Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(4): e2212180120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652482

RESUMEN

SORL1, the gene encoding the large multidomain SORLA protein, has emerged as only the fourth gene that when mutated can by itself cause Alzheimer's disease (AD), and as a gene reliably linked to both the early- and late-onset forms of the disease. SORLA is known to interact with the endosomal trafficking regulatory complex called retromer in regulating the recycling of endosomal cargo, including the amyloid precursor protein (APP) and the glutamate receptor GluA1. Nevertheless, SORLA's precise structural-functional relationship in endosomal recycling tubules remains unknown. Here, we address these outstanding questions by relying on crystallographic and artificial-intelligence evidence to generate a structural model for how SORLA folds and fits into retromer-positive endosomal tubules, where it is found to dimerize via both SORLA's fibronectin-type-III (3Fn)- and VPS10p-domains. Moreover, we identify a SORLA fragment comprising the 3Fn-, transmembrane, and cytoplasmic domains that has the capacity to form a dimer, and to enhance retromer-dependent recycling of APP by decreasing its amyloidogenic processing. Collectively, these observations generate a model for how SORLA dimer (and possibly polymer) formation can function in stabilizing and enhancing retromer function at endosome tubules. These findings can inform investigation of the many AD-associated SORL1 variants for evidence of pathogenicity and can guide discovery of novel drugs for the disease.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Relacionadas con Receptor de LDL , Proteínas de Transporte de Membrana , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Dimerización , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas
2.
J Biol Chem ; 300(8): 107560, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002681

RESUMEN

Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion disease, but additional modalities are urgently needed. In other diseases, small molecules have proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic exons that reduce gene expression. Here, we characterize a cryptic exon located in human PRNP's sole intron and evaluate its potential to reduce PrP expression through incorporation into the 5' untranslated region. This exon is homologous to exon 2 in nonprimate species but contains a start codon that would yield an upstream open reading frame with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating PrP expression through translational repression or nonsense-mediated decay. We establish a minigene transfection system and test a panel of splice site alterations, identifying mutants that reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for lowering PrP.


Asunto(s)
Exones , Proteínas Priónicas , Sitios de Empalme de ARN , Humanos , Proteínas Priónicas/metabolismo , Proteínas Priónicas/genética , Empalme del ARN , Intrones , Regulación de la Expresión Génica , Animales , Priones/metabolismo , Priones/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/genética , Regiones no Traducidas 5'
3.
Hum Genomics ; 18(1): 68, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890714

RESUMEN

BACKGROUND: In Colombia and worldwide, breast cancer (BC) is the most frequently diagnosed neoplasia and the leading cause of death from cancer among women. Studies predominantly involve hereditary and familial cases, demonstrating a gap in the literature regarding the identification of germline mutations in unselected patients from Latin-America. Identification of pathogenic/likely pathogenic (P/LP) variants is important for shaping national genetic analysis policies, genetic counseling, and early detection strategies. The present study included 400 women with unselected breast cancer (BC), in whom we analyzed ten genes, using Whole Exome Sequencing (WES), know to confer risk for BC, with the aim of determining the genomic profile of previously unreported P/LP variants in the affected population. Additionally, Multiplex Ligation-dependent Probe Amplification (MLPA) was performed to identify Large Genomic Rearrangements (LGRs) in the BRCA1/2 genes. To ascertain the functional impact of a recurrent intronic variant (ATM c.5496 + 2_5496 + 5delTAAG), a minigene assay was conducted. RESULTS: We ascertained the frequency of P/LP germline variants in BRCA2 (2.5%), ATM (1.25%), BRCA1 (0.75%), PALB2 (0.50%), CHEK2 (0.50%), BARD1 (0.25%), and RAD51D (0.25%) genes in the population of study. P/LP variants account for 6% of the total population analyzed. No LGRs were detected in our study. We identified 1.75% of recurrent variants in BRCA2 and ATM genes. One of them corresponds to the ATM c.5496 + 2_5496 + 5delTAAG. Functional validation of this variant demonstrated a splicing alteration probably modifying the Pincer domain and subsequent protein structure. CONCLUSION: This study described for the first time the genomic profile of ten risk genes in Colombian women with unselected BC. Our findings underscore the significance of population-based research, advocating the consideration of molecular testing in all women with cancer.


Asunto(s)
Proteína BRCA2 , Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Femenino , Mutación de Línea Germinal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/epidemiología , Colombia/epidemiología , Persona de Mediana Edad , Adulto , Proteína BRCA2/genética , Proteína BRCA1/genética , Secuenciación del Exoma , Anciano , Pruebas Genéticas/métodos , Proteínas de la Ataxia Telangiectasia Mutada/genética
4.
Brain ; 147(4): 1278-1293, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37956038

RESUMEN

Variants that disrupt normal pre-mRNA splicing are increasingly being recognized as a major cause of monogenic disorders. The SCN1A gene, a key epilepsy gene that is linked to various epilepsy phenotypes, is no exception. Approximately 10% of all reported variants in the SCN1A gene are designated as splicing variants, with many located outside of the canonical donor and acceptor splice sites, and most have not been functionally investigated. However, given its restricted expression pattern, functional analysis of splicing variants in the SCN1A gene could not be routinely performed. In this study, we conducted a comprehensive analysis of all reported SCN1A variants and their potential to impact SCN1A splicing and conclude that splicing variants are substantially misannotated and under-represented. We created a splicing reporter system consisting of 18 splicing vectors covering all 26 protein-coding exons with different genomic contexts and several promoters of varying strengths in order to reproduce the wild-type splicing pattern of the SCN1A gene, revealing cis-regulatory elements essential for proper recognition of SCN1A exons. Functional analysis of 95 SCN1A variants was carried out, including all 68 intronic variants reported in the literature, located outside of the splice sites canonical dinucleotides; 21 exonic variants of different classes (synonymous, missense, nonsense and in-frame deletion) and six variants observed in patients with epilepsy. Interestingly, almost 20% of tested intronic variants had no influence on SCN1A splicing, despite being reported as causative in the literature. Moreover, we confirmed that the majority of predicted exonic variants affect splicing unravelling their true molecular mechanism. We used functional data to perform genotype-phenotype correlation, revealing distinct distribution patterns for missense and splice-affecting 'missense' variants and observed no difference in the phenotype severity of variants leading to in-frame and out-of-frame isoforms, indicating that the Nav1.1 protein is highly intolerant to structural variations. Our work demonstrates the importance of functional analysis in proper variant annotation and provides a tool for high-throughput delineation of splice-affecting variants in SCN1A in a whole-gene manner.


Asunto(s)
Epilepsia , Sitios de Empalme de ARN , Humanos , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Mutación , Exones/genética , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética
5.
Neurogenetics ; 25(1): 3-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882972

RESUMEN

Sphingomyelin phosphodiesterase 4 (SMPD4) encodes a member of the Mg2+-dependent, neutral sphingomyelinase family that catalyzes the hydrolysis of the phosphodiester bond of sphingomyelin to form phosphorylcholine and ceramide. Recent studies have revealed that biallelic loss-of-function variants of SMPD4 cause syndromic neurodevelopmental disorders characterized by microcephaly, congenital arthrogryposis, and structural brain anomalies. In this study, three novel loss-of-function SMPD4 variants were identified using exome sequencing (ES) in two independent patients with developmental delays, microcephaly, seizures, and brain structural abnormalities. Patient 1 had a homozygous c.740_741del, p.(Val247Glufs*21) variant and showed profound intellectual disability, hepatomegaly, a simplified gyral pattern, and a thin corpus callosum without congenital dysmorphic features. Patient 2 had a compound heterozygous nonsense c.2124_2125del, p.(Phe709*) variant and splice site c.1188+2dup variant. RNA analysis revealed that the c.1188+2dup variant caused exon 13 skipping, leading to a frameshift (p.Ala406Ser*6). In vitro transcription analysis using minigene system suggested that mRNA transcribed from mutant allele may be degraded by nonsense-mediated mRNA decay system. He exhibited diverse manifestations, including growth defects, muscle hypotonia, respiratory distress, arthrogryposis, insulin-dependent diabetes mellitus, sensorineural hearing loss, facial dysmorphism, and various brain abnormalities, including cerebral atrophy, hypomyelination, and cerebellar hypoplasia. Here, we review previous literatures and discuss the phenotypic diversity of SMPD4-related disorders.


Asunto(s)
Artrogriposis , Discapacidad Intelectual , Microcefalia , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Masculino , Humanos , Microcefalia/genética , Artrogriposis/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Cerebelo
6.
Blood Cells Mol Dis ; 107: 102841, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581917

RESUMEN

Pyruvate kinase (PK) deficiency is a rare autosomal recessive disorder characterized by chronic hemolytic anemia of variable severity. Nine Polish patients with severe hemolytic anemia but normal PK activity were found to carry mutations in the PKLR gene encoding PK, five already known ones and one novel (c.178C > T). We characterized two of the known variants by molecular modeling (c.1058delAAG) and minigene splicing analysis (c.101-1G > A). The former gives a partially destabilized PK tetramer, likely of suboptimal activity, and the c.101-1G > A variant gives alternatively spliced mRNA carrying a premature stop codon, encoding a severely truncated PK and likely undergoing nonsense-mediated decay.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Mutación , Piruvato Quinasa , Errores Innatos del Metabolismo del Piruvato , Humanos , Piruvato Quinasa/genética , Piruvato Quinasa/deficiencia , Polonia , Errores Innatos del Metabolismo del Piruvato/genética , Masculino , Femenino , Anemia Hemolítica Congénita no Esferocítica/genética , Niño , Preescolar , Modelos Moleculares , Lactante , Adolescente , Codón sin Sentido , Empalme Alternativo
7.
Genet Med ; : 101267, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39268717

RESUMEN

PURPOSE: Predicting effects of genomic variants has become a real challenge in the diagnosis of rare human diseases. Holt-Oram syndrome (HOS) is an autosomal condition characterized by the association of radial and heart defects, due to variants in TBX5. Most variants are predicted to be truncating and result in haploinsufficiency. The pathogenicity of missense or splice variants is harder to demonstrate. METHODS: Fourteen TBX5 variants of uncertain significance (VUS) (5 missense, 9 splice) and 6 likely pathogenic missense variants were selected for functional testing, depending on the variant-type (immunolocalization, western blot, reporter assays, minigene splice assays and RT-PCR). Results were compared with in silico predictions. RESULTS: Functional tests allowed to reclassify 9/14 VUS in TBX5 as likely pathogenic, confirming their role in HOS. We demonstrated loss-of-function (n=8) or gain-of-function (n=1) for 9 of the 11 missense variants, whereas no functional impact was shown for the 2 variants: p.(Gly195Ala) and p.(Ser261Cys), as suggested by contradictory predictions of in silico approaches. Of 9 splice variants predicted to affect splicing by SpliceAI, we observed partial or complete exon skipping (n=6), intron retention (n=2) or exon shortening (n=1), inducing frame-shifting with premature stop codons. CONCLUSION: Bioinformatic and biological approaches are complementary, together with a good knowledge of clinical conditions, for accurate ACMG classification in human rare diseases.

8.
Clin Genet ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103988

RESUMEN

Whole-exome sequencing (WES) is frequently utilized in diagnosing reproductive genetic disorders to identify various genetic variants. Canonical ±1,2 splice sites are typically considered highly pathogenic, while variants at the 5' or 3' ends of exon boundaries are often considered synonymous or missense variants, with their potential impact on abnormal gene splicing frequently overlooked. In this study, we identified five variants located at the last two bases of the exons and two canonical splicing variants in five distinct families affected by reproductive genetic disorders through WES. Minigene analysis, RT-PCR and Quantitative Real-time PCR (RT-qPCR) confirmed that all seven variants induced aberrant splicing, with six variants altering gene transcriptional expression levels. These findings underscore the crucial role of splice variants, particularly non-canonical splice sites variants, in reproductive genetic disorders, with all identified variants classified as pathogenic.

9.
Clin Genet ; 105(3): 323-328, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38009794

RESUMEN

Cystinosis is a severe, monogenic systemic disease caused by variants in CTNS gene. Currently, there is growing evidence that exonic variants in many diseases can affect pre-mRNA splicing. The impact of CTNS gene exonic variants on splicing regulation may be underestimated due to the lack of routine studies at the RNA level. Here, we analyzed 59 exonic variants in the CTNS gene using bioinformatics tools and identified candidate variants that may induce splicing alterations by minigene assays. We identified six exonic variants that induce splicing alterations by disrupting the ratio of exonic splicing enhancers/exonic splicing silencers (ESEs/ESSs) or by interfering with the recognition of classical splice sites, or both. Our results help in the correct molecular characterization of variants in cystinosis and inform emerging therapies. Furthermore, our work suggests that the combination of in silico and in vitro assays facilitates to assess the effects of DNA variants driving rare genetic diseases on splicing regulation and will enhance the clinical utility of variant functional annotation.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Humanos , Cistinosis/genética , Empalme del ARN/genética , Exones/genética , Secuencias Reguladoras de Ácidos Nucleicos , ARN , Empalme Alternativo , Sitios de Empalme de ARN , Sistemas de Transporte de Aminoácidos Neutros/genética
10.
Clin Genet ; 106(3): 336-341, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38747114

RESUMEN

Type IV collagen is an integral component of basement membranes. Mutations in COL4A1, one of the key genes encoding Type IV collagen, can result in a variety of diseases. It is clear that a significant proportion of mutations that affect splicing can cause disease directly or contribute to the susceptibility or severity of disease. Here, we analyzed exonic mutations and intronic mutations described in the COL4A1 gene using bioinformatics programs and identified candidate mutations that may alter the normal splicing pattern through a minigene system. We identified seven variants that induce splicing alterations by disrupting normal splice sites, creating new ones, or altering splice regulatory elements. These mutations are predicted to impact protein function. Our results help in the correct molecular characterization of variants in COL4A1 and may help develop more personalized treatment options.


Asunto(s)
Colágeno Tipo IV , Mutación , Empalme del ARN , Humanos , Colágeno Tipo IV/genética , Empalme del ARN/genética , Exones/genética , Intrones/genética , Sitios de Empalme de ARN/genética , Biología Computacional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA