Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Ecotoxicol Environ Saf ; 208: 111666, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396176

RESUMEN

The chemical ecology of rotifers has been little studied. A yet unknown property is presented within some monogonant rotifers, namely the ability to produce an exogenic filamentous biopolymer, named 'Rotimer'. This rotifer-specific viscoelastic fiber was observed in six different freshwater monogonants (Euchlanis dilatata, Lecane bulla, Lepadella patella, Itura aurita, Colurella adriatica and Trichocerca iernis) in exception of four species. Induction of Rotimer secretion can only be achieved by mechanically irritating rotifer ciliate with administering different types (yeast cell skeleton, denatured BSA, epoxy, Carmine or urea crystals and micro-cellulose) and sizes (approx. from 2.5 to 50 µm diameter) of inert particles, as inductors or visualization by adhering particles. The thickness of this Rotimer is 33 ± 3 nm, detected by scanning electron microscope. This material has two structural formations (fiber or gluelike) in nano dimension. The existence of the novel adherent natural product becomes visible by forming a 'Rotimer-Inductor Conglomerate' (RIC) web structure within a few minutes. The RIC-producing capacity of animals, depends on viability, is significantly modified according to physiological- (depletion), drug- (toxin or stimulator) and environmental (temperature, salt content and pH) effects. The E. dilatata-produced RIC is affected by protein disruptors but is resistant to several chemical influences and its Rotimer component has an overwhelming cell (algae, yeast and human neuroblastoma) motility inhibitory effect, associated with low toxicity. This biopolymer-secretion-capacity is protective of rotifers against human-type beta-amyloid aggregates.


Asunto(s)
Biopolímeros/metabolismo , Rotíferos/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Biopolímeros/química , Biopolímeros/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Agua Dulce/microbiología , Humanos , Rotíferos/clasificación , Rotíferos/efectos de los fármacos , Temperatura
2.
Molecules ; 26(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803734

RESUMEN

The increasing environmental awareness is driving towards novel sustainable high-performance materials applicable for future manufacturing technologies like additive manufacturing (AM). Cellulose is abundantly available renewable and sustainable raw material. This work focused on studying the properties of thermoplastic cellulose-based composites and their properties using injection molding and 3D printing of granules. The aim was to maximize the cellulose content in composites. Different compounds were prepared using cellulose acetate propionate (CAP) and commercial cellulose acetate propionate with plasticizer (CP) as polymer matrices, microcellulose (mc) and novel cellulose-ester additives; cellulose octanoate (C8) and cellulose palmitate (C16). The performance of compounds was compared to a commercial poly(lactic acid)-based cellulose fiber containing composite. As a result, CP-based compounds had tensile and Charpy impact strength properties comparable to commercial reference, but lower modulus. CP-compounds showed glass transition temperature (Tg) over 58% and heat distortion temperature (HDT) 12% higher compared to reference. CAP with C16 had HDT 82.1 °C. All the compounds were 3D printable using granular printing, but CAP compounds had challenges with printed layer adhesion. This study shows the potential to tailor thermoplastic cellulose-based composite materials, although more research is needed before obtaining all-cellulose 3D printable composite material with high-performance.

3.
Polymers (Basel) ; 16(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399908

RESUMEN

The valorization of lignocellulosic biomass by-products holds significant economic and ecological potential, considering their global overproduction. This paper introduces the fabrication of a novel wheat-straw-based hydrogel and a new microcellulose-based hydrogel through 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) oxidation. In this study, Fourier transform infrared (FTIR) analysis was employed for the detection of carboxyl groups, neutralization titration was conducted using a conductivity meter, viscosity analysis was performed using a rheometer, and transmittance analysis was carried out using a spectrophotometer. Two novel hydrogels based on TEMPO oxidation have been developed. Among them, the bio-based hydrogel derived from oxidized wheat straw exhibited exceptional printability and injectability. We found that the oxidation degree of microcellulose reached 56-69%, and the oxidation degree of wheat straw reached 56-63%. The cross-linking of 4% oxidized wheat straw and calcium chloride was completed in 400 seconds, and the viscosity exceeded 100,000 Pa·s. In summary, we have successfully created low-cost hydrogels through the modification of wheat straw and microcellulose, transforming lignocellulosic biomass by-products into a sustainable source of polymers. This paper verifies the future applicability of biomass materials in 3D printing.

4.
Carbohydr Polym ; 344: 122539, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218557

RESUMEN

In this work we developed an eco-friendly valorisation of Citrus wastes (CWs), through a solvent-assisted ultrasonication extraction technique, thus having access to a wide range of bio-active compounds and polysaccharides, extremely useful in different industrial sectors (food, cosmetics, nutraceutical). Water-based low-amplitude ultrasonication was examined as a potential method for pectin extraction as well as polar and non-polar citrus extractives (CEs), among which hesperidin and triglycerides of 18 carbon fatty acids were found to be the most representative ones. In addition, citric acid:glycerol (1:4)-based deep eutectic solvent (DES) in combination with ultrasonic extraction was utilized to extract microcellulose (CMC), from which stable cellulose nanocrystals (CNCs) with glycerol-assisted high amplitude ultrasonication were obtained. The physical and chemical properties of the extracted polysaccharides (pectin, micro and nanocellulose) were analysed through DLS, ζ-potential, XRD, HP-SEC, SEM, AFM, TGA-DSC, FTIR, NMR, and PMP-HPLC analyses. The putative structure of the extracted citrus pectin (CP) was analysed and elucidated through enzyme-assisted hydrolysis in correlation with ESI-MS and monosaccharide composition. The developed extraction methods are expected to influence the industrial process for the valorisation of CWs and implement the circular bio-economy.


Asunto(s)
Celulosa , Citrus , Residuos Industriales , Nanopartículas , Pectinas , Pectinas/química , Pectinas/aislamiento & purificación , Citrus/química , Celulosa/química , Nanopartículas/química , Residuos Industriales/análisis , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Sonicación/métodos , Hesperidina/química , Hesperidina/aislamiento & purificación
5.
Int J Biol Macromol ; 258(Pt 2): 128970, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154723

RESUMEN

The utilization of banana fiber derived from micro-cellulose (MC) was exploited as a supporting material for advanced oxidation process (AOP) on the degradation of methylene blue and methyl violet dyes in the presence of H2O2-UV in aqueous medium for the first time using green chemistry protocols. Additionally, it was also effectively utilized for the adsorption of methylene blue dye using addition of H2O2 in the presence of sunlight. The MC powder was fabricated using an acid alkali process from the pseudo-stem of a banana tree. The as-fabricated MC powder was systematically characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometer (EDX), and zero point charge (pHzpc). The AOP assisted degradation of dye molecules was monitored by using calorimetric techniques as a function of dye concentration and pH in a batch reactor. In a short period of time, the maximum degradation efficiency of 98 % of methylene blue was achieved using MC powder assisted H2O2 under UV irradiation at a minimum irradiation time of 120 min at pH 7.0 using dosage of 0.2 g/L. However, in the absence of UV light, the degradation efficiency of MC powder assisted H2O2 was only about 5-10 % without UV light irradiation. The dye removal was studied as a function of various operational parameters such as pH (3-11), catalyst dose (0.2-0.6 g/L), and initial dye concentration (100-400 mg/L). In the presence of H2O2-sunlight and 0.2 g/L of dosage at pH 7.0 at a minimum contact time of 120 min, MC fiber showed maximum adsorption capacities of 98% and 85% for 100 mg/L and 400 mg/L of methylene blue concentrations. According to the obtained data, the adsorption of methylene blue dye on MC follows the Freundlich isotherm model (R2 = 0.9886) and pseudo-first-order kinetic model (R2 = 0.9596) due to the higher regression coefficients. This process of dye degradation and adsorption process is a novel one and environmentally benign for an effective removal of hazardous dyes.


Asunto(s)
Musa , Contaminantes Químicos del Agua , Celulosa , Vapor , Adsorción , Colorantes/química , Azul de Metileno/química , Peróxido de Hidrógeno , Polvos , Catálisis , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
6.
Polymers (Basel) ; 16(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675042

RESUMEN

Microcellulose materials are increasingly considered multifunctional candidates for emerging energy applications. Microcellulose fibers (MCF) are a kind of bio-based reinforcement in composites, and their hydrophilic character hinders their wide application in industry. Thus, in the present work, MCF was hybrid-modified by amino silicone oil-phosphorylated to fabricate hydrophobic, thermal stability, and flame-retardant microcellulose fibers for potential application in vehicle engineering. The results showed that the amino silicone oil-phosphorylated (ASOP) hybrid modification could transform the surface property of microcellulose from hydrophilic to hydrophobic and improve the compatibility between MCF and resin matrix. Meanwhile, the ASOP treatment led to the formation of an amino silicone oil film layer on the surface of the microcellulose, which improved the thermal stability of the MCF. Furthermore, the ASOP hybrid modification microcellulose fibers paper (100% microcellulose fibers paper) was transformed from flammable to flame-retardant and showed self-extinguishing behavior after burning under flame for 2 s. The flame-retardant mechanism was attributed to the formation of the char layer in the condensed phase and the production of non-combustible gases in the gaseous phase.

7.
Heliyon ; 9(1): e13028, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36820173

RESUMEN

The growing demand for energy and environmental issues are the main concern for the sustainable development of modern society. Replacing toxic and expensive materials with inexpensive and biodegradable biomaterials is the main challenge for researchers. Nanocomposites are of the utmost consideration for their application in energy storage devices because of their specific electrochemical properties. Cellulose-based bionanocomposites have added a new dimension to this field since these are developed from available renewable biomaterials. Studies on developing electrodes, separators, collectors, and electrolytes for the batteries have been conducted based on these composites rigorously. Electrodes and separators made of these composites for the supercapacitors have also been investigated. Researchers have used a wide range of micro- and nano-structural cellulose along with nanostructured inorganic materials to produce cellulose-based bionanocomposites for energy devices, i.e., supercapacitors and batteries. The presence of cellulosic materials enhances the loading capacity of active materials and uniform porous structure in the electrode matrix. Thus, it has shown improved electrochemical properties. Therefore, these can help to develop biodegradable, lightweight, malleable, and strong energy storage devices. In this review article, the manufacturing process, properties, applications, and possible opportunities of cellulose-based bionanocomposites in energy storage devices have been emphasized. Its challenges and opportunities have also been discussed.

8.
Nanomaterials (Basel) ; 13(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37446447

RESUMEN

To extend the application of cost-effective high-yield pulps in packaging, strength and barrier properties are improved by advanced-strength additives or by hot-pressing. The aim of this study is to assess the synergic effects between the two approaches by using nanocellulose as a bulk additive, and by hot-pressing technology. Due to the synergic effect, dry strength increases by 118% while individual improvements are 31% by nanocellulose and 92% by hot-pressing. This effect is higher for mechanical fibrillated cellulose. After hot-pressing, all papers retain more than 22% of their dry strength. Hot-pressing greatly increases the paper's ability to withstand compressive forces applied in short periods of time by 84%, with a further 30% increase due to the synergic effect of the fibrillated nanocellulose. Hot-pressing and the fibrillated cellulose greatly decrease air permeability (80% and 68%, respectively) for refining pretreated samples, due to the increased fiber flexibility, which increase up to 90% using the combined effect. The tear index increases with the addition of nanocellulose, but this effect is lost after hot-pressing. In general, fibrillation degree has a small effect which means that low- cost nanocellulose could be used in hot-pressed papers, providing products with a good strength and barrier capacity.

9.
Mater Today Bio ; 16: 100439, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36245833

RESUMEN

In situ regeneration of large-segment bone defects is a difficult clinical problem. Here, we innovatively developed magnetically oriented micro-cellulose fibres using nano-hydroxyapatite/chitosan (CEF/Fe3O4/HA/CS) and loaded an NFκB pathway inhibitor on the surface of magnetically oriented cellulose fibres (CEF/Fe3O4/HA/CS/PQQ) prepared as a layered bioscaffold. CEF/Fe3O4/HA/CS/PQQ was constructed by layering HA/CS sheets. Nano-hydroxyapatite was deposited on the surface of cellulose fibres, then the magnetic nanoparticles on the cellulose fibres were aligned on the surface of chitosan under a magnetic field. Oriented cellulose fibres enhanced the compressive properties of the scaffold, with an average maximum compressive strength of 1.63 â€‹MPa. The CEF/Fe3O4/HA/CS/PQQ layered scaffold was filled into the body, and the acute inflammatory response (IL-1ß and TNF-α) was suppressed through the early sustained release of PQQ. The CEF/Fe3O4/HA/CS/PQQ-layered scaffold further inhibited the osteoclasts differentiation. It was further found that the nano-hydroxyapatite on the surface of oriented cellulose fibres promoted the formation and migration of new blood vessels, accelerated the processing of collagen-I fibres to cartilage, and endochondral ossification. Hence, the development of the CEF/Fe3O4/HA/CS/PQQ layered scaffold with oriented fibres guides bone growth direction and pro-osteogenesis activity and provides a novel strategy for the in situ regeneration of large segmental bone defects.

10.
Materials (Basel) ; 15(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36363250

RESUMEN

The paper presents a successful, simple method for the preparation and deposition of new hybrid Cu-doped ZnO/microcellulose coatings on textile fibers, directly from cellulose aqueous solution. The morphological, compositional, and structural properties of the obtained materials were investigated using different characterization methods, such as SEM-EDX, XRD, Raman and FTIR, as well as BET surface area measurements. The successful doping of ZnO NPs with Cu was confirmed by the EDX and Raman analysis. As a result of Cu doping, the hybrid NPs experienced a phase change from ZnO to (Zn0.9Cu0.1)O, as shown by the XRD results. All the hybrid NPs exhibited a high degree of crystallinity, as revealed by the very sharp reflections in XRD patterns and suggested also by the Raman results. The evaluation of the very low copper-doping (0.1-1 at.%) effect has shown different behavior trends of the hybrid coatings compared with the starting oxide NPs, for MB and MO photodegradation. Continuous increases up to 92% and 60% for MB and MO degradation, respectively, were obtained at maximum 1 at.%-Cu doping coatings. Strong antibacterial activity against S. aureus and E. coli were observed.

11.
Polymers (Basel) ; 13(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440879

RESUMEN

The high demand for plastic and polymeric materials which keeps rising every year makes them important industries, for which sustainability is a crucial aspect to be taken into account. Therefore, it becomes a requirement to makes it a clean and eco-friendly industry. Cellulose creates an excellent opportunity to minimize the effect of non-degradable materials by using it as a filler for either a synthesis matrix or a natural starch matrix. It is the primary substance in the walls of plant cells, helping plants to remain stiff and upright, and can be found in plant sources, agriculture waste, animals, and bacterial pellicle. In this review, we discussed the recent research development and studies in the field of biocomposites that focused on the techniques of extracting micro- and nanocellulose, treatment and modification of cellulose, classification, and applications of cellulose. In addition, this review paper looked inward on how the reinforcement of micro- and nanocellulose can yield a material with improved performance. This article featured the performances, limitations, and possible areas of improvement to fit into the broader range of engineering applications.

12.
Materials (Basel) ; 14(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206533

RESUMEN

Rigid polyurethane foams were obtained using two types of renewable raw materials: bio-polyols and a cellulose filler (ARBOCEL® P 4000 X, JRS Rettenmaier, Rosenberg, Germany). A polyurethane system containing 40 wt.% of rapeseed oil-based polyols was modified with the cellulose filler in amounts of 1, 2, and 3 php (per hundred polyols). The cellulose was incorporated into the polyol premix as filler dispersion in a petrochemical polyol made using calenders. The cellulose filler was examined in terms of the degree of crystallinity using the powder X-ray diffraction PXRD -and the presence of bonds by means of the fourier transform infrared spectroscopy FT-IR. It was found that the addition of the cellulose filler increased the number of cells in the foams in both cross-sections-parallel and perpendicular to the direction of the foam growth-while reducing the sizes of those cells. Additionally, the foams had closed cell contents of more than 90% and initial thermal conductivity coefficients of 24.8 mW/m∙K. The insulation materials were dimensionally stable, especially at temperatures close to 0 °C, which qualifies them for use as insulation at low temperatures.

13.
Polymers (Basel) ; 12(9)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872461

RESUMEN

Natural rubber latex foam (NRLF) was reinforced with micro- and nanofibrillated cellulose at a loading content of 5-20 parts per hundred of rubber (phr) via the Dunlop process. Cellulose powder from eucalyptus pulp and bacterial cellulose (BC) was used as a microcellulose (MC) and nanocellulose (NC) reinforcing agent, respectively. NRLF, NRLF-MC, and NRLF-NC exhibited interconnected macroporous structures with a high porosity and a low-density. The composite foams contained pores with sizes in a range of 10-500 µm. As compared to MC, NC had a better dispersion inside the NRLF matrix and showed a higher adhesion to the NRLF matrix, resulting in a greater reinforcement. The most increased tensile strengths for MC and NC incorporated NRLF were found to be 0.43 MPa (1.4-fold increase) and 0.73 MPa (2.4-fold increase), respectively, by reinforcing NRLF with 5 phr MC and 15 phr NC, whereas the elongation at break was slightly reduced. Compression testing showed that the recovery percentage was improved to 34.9% (1.3-fold increase) by reinforcement with 15 phr NC, whereas no significant improvement in the recovery percentage was observed with MC. Both NRLF-MC and NRLF-NC presented hydrophobic surfaces and good thermal stability up to 300 °C. Due to their highly porous structure, after a prolong immersion in water, NRLF composites had high water uptake abilities. According to their properties, the composite foams could be further modified for use as green absorption or supporting materials.

14.
Carbohydr Polym ; 240: 116290, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32475571

RESUMEN

Lignocellulosic fibers and microcellulose have been obtained by simple alkaline treatment from softwood almond shells. In particular, the Prunus dulcis Miller (D.A.) Webb. was considered as a agro industrial waste largely available in southern Italy. The materials before and after purification have been characterized by 13C CPMAS NMR spectroscopy methodology. A proper data analysis provided the relative composition of lignin and holocellulose at each purification step and the results were compared with thermogravimetric analysis and FT-IR. To value the possibility of using this material in a circular economy framework, the fibrous cellulosic material was used to manufacture a handmade cardboard. The tensile performances on the prepared cardboard proved its suitability for packaging purposes as a sustainable material. These fibers along with the obtained microcellulose can represent a new use for the almond shells that are mainly used as firewood.


Asunto(s)
Celulosa/análisis , Lignina/análisis , Nueces/química , Prunus dulcis , Espectroscopía de Resonancia Magnética con Carbono-13 , Reciclaje , Residuos
15.
Polymers (Basel) ; 11(5)2019 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-31109157

RESUMEN

Artemisia vulgaris is an economic plant that is spreading widely in central China. Its unused bast generates a large amount of biomass waste annually. Utilizing the fibers in Artemisia vulgaris bast may provide a new solution to this problem. This research attempts to strengthen the understanding of Artemisia vulgaris by analyzing its fiber compositions and preparing micro- and nano-cellulose fibers, which can be used as raw materials for composites. In this work, Artemisia vulgaris bast powder (AP) and microcellulose and nanocellulose fibers (AMFs and ANFs) were produced and characterized by optical microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TG), and bacteriostatic test. The results indicated that cellulose, hemicellulose, and lignin were the main components in the Artemisia vulgaris bast. The cellulose content reached 40.9%. The Artemisia vulgaris single fibers were microcellulose fibers with an average length of 850.6 µm and a diameter of 14.4 µm. Moreover, the AMF had considerable antibacterial ability with an antibacterial ratio of 36.6%. The ANF showed a length range of 250-300 nm and a diameter of 10-20 nm, and it had a higher crystallinity (76%) and a lower thermal stability (initial degradation temperature of 183 °C) compared with raw ANF (233 °C). This study provides fundamental information on Artemisia vulgaris bast cellulose for its subsequent utilization.

16.
Carbohydr Polym ; 200: 536-542, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30177195

RESUMEN

Our search for a cellulose-based proton conducting material is continued. This paper presents selected physicochemical properties of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) together with cellulose microcrystals (CMCs) and cellulose microfibrils (CMFs), determined by X-ray diffraction (XRD), thermogravimetric analysis (TGA + DTA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and electrical impedance spectroscopy (EIS). The CNCs and CNFs were studied in the forms of powder and film. They were produced in the process of transition metal catalyzed oxidative process or by TEMPO-mediated oxidation. It has been shown that regardless of the production method and the form of the sample the celluloses retained the cellulose Iß crystalline structure, the cellulose films showed similar thermal properties in the relevant temperature range from room temperature to about 200 °C, and the TEMPO-oxidized CNF film showed the highest proton conductivity when compared with those of the other samples studied.

17.
Water Res ; 91: 156-73, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26789698

RESUMEN

In recent decades, increased domestic, agricultural and industrial activities worldwide have led to the release of various pollutants, such as toxic heavy metals, inorganic anions, organics, micropollutants and nutrients into the aquatic environment. The removal of these wide varieties of pollutants for better quality of water for various activities is an emerging issue and a robust and eco-friendly treatment technology is needed for the purpose. It is well known that cellulosic materials can be obtained from various natural sources and can be employed as cheap adsorbents. Their adsorption capacities for heavy metal ions and other aquatic pollutants can be significantly affected upon chemical treatment. In general, chemically modified cellulose exhibits higher adsorption capacities for various aquatic pollutants than their unmodified forms. Numerous chemicals have been used for cellulose modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. This paper reviews the current state of research on the use of cellulose, a naturally occurring material, its modified forms and their efficacy as adsorbents for the removal of various pollutants from waste streams. In this review, an extensive list of various cellulose-based adsorbents from literature has been compiled and their adsorption capacities under various conditions for the removal of various pollutants, as available in the literature, are presented along with highlighting and discussing the key advancement on the preparation of cellulose-based adsorbents. It is evident from the literature survey presented herein that modified cellulose-based adsorbents exhibit good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of these adsorbents on a commercial scale, leading to the improvement of pollution control.


Asunto(s)
Celulosa/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA