Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
Más filtros

Intervalo de año de publicación
1.
Environ Sci Technol ; 58(22): 9559-9569, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38710655

RESUMEN

Harmful cyanobacterial blooms are frequent and intense worldwide, creating hazards for aquatic biodiversity. The potential estrogen-like effect of Microcystin-LR (MC-LR) is a growing concern. In this study, we assessed the estrogenic potency of MC-LR in black-spotted frogs through combined field and laboratory approaches. In 13 bloom areas of Zhejiang province, China, the MC-LR concentrations in water ranged from 0.87 to 8.77 µg/L and were correlated with sex hormone profiles in frogs, suggesting possible estrogenic activity of MC-LR. Tadpoles exposed to 1 µg/L, an environmentally relevant concentration, displayed a female-biased sex ratio relative to controls. Transcriptomic results revealed that MC-LR induces numerous and complex effects on gene expression across multiple endocrine axes. In addition, exposure of male adults significantly increased the estradiol (E2)/testosterone (T) ratio by 3.5-fold relative to controls. Downregulation of genes related to male reproductive endocrine function was also identified. We also showed how MC-LR enhances the expression of specific estrogen receptor (ER) proteins, which induce estrogenic effects by activating the ER pathway and hypothalamic-pituitary-gonadal (HPG) axis. In aggregate, our results reveal multiple lines of evidence demonstrating that, for amphibians, MC-LR is an estrogenic endocrine disruptor at environmentally relevant concentrations. The data presented here support the need for a shift in the MC-LR risk assessment. While hepatoxicity has historically been the focus of MC-LR risk assessments, our data clearly demonstrate that estrogenicity is a major mode of toxicity at environmental levels and that estrogenic effects should be considered for risk assessments on MC-LR going forward.


Asunto(s)
Estrógenos , Animales , Masculino , Femenino , Microcistinas/toxicidad , Ranidae/genética , Ranidae/metabolismo , Toxinas Marinas , Contaminantes Químicos del Agua/toxicidad
2.
Environ Res ; 257: 119291, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823607

RESUMEN

The presence of butylparaben (BP), a prevalent pharmaceutical and personal care product, in surface waters has raised concerns regarding its impact on aquatic ecosystems. Despite its frequent detection, the toxicity of BP to the cyanobacterium Microcystis aeruginosa remains poorly understood. This study investigates the influence of BP on the growth and physiological responses of M. aeruginosa. Results indicate that low concentrations of BP (below 2.5 mg/L) have negligible effects on M. aeruginosa growth, whereas higher concentrations (5 mg/L and 10 mg/L) lead to significant growth inhibition. This inhibition is attributed to the severe disruption of photosynthesis, evidenced by decreased Fv/Fm values and chlorophyll a content. BP exposure also triggers the production of reactive oxygen species (ROS), resulting in elevated activity of antioxidant enzymes. Excessive ROS generation stimulates the production of microcystin-LR (MC-LR). Furthermore, lipid peroxidation and cell membrane damage indicate that high BP concentrations cause cell membrane rupture, facilitating the release of MC-LR into the environment. Transcriptome analysis reveals that BP disrupts energy metabolic processes, particularly affecting genes associated with photosynthesis, carbon fixation, electron transport, glycolysis, and the tricarboxylic acid cycle. These findings underscore the profound physiological impact of BP on M. aeruginosa and highlight its role in stimulating the production and release of MC-LR, thereby amplifying environmental risks in aquatic systems.

3.
Environ Res ; 252(Pt 4): 119113, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729410

RESUMEN

Microcystin-LR (MC-LR) and sodium nitrite (NaNO2) co-exist in the environment and are hepatotoxic. The liver has the function of lipid metabolism, but the impacts and mechanisms of MC-LR and NaNO2 on liver lipid metabolism are unclear. Therefore, we established a chronic exposure model of Balb/c mice and used LO2 cells for in vitro verification to investigate the effects and mechanisms of liver lipid metabolism caused by MC-LR and NaNO2. The results showed that after 6 months of exposure to MC-LR and NaNO2, the lipid droplets content was increased, and the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were raised in the liver (P < 0.05). Moreover, MC-LR and NaNO2 synergistically induced hepatic oxidative stress by decreasing total superoxide dismutase (T-SOD) activity and glutathione (GSH) levels and increasing malondialdehyde (MDA) content levels. In addition, the levels of Nrf2, HO-1, NQO1 and P-AMPK was decreased and Keap1 was increased in the Nrf2/HO-1 pathway. The key factors of lipid metabolism, SREBP-1c, FASN and ACC, were up-regulated in the liver. More importantly, there was a combined effect on lipid deposition of MC-LR and NaNO2 co-exposure. In vitro experiments, MC-LR and NaNO2-induced lipid deposition and changes in lipid metabolism-related changes were mitigated after activation of the Nrf2/HO-1 signaling pathway by the Nrf2 activator tertiary butylhydroquinone (TBHQ). Additionally, TBHQ alleviated the rise of reactive oxygen species (ROS) in LO2 cells induced by MC-LR and NaNO2. Overall, our findings indicated that MC-LR and NaNO2 can cause abnormal liver lipid metabolism, and the combined effects were observed after MC-LR and NaNO2 co-exposure. The Nrf2/HO-1 signal pathway may be a potential target for prevention and control of liver toxicity caused by MC-LR and NaNO2.


Asunto(s)
Metabolismo de los Lípidos , Hígado , Toxinas Marinas , Ratones Endogámicos BALB C , Microcistinas , Nitrito de Sodio , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Microcistinas/toxicidad , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Nitrito de Sodio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Masculino , Línea Celular
4.
Environ Res ; 252(Pt 2): 118885, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614200

RESUMEN

Photocatalysis was an attractive strategy that had potential to tackle the Microcystin-LR (MC-LR) contamination of aquatic ecosystems. Herein, magnetic photocatalyst Fe3O4/Bi2WO6/Reduced graphene oxide composites (Bi2WO6/Fe3O4/RGO) were employed to degrade MC-LR. The removal efficiency and kinetic constant of the optimized Bi2WO6/Fe3O4/RGO (Bi2WO6/Fe3O4-40%/RGO) was 1.8 and 2.3 times stronger than the pure Bi2WO6. The improved activity of Bi2WO6/Fe3O4-40%/RGO was corresponded to the expanded visible light adsorption ability and reduction of photogenerated carrier recombination efficiency through the integration of Bi2WO6 and Fe3O4-40%/RGO. The MC-LR removal efficiency exhibited a positive tendency to the initial density of algae cells, fulvic acid, and the concentration of MC-LR decreased. The existed anions (Cl-, CO3-2, NO3-, H2PO4-) reduced MC-LR removal efficiency of Bi2WO6/Fe3O4-40%/RGO. The Bi2WO6/Fe3O4-40%/RGO could degrade 79.3% of MC-LR at pH = 7 after 180 min reaction process. The trapping experiments and ESR tests confirmed that the h+, ∙OH, and ∙O2- played a significant role in MC-LR degradation. The LC-MS/MS result revealed the intermediates and possible degradation pathways.


Asunto(s)
Bismuto , Grafito , Luz , Toxinas Marinas , Microcistinas , Microcistinas/química , Microcistinas/efectos de la radiación , Grafito/química , Bismuto/química , Contaminantes Químicos del Agua/química , Fotólisis , Catálisis
5.
Ecotoxicol Environ Saf ; 281: 116629, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38917587

RESUMEN

The degradation of cyanobacterial blooms releases hazardous contaminants such as microcystin-LR (MC-LR) and nitrite, which may collectively exert toxicity on various bodily systems. To evaluate their individual and combined toxicity in the kidney, mice were subjected to different concentrations of MC-LR and/or nitrite over a 6-month period in this study. The results revealed that combined exposure to MC-LR and nitrite exacerbated renal pathological alterations and dysfunction compared to exposure to either compound alone. Specifically, the protein and mRNA expression of kidney injury biomarkers, such as kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), were notably increased in combined exposure group. Concurrently, co-exposure to MC-LR and nitrite remarkedly upregulated levels of proinflammatory cytokines TNF-α, IL-6 and IL-1ß, while decreasing the anti-inflammatory cytokine IL-10. Notably, MC-LR and nitrite exhibited synergistic effects on the upregulation of renal IL-1ß levels. Moreover, MC-LR combined with nitrite not only elevated mRNA levels of proinflammatory cytokines but also increased protein levels of pyroptosis biomarkers such as IL-1ß, Gasdermin D (GSDMD), and Cleaved-GSDMD. Mechanistic investigations revealed that co-exposure to MC-LR and nitrite promoted pyroptosis both in vivo and in vitro, possibly through the activation of the TLR4/NLRP3/GSDMD pathway. Pretreatment with TLR4 inhibitor and NLRP3 inhibitor effectively suppressed pyroptosis induced by the co-exposure of these two toxins in HEK293T cells. These findings provide compelling evidence that MC-LR combined with nitrite synergistically induces pyroptosis in the kidney by activating the TLR4/NLRP3/GSDMD pathway. Overall, this study significantly enhances our comprehension of how environmental toxins interact and induce harm to the kidneys, offering promising avenues for identifying therapeutic targets to alleviate their toxic effects on renal health.

