunto(s)
Acetato CoA Ligasa , Aldehído Oxidorreductasas , Microscopía por Crioelectrón , Metano , Methanosarcina , Complejos Multienzimáticos , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/química , Microscopía por Crioelectrón/métodos , Methanosarcina/enzimología , Methanosarcina/metabolismo , Metano/metabolismo , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/ultraestructura , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/química , Acetato CoA Ligasa/genética , Monóxido de Carbono/metabolismo , Modelos MolecularesRESUMEN
Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.
Asunto(s)
Adenosina Trifosfato , Metano , Metano/metabolismo , Transporte de Electrón , Adenosina Trifosfato/metabolismo , Metabolismo Energético , Transporte Biológico , Methanosarcina/metabolismoRESUMEN
Methanogenic archaea inhabiting anaerobic environments play a crucial role in the global biogeochemical material cycle. The most universal electrogenic reaction of their methane-producing energy metabolism is catalyzed by Nââââ5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH), which couples the vectorial Na+ transport with a methyl transfer between the one-carbon carriers tetrahydromethanopterin and coenzyme M via a vitamin B12 derivative (cobamide) as prosthetic group. We present the 2.08 Å cryo-EM structure of Mtr(ABCDEFG)3 composed of the central Mtr(ABFG)3 stalk symmetrically flanked by three membrane-spanning MtrCDE globes. Tetraether glycolipids visible in the map fill gaps inside the multisubunit complex. Putative coenzyme M and Na+ were identified inside or in a side-pocket of a cytoplasmic cavity formed within MtrCDE. Its bottom marks the gate of the transmembrane pore occluded in the cryo-EM map. By integrating Alphafold2 information, functionally competent MtrA-MtrH and MtrA-MtrCDE subcomplexes could be modeled and thus the methyl-tetrahydromethanopterin demethylation and coenzyme M methylation half-reactions structurally described. Methyl-transfer-driven Na+ transport is proposed to be based on a strong and weak complex between MtrCDE and MtrA carrying vitamin B12, the latter being placed at the entrance of the cytoplasmic MtrCDE cavity. Hypothetically, strongly attached methyl-cob(III)amide (His-on) carrying MtrA induces an inward-facing conformation, Na+ flux into the membrane protein center and finally coenzyme M methylation while the generated loosely attached (or detached) MtrA carrying cob(I)amide (His-off) induces an outward-facing conformation and an extracellular Na+ outflux. Methyl-cob(III)amide (His-on) is regenerated in the distant active site of the methyl-tetrahydromethanopterin binding MtrH implicating a large-scale shuttling movement of the vitamin B12-carrying domain.
Asunto(s)
Mesna , Metiltransferasas , Mesna/metabolismo , Metiltransferasas/metabolismo , Metilación , Vitamina B 12/metabolismo , Metano/metabolismo , Amidas , VitaminasRESUMEN
Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane, and its activity accounts for nearly all biologically produced methane released into the atmosphere. The assembly of MCR is an intricate process involving the installation of a complex set of posttranslational modifications and the unique Ni-containing tetrapyrrole called coenzyme F430. Despite decades of research, details of MCR assembly remain largely unresolved. Here, we report the structural characterization of MCR in two intermediate states of assembly. These intermediate states lack one or both F430 cofactors and form complexes with the previously uncharacterized McrD protein. McrD is found to bind asymmetrically to MCR, displacing large regions of the alpha subunit and increasing active-site accessibility for the installation of F430-shedding light on the assembly of MCR and the role of McrD therein. This work offers crucial information for the expression of MCR in a heterologous host and provides targets for the design of MCR inhibitors.
Asunto(s)
Atmósfera , MetanoRESUMEN
Anaerobic marine environments are the third largest producer of the greenhouse gas methane. The release to the atmosphere is prevented by anaerobic 'methanotrophic archaea (ANME) dependent on a symbiotic association with sulfate-reducing bacteria or direct reduction of metal oxides. Metagenomic analyses of ANME are consistent with a reverse methanogenesis pathway, although no wild-type isolates have been available for validation and biochemical investigation. Herein is reported the characterization of methanotrophic growth for the diverse marine methanogens Methanosarcina acetivorans C2A and Methanococcoides orientis sp. nov. Growth was dependent on reduction of either ferrihydrite or humic acids revealing a respiratory mode of energy conservation. Acetate and/or formate were end products. Reversal of the well-characterized methanogenic pathways is remarkably like the consensus pathways for uncultured ANME based on extensive metagenomic analyses.
Asunto(s)
Euryarchaeota , Respiración , Archaea/genética , Atmósfera , ConsensoRESUMEN
Methanogens are essential for the complete remineralization of organic matter in anoxic environments. Most cultured methanogens are hydrogenotrophic, using H2 as an electron donor to reduce CO2 to CH4, but in the absence of H2 many can also use formate. Formate dehydrogenase (Fdh) is essential for formate oxidation, where it transfers electrons for the reduction of coenzyme F420 or to a flavin-based electron bifurcating reaction catalyzed by heterodisulfide reductase (Hdr), the terminal reaction of methanogenesis. Furthermore, methanogens that use formate encode at least two isoforms of Fdh in their genomes, but how these different isoforms participate in methanogenesis is unknown. Using Methanococcus maripaludis, we undertook a biochemical characterization of both Fdh isoforms involved in methanogenesis. Both Fdh1 and Fdh2 interacted with Hdr to catalyze the flavin-based electron bifurcating reaction, and both reduced F420 at similar rates. F420 reduction preceded flavin-based electron bifurcation activity for both enzymes. In a Δfdh1 mutant background, a suppressor mutation was required for Fdh2 activity. Genome sequencing revealed that this mutation resulted in the loss of a specific molybdopterin transferase (moeA), allowing for Fdh2-dependent growth, and the metal content of the proteins suggested that isoforms are dependent on either molybdenum or tungsten for activity. These data suggest that both isoforms of Fdh are functionally redundant, but their activities in vivo may be limited by gene regulation or metal availability under different growth conditions. Together these results expand our understanding of formate oxidation and the role of Fdh in methanogenesis.
Asunto(s)
Formiato Deshidrogenasas , Methanococcus , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Methanococcus/genética , Methanococcus/metabolismo , Flavinas/metabolismo , Formiatos/metabolismo , Isoformas de Proteínas/metabolismoRESUMEN
Most methanogenic archaea use the rudimentary hydrogenotrophic pathway-from CO2 and H2 to methane-as the terminal step of microbial biomass degradation in anoxic habitats. The barely exergonic process that just conserves sufficient energy for a modest lifestyle involves chemically challenging reactions catalyzed by complex enzyme machineries with unique metal-containing cofactors. The basic strategy of the methanogenic energy metabolism is to covalently bind C1 species to the C1 carriers methanofuran, tetrahydromethanopterin, and coenzyme M at different oxidation states. The four reduction reactions from CO2 to methane involve one molybdopterin-based two-electron reduction, two coenzyme F420-based hydride transfers, and one coenzyme F430-based radical process. For energy conservation, one ion-gradient-forming methyl transfer reaction is sufficient, albeit supported by a sophisticated energy-coupling process termed flavin-based electron bifurcation for driving the endergonic CO2 reduction and fixation. Here, we review the knowledge about the structure-based catalytic mechanism of each enzyme of hydrogenotrophic methanogenesis.
Asunto(s)
Archaea/metabolismo , Metabolismo Energético , Hidrógeno/metabolismo , Metano/metabolismo , Complejos Multienzimáticos/química , Archaea/química , Archaea/enzimología , Dióxido de Carbono/metabolismo , Dinitrocresoles/metabolismo , Transporte de Electrón , Complejos Multienzimáticos/metabolismo , Oxidación-ReducciónRESUMEN
Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 â m-2 â d-1 Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.
Asunto(s)
Alismatales/metabolismo , Euryarchaeota/metabolismo , Metano/metabolismo , Aerobiosis , Anaerobiosis , Euryarchaeota/clasificación , Sedimentos Geológicos , Mar Mediterráneo , Microbiota , Oxidación-Reducción , Filogenia , Especificidad de la EspecieRESUMEN
Methanogenic and methanotrophic archaea play important roles in the global carbon cycle by interconverting CO2 and methane. To conserve energy from these metabolic pathways that happen close to the thermodynamic equilibrium, specific electron carriers have evolved to balance the redox potentials between key steps. Reduced ferredoxins required to activate CO2 are provided by energetical coupling to the reduction of the high-potential heterodisulfide (HDS) of coenzyme M (2-mercaptoethanesulfonate) and coenzyme B (7-mercaptoheptanoylthreonine phosphate). While the standard redox potential of this important HDS has been determined previously to be -143â mV (Tietze etâ al. 2003 DOI: 10.1002/cbic.200390053), we have measured thiol disulfide exchange kinetics and reassessed this value by equilibrating thiol-disulfide mixtures of coenzyme M, coenzyme B, and mercaptoethanol. We determined the redox potential of the HDS of coenzyme M and coenzyme B to be -16.4±1.7â mV relative to the reference thiol mercaptoethanol (E0 '=-264â mV). The resulting E0 ' values are -281â mV for the HDS, -271â mV for the homodisulfide of coenzyme M, and -270â mV for the homodisulfide of coenzyme B. We discuss the importance of these updated values for the physiology of methanogenic and methanotrophic archaea and their implications in terms of energy conservation.
Asunto(s)
Archaea , Mesna , Mesna/metabolismo , Archaea/metabolismo , Compuestos de Sulfhidrilo , Mercaptoetanol , Disulfuros/metabolismo , Dióxido de Carbono/metabolismo , Electrones , Transporte de Electrón , Metano/metabolismo , Oxidación-ReducciónRESUMEN
Various environmental factors, including H2 availability, metabolic tradeoffs, optimal growth temperature, stochasticity, and hydrology, were examined to determine if they affect microbial competition between three autotrophic thermophiles. The thiosulfate reducer Desulfurobacterium thermolithotrophum (Topt72°C) was grown in mono- and coculture separately with the methanogens Methanocaldococcus jannaschii (Topt82°C) at 72°C and Methanothermococcus thermolithotrophicus (Topt65°C) at 65°C at high and low H2 concentrations. Both methanogens showed a metabolic tradeoff shifting from high growth rate-low cell yield at high H2 concentrations to low growth rate-high cell yield at low H2 concentrations and when grown in coculture with the thiosulfate reducer. In 1:1 initial ratios, D. thermolithotrophum outcompeted both methanogens at high and low H2, no H2S was detected on low H2, and it grew with only CO2 as the electron acceptor indicating a similar metabolic tradeoff with low H2. When the initial methanogen-to-thiosulfate reducer ratio varied from 1:1 to 104:1 with high H2, D. thermolithotrophum always outcompeted M. jannaschii at 72°C. However, M. thermolithotrophicus outcompeted D. thermolithotrophum at 65°C when the ratio was 103:1. A reactive transport model that mixed pure hydrothermal fluid with cold seawater showed that hyperthermophilic methanogens dominated in systems where the residence time of the mixed fluid above 72°C was sufficiently high. With shorter residence times, thermophilic thiosulfate reducers dominated. If residence times increased with decreasing fluid temperature along the flow path, then thermophilic methanogens could dominate. Thermophilic methanogen dominance spread to previously thiosulfate-reducer-dominated conditions if the initial ratio of thermophilic methanogen-to-thiosulfate reducer increased. IMPORTANCE: The deep subsurface is the largest reservoir of microbial biomass on Earth and serves as an analog for life on the early Earth and extraterrestrial environments. Methanogenesis and sulfur reduction are among the more common chemolithoautotrophic metabolisms found in hot anoxic hydrothermal vent environments. Competition between H2-oxidizing sulfur reducers and methanogens is primarily driven by the thermodynamic favorability of redox reactions with the former outcompeting methanogens. This study demonstrated that competition between the hydrothermal vent chemolithoautotrophs Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Desulfurobacterium thermolithotrophum is also influenced by other overlapping factors such as staggered optimal growth temperatures, stochasticity, and hydrology. By modeling all aspects of microbial competition coupled with field data, a better understanding is gained on how methanogens can outcompete thiosulfate reducers in hot anoxic environments and how the deep subsurface contributes to biogeochemical cycling.
Asunto(s)
Crecimiento Quimioautotrófico , Hidrógeno , Respiraderos Hidrotermales , Respiraderos Hidrotermales/microbiología , Hidrógeno/metabolismo , Agua de Mar/microbiología , Deltaproteobacteria/metabolismo , Deltaproteobacteria/crecimiento & desarrollo , Methanocaldococcus/metabolismo , Methanocaldococcus/crecimiento & desarrollo , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crecimiento & desarrollo , CalorRESUMEN
Methanogens often inhabit sulfidic environments that favor the precipitation of transition metals such as iron (Fe) as metal sulfides, including mackinawite (FeS) and pyrite (FeS2). These metal sulfides have historically been considered biologically unavailable. Nonetheless, methanogens are commonly cultivated with sulfide (HS-) as a sulfur source, a condition that would be expected to favor metal precipitation and thus limit metal availability. Recent studies have shown that methanogens can access Fe and sulfur (S) from FeS and FeS2 to sustain growth. As such, medium supplied with FeS2 should lead to higher availability of transition metals when compared to medium supplied with HS-. Here, we examined how transition metal availability under sulfidic (i.e., cells provided with HS- as sole S source) versus non-sulfidic (cells provided with FeS2 as sole S source) conditions impact the metalloproteome of Methanosarcina barkeri Fusaro. To achieve this, we employed size exclusion chromatography coupled with inductively coupled plasma mass spectrometry and shotgun proteomics. Significant changes were observed in the composition and abundance of iron, cobalt, nickel, zinc, and molybdenum proteins. Among the differences were alterations in the stoichiometry and abundance of multisubunit protein complexes involved in methanogenesis and electron transport chains. Our data suggest that M. barkeri utilizes the minimal iron-sulfur cluster complex and canonical cysteine biosynthesis proteins when grown on FeS2 but uses the canonical Suf pathway in conjunction with the tRNA-Sep cysteine pathway for iron-sulfur cluster and cysteine biosynthesis under sulfidic growth conditions.IMPORTANCEProteins that catalyze biochemical reactions often require transition metals that can have a high affinity for sulfur, another required element for life. Thus, the availability of metals and sulfur are intertwined and can have large impacts on an organismismal biochemistry. Methanogens often occupy anoxic, sulfide-rich (euxinic) environments that favor the precipitation of transition metals as metal sulfides, thereby creating presumed metal limitation. Recently, several methanogens have been shown to acquire iron and sulfur from pyrite, an abundant iron-sulfide mineral that was traditionally considered to be unavailable to biology. The work presented here provides new insights into the distribution of metalloproteins, and metal uptake of Methanosarcina barkeri Fusaro grown under euxinic or pyritic growth conditions. Thorough characterizations of this methanogen under different metal and sulfur conditions increase our understanding of the influence of metal availability on methanogens, and presumably other anaerobes, that inhabit euxinic environments.
Asunto(s)
Hierro , Metaloproteínas , Methanosarcina barkeri , Sulfuros , Azufre , Azufre/metabolismo , Hierro/metabolismo , Methanosarcina barkeri/metabolismo , Methanosarcina barkeri/crecimiento & desarrollo , Metaloproteínas/metabolismo , Sulfuros/metabolismo , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Minerales/metabolismo , ProteómicaRESUMEN
Warming and eutrophication influence carbon (C) processing in sediments, with implications for the global greenhouse-gas budget. Temperature effects on sedimentary C loss are well understood, but the mechanism of change in turnover through priming with labile organic matter (OM) is not. Evaluating changes in the magnitude of priming as a function of warming, eutrophication, and OM stoichiometry, we incubated sediments with 13 C-labeled fresh organic matter (FOM, algal/cyanobacterial) and simulated future climate scenarios (+4°C and +8°C). We investigated FOM-induced production of CH4 and microbial community changes. C loss was primed by up to 17% in dominantly allochthonous sediments (ranging from 5% to 17%), compared to up to 6% in autochthonous sediments (-9% to 6%), suggesting that refractory OM is more susceptible to priming. The magnitude of priming was dependent on sediment OM stoichiometry (C/N ratio), the ratio of fresh labile OM to microbial biomass (FOM/MB), and temperature. Priming was strongest at 4°C when FOM/MB was below 50%. Addition of FOM was associated with activation and growth of bacterial decomposers, including for example, Firmicutes, Bacteroidetes, or Fibrobacteres, known for their potential to degrade insoluble and complex structural biopolymers. Using sedimentary C/N > 15 as a threshold, we show that in up to 35% of global lakes, sedimentation is dominated by allochthonous rather than autochthonous material. We then provide first-order estimates showing that, upon increase in phytoplankton biomass in these lakes, priming-enabled degradation of recalcitrant OM will release up to 2.1 Tg C annually, which would otherwise be buried for geological times.
Asunto(s)
Cianobacterias , Lagos , Lagos/química , Biomasa , Carbono/química , Fitoplancton , Sedimentos Geológicos/química , Eutrofización , ChinaRESUMEN
Methanogenic archaea are chemolithotrophic prokaryotes that can reduce carbon dioxide with hydrogen gas to form methane. These microorganisms make a significant contribution to the global carbon cycle, with methanogenic archaea from anoxic environments estimated to contribute > 500 million tons of global methane annually. Archaeal methanogenesis is dependent on the methanofurans; aminomethylfuran containing coenzymes that act as the primary C1 acceptor molecule during carbon dioxide fixation. Although the biosynthetic pathway to the methanofurans has been elucidated, structural adaptations which confer thermotolerance to Mfn enzymes from extremophilic archaea are yet to be investigated. Here we focus on the methanofuran biosynthetic enzyme MfnB, which catalyses the condensation of two molecules of glyceralde-3-phosphate to form 4(hydroxymethyl)-2-furancarboxaldehyde-phosphate. In this study, MfnB enzymes from the hyperthermophile Methanocaldococcus jannaschii and the mesophile Methanococcus maripaludis have been recombinantly overexpressed and purified to homogeneity. Thermal unfolding studies, together with steady-state kinetic assays, demonstrate thermoadaptation in the M. jannaschii enzyme. Molecular dynamics simulations have been used to provide a structural explanation for the observed properties. These reveal a greater number of side chain interactions in the M. jannaschii enzyme, which may confer protection from heating effects by enforcing spatial residue constraints.
Asunto(s)
Proteínas Arqueales , Estabilidad de Enzimas , Methanocaldococcus , Methanocaldococcus/enzimología , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/química , Methanococcus/enzimología , Termotolerancia , Aldehído-Liasas/metabolismo , Aldehído-Liasas/genética , Aldehído-Liasas/química , Calor , Simulación de Dinámica MolecularRESUMEN
Hyperthermophilic archaean Methanocaldococcus sp. FS406-22 (hereafter FS406) is a hydrogenotrophic methanogen isolated from a deep-sea hydrothermal vent. To better understand the energetic requirements of hydrogen oxidation under extreme conditions, the thermodynamic characterization of FS406 incubations is necessary and notably underexplored. In this work, we quantified the bioenergetics of FS406 incubations at a range of temperatures (65, 76, and 85 â) and hydrogen concentrations (1.1, 1.4, and 2.1 mm). The biomass yields (C-mol of biomass per mol of H2 consumed) ranged from 0.02 to 0.19. Growth rates ranged from 0.4 to 1.5 h-1. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from - 198 kJ/C-mol to - 1840 kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from - 4150 kJ/C-mol to - 36333 kJ/C-mol. FS406 growth rates were most comparable to hyperthermophilic methanogen Methanocaldococcus jannaschii. Maintenance energy calculations from the thermodynamic parameters of FS406 and previously determined heterotrophic methanogen data revealed that temperature is a primary determinant rather than an electron donor. This work provides new insights into the thermodynamic underpinnings of a hyperthermophilic hydrothermal vent methanogen and helps to better constrain the energetic requirements of life in extreme environments.
Asunto(s)
Metabolismo Energético , Methanocaldococcus , Methanocaldococcus/metabolismo , Termodinámica , Hidrógeno/metabolismo , Respiraderos Hidrotermales/microbiologíaRESUMEN
Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.
Asunto(s)
Euryarchaeota , Selenio , Metano , Proteómica , Selenocisteína/metabolismo , Euryarchaeota/metabolismo , Estrés Oxidativo , Oxígeno , Anaerobiosis , Reactores BiológicosRESUMEN
Enhanced weathering of (ultra)mafic rocks has been proposed as a promising approach to sequester atmospheric CO2 and mitigate climate change. However, these silicate rocks contain varying amounts of trace metals, which are essential cofactors of metallaenzymes in methanogens. We found that weathering of crushed peridotite and basalt significantly promoted the growth and methanogenesis of a model methanogenâMethanosarcina acetivorans C2A under the condition of excess substrate. The released trace metals from peridotite and basalt, especially Fe, Ni, and Co, accounted for the promotion effect. Observation at different spatial scales showed a close association between the rocks and cells. Proteomic analysis revealed that rock amendment significantly enhanced the expression of core metalloenzymes in the methylotrophic methanogenesis pathway. Our study uncovers a previously unrecognized but important negative effect of enhanced rock weathering on methane production, which may counteract the carbon sequestration effort.
RESUMEN
Arsenic (As) contamination and methane (CH4) emissions co-occur in rice paddies. However, how As impacts CH4 production, oxidation, and emission dynamics is unknown. Here, we investigated the abundances and activities of CH4-cycling microbes from 132 paddy soils with different As concentrations across continental China using metagenomics and the reverse transcription polymerase chain reaction. Our results revealed that As was a crucial factor affecting the abundance and distribution patterns of the mcrA gene, which is responsible for CH4 production and anaerobic CH4 oxidation. Laboratory incubation experiments showed that adding 30 mg kg-1 arsenate increased 13CO2 production by 10-fold, ultimately decreasing CH4 emissions by 68.5%. The inhibition of CH4 emissions by As was induced through three aspects: (1) the toxicity of As decreased the abundance and activity of the methanogens; (2) the adaptability and response of methanotrophs to As is beneficial for CH4 oxidation under As stress; and (3) the more robust arsenate reduction would anaerobically consume more CH4 in paddies. Additionally, significant positive correlations were observed between arsC and pmoA gene abundance in both the observational study and incubation experiment. These findings enhance our understanding of the mechanisms underlying the interactions between As and CH4 cycling in soils.
Asunto(s)
Arsénico , Metano , Suelo , Metano/metabolismo , Arsénico/metabolismo , Suelo/química , Microbiología del Suelo , China , Contaminantes del Suelo/metabolismo , Oxidación-ReducciónRESUMEN
The presence of elevated ammonia levels is widely recognized as a significant contributor to process inhibition in biogas production, posing a common challenge for biogas plant operators. The present study employed a combination of biochemical, genome-centric metagenomic and metatranscriptomic data to investigate the response of the biogas microbiome to two shock loads induced by single pulses of elevated ammonia concentrations (i.e., 1.5 g NH4+/LR and 5 g NH4+/LR). The analysis revealed a microbial community of high complexity consisting of 364 Metagenome Assembled Genomes (MAGs). The hydrogenotrophic pathway was the primary route for methane production during the entire experiment, confirming its efficiency even at high ammonia concentrations. Additionally, metatranscriptomic analysis uncovered a metabolic shift in the methanogens Methanothrix sp. MA6 and Methanosarcina flavescens MX5, which switched their metabolism from the acetoclastic to the CO2 reduction route during the second shock. Furthermore, multiple genes associated with mechanisms for maintaining osmotic balance in the cell were upregulated, emphasizing the critical role of osmoprotection in the rapid response to the presence of ammonia. Finally, this study offers insights into the transcriptional response of an anaerobic digestion community, specifically focusing on the mechanisms involved in recovering from ammonia-induced stress.