6.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460408

RESUMEN

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Asunto(s)
Toxinas Marinas , Microcistinas , Sirtuinas , Espermatogonias , Animales , Masculino , Ratones , Apoptosis , Proliferación Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN , Toxinas Marinas/metabolismo , Toxinas Marinas/toxicidad , Ratones Endogámicos ICR , Microcistinas/metabolismo , Microcistinas/toxicidad , Semen , Sirtuinas/efectos de los fármacos , Sirtuinas/metabolismo , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo
7.
Mikrochim Acta ; 191(2): 108, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244133

RESUMEN

Microcystin LR (MC-LR) is a hazardous cyanotoxin produced by cyanobacteria during freshwater eutrophication, which can cause liver cancer. Here, a photoelectrochemical (PEC) aptasensor based on methylene blue (MB)-loaded Ni-MOF composite (Ni-MOF/MB) with spatial confinement was constructed for the sensitive detection of MC-LR. Ni-MOF with two-dimensional sheet structure was prepared via a liquid-liquid interface synthesis method with environmental-friendly solvent and milder reaction conditions. Benefiting from the uniform pore size, Ni-MOF acted as reaction platform to anchor the photosensitive molecule MB. The electron donor, ascorbic acid (AA), was produced by alkaline phosphatase (ALP) loaded on DNA strand catalyzing ascorbic acid phosphate. The generated AA was absorbed by Ni-MOF/MB, thereby effectively improving the utilization of AA and avoiding the external environment interferences to enlarge the photocurrent of MB. For analysis, ALP-labeled aptamer can specifically recognize MC-LR by forming a complex to strip from aptasensor, thus leading to a  decreased photocurrent. The developed PEC aptasensor offered a linear range of 10 fM-100 pM with a detection limit of 6 fM. It was successfully employed for detecting MC-LR in farm water and fish meat, and the results were validated by ultrahigh-performance liquid chromatography-mass spectrometry. This method presents a new idea of MOF-limited domain for PEC aptasensing.


Asunto(s)
Aptámeros de Nucleótidos , Toxinas Marinas , Microcistinas , Nanocompuestos , Animales , Azul de Metileno/química , Técnicas Electroquímicas , Aptámeros de Nucleótidos/química , Ácido Ascórbico
8.
Anal Biochem ; 664: 115030, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572217

RESUMEN

Anti-idiotypic antibodies (Ab2) are valuable tools that can be used for a better understanding of molecular mimicry and the immunological network. In this work, we showed a new application of a phage-displayed alpha-type Ab2 (Ab2α) to improve the sensitivity of an enzyme-linked immunosorbent assay (ELISA) detecting cyanobacterial toxin microcystin-LR (MC-LR). A monoclonal antibody (mAb) against MC-LR was used as an antigen to isolate binders in a camelid nanobody library. After three rounds of panning, three unique clones with strong binding against anti-MC-LR mAbs were isolated. These clones could specifically bind to anti-MC-LR mAbs without influencing mAbs binding with MC-LR, meaning these clones were Ab2αs. Based on the signal amplification effect of phage coat proteins and the non-competitive nature of Ab2α, a novel competitive ELISA method for MC-LR was established with a phage-displayed Ab2α. It showed that the phage-displayed Ab2α greatly enhanced the ELISA signal and sensitivity of the method was improved 3.5-fold to the conventional one. Combining with the optimization of pre-incubation time, the optimized ELISA decreased its limit of detection (LOD) from 4.5 ng/mL to 0.8 ng/mL (5.6-fold improvement). This new application of Ab2α may potentially be employed to improve the sensitivity of immunoassays for other environmental pollutants.


Asunto(s)
Bacteriófagos , Biblioteca de Péptidos , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoensayo , Anticuerpos Monoclonales
9.
Fish Shellfish Immunol ; 139: 108875, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37285876

RESUMEN

In this study, we analyzed the hepatopancreas tissues of Asian Clam (Corbicula fluminea) exposed to three different adverse environmental conditions from the same batch using RNA-seq. The four treatment groups included the Asian Clam group treated with Microcystin-LR (MC), the Microplastics-treated group (MP), the Microcystin-LR and Microplastics-treated group (MP-MC), and the Control group. Our Gene Ontology analysis revealed 19,173 enriched genes, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified 345 related pathways. The KEGG pathway analysis demonstrated that the MC vs control group and the MP vs control group were significantly enriched in immune and catabolic pathways such as Antigen processing and presentation, Rheumatoid arthritis, Lysosome pathway, Phagosome pathway, and Autophagy pathway. We also evaluated the effects of Microplastics and Microcystin-LR on the activities of eight antioxidant enzymes and immune enzymes in Asian clams. Our study enriched the genetic resources of Asian clams and provided valuable information for understanding the response mechanism of Asian clams to microplastics and microcystin in the environment, through the identification of differentially expressed genes and related pathway analyses from the large number of transcriptome sequences obtained.


Asunto(s)
Corbicula , Contaminantes Químicos del Agua , Animales , Corbicula/genética , Microcistinas/toxicidad , Plásticos , Microplásticos , Perfilación de la Expresión Génica , Transcriptoma , Contaminantes Químicos del Agua/toxicidad
10.
Environ Sci Technol ; 57(41): 15432-15442, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37802498

RESUMEN

Herein, we propose a label-free chemiresistive sensor for the highly sensitive and selective detection of microcystin (MC)-LR in water samples. The sensor uses a layer-by-layer (LBL) assembled conductive film consisting of Ti3C2Tx nanosheets as the sensing channel. It is further modified by using an aptamer for the specific recognition of MC-LR. The response signal is based on the change in resistance of the conductive channel upon binding of MC-LR with the aptamer. Our novel strategy is the first concept proposed for immobilizing the aptamer containing -SH on the channel surface through a Ti-S bond under weakly alkaline condition. The resulting sensor is highly sensitive and stable for the detection of MC-LR, with a detection limit of 0.18 ng L-1 and a wide linear range from 1 to 104 ng L-1. We used the sensor to continuously monitor MC-LR released by cultivated Microcystis aeruginosa, showing a strong relationship between MC-LR and cell density. Furthermore, the sensor was successfully used to measure MC-LR in freshwater lakes with moderate algal blooms, and the results agreed well with those obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The present study provides a reliable method for highly sensitive and selective detection of MC-LR in environmental waters.


Asunto(s)
Microcistinas , Espectrometría de Masas en Tándem , Microcistinas/análisis , Microcistinas/química , Cromatografía Liquida , Titanio , Lagos/análisis , Agua/química
11.
Ecotoxicol Environ Saf ; 267: 115651, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37913581

RESUMEN

While existing research has illuminated the environmental dangers and neurotoxic effects of MC-LR exposure, the molecular underpinnings of brain damage from environmentally-relevant MC-LR exposure remain elusive. Employing a comprehensive approach involving RNA sequencing, histopathological examination, and biochemical analyses, we discovered genes differentially expressed and enriched in the ferroptosis pathway. This finding was associated with mitochondrial structural impairment and downregulation of Gpx4 and Slc7a11 in mice brains subjected to low-dose MC-LR over 180 days. Mirroring these findings, we noted reduced cell viability and GSH/GSSH ratio, along with an increased ROS level, in HT-22, BV-2, and bEnd.3 cells following MC-LR exposure. Intriguingly, MC-LR also amplified phospho-Erk levels in both in vivo and in vitro settings, and the effects were mitigated by treatment with PD98059, an Erk inhibitor. Taken together, our findings implicate the activation of the Erk/MAPK signaling pathway in MC-LR-induced ferroptosis, shedding valuable light on the neurotoxic mechanisms of MC-LR. These insights could guide future strategies to prevent MC-induced neurodegenerative diseases.


Asunto(s)
Células Endoteliales , Ferroptosis , Ratones , Animales , Encéfalo , Transducción de Señal
12.
Ecotoxicol Environ Saf ; 267: 115661, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37948941

RESUMEN

With the intensifying climate warming, blue-green algae blooms have become more frequent and severe, releasing environmental hazards such as microcystin that pose potential threats to human and animal health. Autophagy has been shown to play a crucial role in regulating immune responses induced by environmental hazards, enabling cells to adapt to stress and protect against damage. Although microcystin-LR (MC-LR) has been identified to affect autophagy in mammalian, its impact on aquatic animals has been poorly studied. To investigate the toxicological effects of MC-LR in aquatic ecosystems, we constructed a microRNA profile of acute MC-LR stress in the hepatopancreas of the Chinese mitten crab. Interestingly, we found the MC-LR exposure activated autophagy in the hepatopancreas based on the following evidence. Specifically, mRNA expression level of ATG7, Beclin1 and Gabarap was significantly up-regulated, autophagy regulatory pathways were significantly enriched, and numerous autolysosomes and autophagosomes were observed. Additionally, we found that miR-282-5p and its target gene PIK3R1 played important regulatory roles in autophagy by in vivo and in vitro experiments. Overexpression of miR-282-5p mimicked MC-LR-induced autophagy by inhibiting PIK3R1 expression, while miR-282-5p silencing inhibited autophagy by promoting PIK3R1 expression. Altogether, our findings suggest that MC-LR increases miR-282-5p, which then targets inhibition of PIK3R1 to stimulate autophagy. This study focused on the stress response regulatory mechanisms of juvenile crabs to toxic pollutants in water, offering a potential target for alleviating the toxicity of MC-LR. These findings lay a foundation for reducing the toxicity of MC-LR and environmental hazards in organisms.


Asunto(s)
MicroARNs , Microcistinas , Animales , Humanos , Microcistinas/toxicidad , Hepatopáncreas/metabolismo , Ecosistema , Factores de Transcripción , MicroARNs/genética , MicroARNs/metabolismo , Autofagia , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia
13.
Environ Toxicol ; 38(6): 1239-1250, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36880395

RESUMEN

Microcystins (MCs) is a class of cyclic heptapeptide compounds with biological activity. There is no effective treatment for liver injury caused by MCs. Hawthorn is a medicinal and edible plant traditional Chinese medicine with hypolipidemic, reducing inflammation and oxidative stress in the liver. This study discussed the protective effect of hawthorn fruit extract (HFE) on liver damage caused by MC-LR and the underlying molecular mechanism. After MC-LR exposure, pathological changes were observed and hepatic activity of ALT, AST and ALP were increased obviously, but they were remarkably restored with HFE administration. In addition, MC-LR could significantly reduce SOD activity and increase MDA content. Importantly, MC-LR treatment resulted in mitochondrial membrane potential decreased, and Cytochrome C release, eventually leading to cell apoptosis rate increase. HFE pretreatment could significantly alleviate the above abnormal phenomena. To examine the mechanism of protection, the expression of critical molecules in the mitochondrial apoptosis pathway was examined. The levels of Bcl-2 was inhibited, and the levels of Bax, Caspase-9, Cleaved Caspase-9, and Cleaved caspase-3 were upregulated after MC-LR treatment. HFE reduced MC-LR-induced apoptosis via reversing the expression of key proteins and genes in the mitochondrial apoptotic pathway. Hence, HFE could alleviate MC-LR induced hepatotoxicity by reducing oxidative stress and apoptosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Crataegus , Caspasa 9 , Frutas , Estrés Oxidativo , Apoptosis , Microcistinas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
14.
Mikrochim Acta ; 190(8): 314, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474872

RESUMEN

A novel dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase (HRP) was developed for colorimetric determination of MC-LR. This dual-amplification was accomplished by combining the nuclease activity of CRISPR-Cas12a with the redox activity of HRP. HRP linked to magnetic beads through an ssDNA (MB-ssDNA-HRP) was used to induce a color change of the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 chromogenic substrate solution. Specific binding of MC-LR with its aptamer initiated the release of a complementary DNA (cDNA), which was designed to activate the trans-cleavage activity of CRISPR-Cas12a. Upon activation, Cas12a cut the ssDNA linker in MB-ssDNA-HRP, causing a reduction of HRP on the magnetic beads. Consequently, the UV-Vis absorbance of the HRP-catalyzed reaction was decreased. The dual-signal amplification facilitated by CRISPR-Cas12a and HRP enabled the colorimetric detection of MC-LR in the range 0.01 to 50 ng·mL-1 with a limit of detection (LOD) of 4.53 pg·mL-1. The practicability of the developed colorimetric method was demonstrated by detecting different levels of MC-LR in spiked real water samples. The recoveries ranged from 86.2 to 118.5% and the relative standard deviation (RSD) was 8.4 to 17.6%. This work provides new inspiration for the construction of effective signal amplification platforms and demonstrates a simple and user-friendly colorimetric method for determination of trace MC-LR.


Asunto(s)
Sistemas CRISPR-Cas , Colorimetría , Microesferas , Peroxidasa de Rábano Silvestre/metabolismo , Colorimetría/métodos , Peróxido de Hidrógeno/metabolismo , ADN Complementario , Fenómenos Magnéticos
15.
Mikrochim Acta ; 191(1): 19, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38087094

RESUMEN

Silver nanocubes monolayer-modified polydimethylsiloxane (Ag NC/PDMS) flexible SERS substrates have been prepared by a three-phase interface self-assembly procedure. The combination of this method with membrane technology brings nanoparticles in close proximity, densely, and regularly arranged in monolayers over a large area, leading to excellent SERS properties. Considering the complexity of practical detection, molecular imprinted polymers (MIPs) were anchored on the surface of SERS substrate and applied to selective detection of microcystin-LR (MC-LR). It is worth mentioning that the SERS imprinted membranes (AP-MIMs) were still clearly detected at a concentration of 0.1 µg·L-1 of MC-LR in drinking water, and the detection limit was as low as 0.0067 µg·L-1. The substrate exhibited excellent uniformity with a relative standard deviation (RSD) of 6.1%. In the presence of interference molecules, AP-MIMs exhibited excellent selectivity for MC-LR. Furthermore, in the spiking and recovery tests of practical lake water samples, the method showed excellent recoveries ranging from 96.47 to 105.31%. It has been demonstrated that the prepared AP-MIMs can be applied to sensitive and specific detection of trace amounts of MC-LR in drinking water.


Asunto(s)
Agua Potable , Nanopartículas del Metal , Agua Dulce , Microcistinas , Nanopartículas del Metal/química
16.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36617073

RESUMEN

This paper presents recent development and applications of thermal lens microscopy (TLM) and beam deflection spectrometry (BDS) for the analysis of water samples and sea ice. Coupling of TLM detection to a microfluidic system for flow injection analysis (µFIA) enables the detection of microcystin-LR in waters with a four samples/min throughput (in triplicate injections) and provides an LOD of 0.08 µg/L which is 12-times lower than the MCL for microcystin-LR in water. µFIA-TLM was also applied for the determination of total Fe and Fe(II) in 3 µL samples of synthetic cloudwater. The LODs were found to be 100 nM for Fe(II) and 70 nM for total Fe. The application of µFIA-TLM for the determination of ammonium in water resulted in an LOD of 2.3 µM for injection of a 5 µL sample and TLM detection in a 100 µm deep microfluidic channel. For the determination of iron species in sea ice, the BDS was coupled to a diffusive gradient in the thin film technique (DGT). The 2D distribution of Fe(II) and total Fe on DGT gels provided by the BDS (LOD of 50 nM) reflected the distribution of Fe species in sea ice put in contact with DGT gels.


Asunto(s)
Lentes , Análisis Espectral , Agua , Geles , Compuestos Ferrosos
17.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446360

RESUMEN

Microcystin-leucine arginine (MCLR) is one of the most common and toxic microcystin variants, a class of cyanotoxins produced by cyanobacteria. A major molecular mechanism for MCLR-elicited liver toxicity involves the dysregulation of protein phosphorylation through protein phosphatase (PP) inhibition and mitogen-activated protein kinase (MAPK) modulation. In this study, specific pharmacological MAPK inhibitors were used in HepaRG cells to examine the pathways associated with MCLR cytotoxicity. SB203580 (SB), a p38 inhibitor, rescued HepaRG cell viability, whereas treatment with SP600125 (JNK inhibitor), MK2206 (AKT inhibitor), or N-acetylcysteine (reactive oxygen species scavenger) did not. Phosphoproteomic analysis revealed that phosphosites-which were altered by the addition of SB compared to MCLR treatment alone-included proteins involved in RNA processing, cytoskeletal stability, DNA damage response, protein degradation, and cell death. A closer analysis of specific proteins in some of these pathways indicated that SB reversed the MCLR-mediated phosphorylation of the necroptosis-associated proteins, the mixed lineage kinase domain-like protein (MLKL), receptor-interacting serine/threonine kinase 1 (RIP1), DNA damage response proteins, ataxia telangiectasia and Rad3-related kinase (ATR), and checkpoint kinase 1 (CHK1). Overall, these data implicate p38/MK2, DNA damage, and necroptosis in MCLR-mediated hepatotoxicity, and suggest these pathways may be targets for prevention prior to, or treatment after, MCLR toxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Proteínas Quinasas Activadas por Mitógenos , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Microcistinas/toxicidad , Fosforilación , Fosfoproteínas Fosfatasas/metabolismo , Citoesqueleto/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
J Environ Manage ; 338: 117774, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989953

RESUMEN

Microcystin-LR (MC-LR), a type of cyanotoxin commonly found in natural water bodies (sources of drinking water), poses a threat to human health due to its high toxicity. It is essential to successfully remove this cyanotoxin from drinking water sources. In this study, chlorine was used to oxidize MC-LR in Milli-Q water (MQ) (control test) and natural water collected from Lake Longhu (LLW) as a drinking water source. The removal efficiency, proposed transformation pathways, and genotoxicity were investigated. In the chlorine dose range investigated (4.0 mg L-1 - 8.0 mg L-1), the apparent second-order rate constants for MC-LR chlorination varied from 21.3 M-1s-1 to 31.9 M-1s-1 in MQ, higher than that in LLW (9.06 M-1s-1 to 17.7 M-1s-1) due to a faster chlorine decay attributed to the water matrix (e.g., natural organic matter) of LLW. Eleven transformation products (TPs) of MC-LR were identified in the two waters. The conjugated diene moieties and benzene ring of Adda moiety (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid), and the double bond of Mdha moiety (N-methyldehydroalanine) were the major susceptible reaction sites. Attacking unsaturated bonds by hydroxyl and chlorine radicals to generate monochloro-hydroxy-MC-LR was the primary initial transformation pathway, followed by nucleophilic substitution, dehydration, and cleavage in MC-LR. Chlorine substitution on the benzene ring was also observed. Based on the bacterial reverse-mutation assay (Ames assay), TPs in treated natural water did not induce genotoxicity/mutagenicity. These findings shed light on the role of chlorination in controlling the risk of cyanotoxins in drinking water treatment plants.


Asunto(s)
Agua Potable , Purificación del Agua , Humanos , Halogenación , Cloro , Benceno , Microcistinas/química , Microcistinas/toxicidad , Cinética
19.
Bull Environ Contam Toxicol ; 111(3): 28, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624417

RESUMEN

Colloidal particles, mixture with continuous molecular weight distribution and multiple organic components, is widespread in lake and have significant impact on the retention, migration, transportation, and fate of contaminants in lake ecosystems. Here we extract sedimentary colloids from algal growth dominant area (AD) in Taihu Lake and further separated into four different particle size ranges by cross-flow ultra-filtration (CFUF). The interaction mechanism between colloids and Microcystin-LR (MC-LR) was investigated under different cation conditions by dialysis equilibrium experiment method. Adsorption kinetics research shows the adsorption of MC-LR by colloids follows second-order kinetics and can be simulated by Freundlich isotherms. The effects of different cations on colloids-MC-LR interaction shows the addition of Mg(II) decreased colloids-MC-LR interaction, while Cu(II) increased colloids-MC-LR binding. MC-LR also increased Cu(II) binding to colloids, while MC-LR decreased Mg(II) binding. Therefore, different effect of cations to colloids-MC-LR interaction was proposed.


Asunto(s)
Coloides , Ecosistema , Adsorción , Cationes , Metales
20.
Bull Environ Contam Toxicol ; 110(5): 82, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37086296

RESUMEN

A new artemisinin sustained-release particle (ASP) was developed that significantly inhibits Microcystis aeruginosa (M. aeruginosa) growth. The physical and chemical properties of ASPs were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetry (DSC-TG). The results demonstrated that ASPs are thermally stable and have sustained-release properties. On the sixth day, the ASPs (0.2 g L-1) inhibited M. aeruginosa with an inhibition rate (IR) greater than 70%. Additionally, ASPs inhibited M. aeruginosa without increasing microcystin-LR release (MC-LR). This research offers a novel approach to the management of cyanobacterial blooms.


Asunto(s)
Artemisininas , Microcystis , Preparaciones de Acción Retardada/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Microcistinas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA