Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mikrochim Acta ; 190(9): 345, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542579

RESUMEN

For the first time a metal organic framework nanomaterial has been developed comprising manganese dioxide nanoparticle and iron and zinc metal ions interlinked with each other via terephthalic acid. The framework shape was identified as an elongated hexagonal nanorod (TEM) with varying functional groups (FT-IR) and diffraction patterns (XRD). The framework nanocomposite as such in aqueous acidic electrolyte solution has displayed an excellent conductivity (redox behavior) and surface excess (3.08 × 10-8 cm-2). Under the optimized conditions (0.1 M H2SO4 as electrolyte, 50 mV/s scan rate, +1.26 V (vs Ag/AgCl)), the metal organic framework coated electrode has selectively identified vitamin D3 (VD3) in the presence of various other interfering molecules and displayed excellent limit of detection (1.9 ng mL-1). The developed sensor has been applied to the determination of VD3 in extracted human plasma samples (RSD of 0.3-2.6 % and recovery of 96-102 %), and the obtained VD3 values are similar to HPLC-UV method.


Asunto(s)
Estructuras Metalorgánicas , Nanocompuestos , Nanopartículas , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Vitamina D
2.
J Nanobiotechnology ; 19(1): 390, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34823543

RESUMEN

BACKGROUND: Although lower temperature (< 45 °C) photothermal therapy (LPTT) have attracted enormous attention in cancer therapy, the therapeutic effect is still unsatisfying when applying LPTT alone. Therefore, combining with other therapies is urgently needed to improve the therapeutic effect of LPTT. Recently reported oxygen-irrelevant free radicals based thermodynamic therapy (TDT) exhibit promising potential for hypoxic tumor treatment. However, overexpression of glutathione (GSH) in cancer cells would potently scavenge the free radicals before their arrival to the specific site and dramatically diminish the therapeutic efficacy. METHODS AND RESULTS: In this work, a core-shell nanoplatform with an appropriate size composed of arginine-glycine-aspartate (RGD) functioned polydopamine (PDA) as a shell and a triphenylphosphonium (TPP) modified hollow mesoporous manganese dioxide (H-mMnO2) as a core was designed and fabricated for the first time. This nanostructure endows a size-controllable hollow cavity mMnO2 and thickness-tunable PDA layers, which effectively prevented the pre-matured release of encapsulated azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIBI) and revealed pH/NIR dual-responsive release performance. With the mitochondria-targeting ability of TPP, the smart nanocomposites (AIBI@H-mMnO2-TPP@PDA-RGD, AHTPR) could efficiently induce mitochondrial associated apoptosis in cancer cells at relatively low temperatures (< 45 °C) via selectively releasing oxygen-irrelevant free radicals in mitochondria and facilitating the depletion of intracellular GSH, exhibiting the advantages of mitochondria-targeted LPTT/TDT. More importantly, remarkable inhibition of tumor growth was observed in a subcutaneous xenograft model of osteosarcoma (OS) with negligible side effects. CONCLUSIONS: The synergistic therapy efficacy was confirmed by effectively inducing cancer cell death in vitro and completely eradicating the tumors in vivo. Additionally, the excellent biosafety and biocompatibility of the nanoplatforms were confirmed both in vitro and in vivo. Taken together, the current study provides a novel paradigm toward oxygen-independent free-radical-based cancer therapy, especially for the treatment of hypoxic solid tumors.


Asunto(s)
Radicales Libres , Nanopartículas del Metal/química , Mitocondrias , Sistema de Administración de Fármacos con Nanopartículas , Terapia Fototérmica , Animales , Compuestos Azo/química , Línea Celular Tumoral , Frío , Femenino , Radicales Libres/análisis , Radicales Libres/metabolismo , Humanos , Imidazoles/química , Compuestos de Manganeso/química , Ratones , Ratones Desnudos , Mitocondrias/química , Mitocondrias/metabolismo , Óxidos/química
3.
ACS Biomater Sci Eng ; 9(9): 5332-5346, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37642176

RESUMEN

Periodontitis is an inflammatory disease characterized by tooth loss and alveolar bone resorption. Bacteria are the original cause of periodontitis, and excess reactive oxygen species (ROS) encourage and intensify inflammation. In this study, a mussel-inspired and MnO2 NPs-reinforced adhesive hydrogel capable of alleviating periodontitis with improved antibacterial and antioxidant abilities was developed. The hydrogel was created by combining polyvinyl alcohol (PVA), 3,4-dihydroxy-d-phenylalanine (DOPA), and MnO2 nanoparticles (NPs) (named PDMO hydrogel). The hydrogel was demonstrated to be able to scavenge various free radicals (including total ROS─O2•- and OH•) and relieve the hypoxia in an inflammatory microenvironment by scavenging excess ROS and generating O2 due to its superoxide dismutase (SOD)/catalase (CAT)-like activity. Besides, under 808 nm near-infrared (NIR) light, the photothermal performance of the PDMO hydrogel displayed favorable antibacterial and antibiofilm effects toward Escherichia coli, Staphylococcus aureus, and Porphyromonas gingivalis (up to nearly 100% antibacterial rate). Furthermore, the PDMO hydrogel exhibited favorable therapeutic efficacy in alleviating gingivitis in Sprague-Dawley rats, even comparable to or better than the commercial PERIO. In addition, in the periodontitis models, the PDMO2 group showed the height of the residual alveolar bone and the smallest shadow area of low density among other groups, indicating the positive role of the PDMO2 hydrogel in bone regeneration. Finally, the biosafety of the PDMO hydrogel was comprehensively investigated, and the hydrogel was demonstrated to have good biocompatibility. Therefore, the developed PDMO hydrogel provided an effective solution to resolve biofilm recolonization and oxidative stress in periodontitis and could be a superior candidate for local drug delivery system in the clinical management of periodontitis with great potential for future clinical translation.


Asunto(s)
Hidrogeles , Periodontitis , Periodontitis/tratamiento farmacológico , Hidrogeles/administración & dosificación , Hidrogeles/síntesis química , Hidrogeles/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Animales , Ratas , Ratas Sprague-Dawley , Regeneración Ósea/efectos de los fármacos , Biopelículas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
4.
J Control Release ; 358: 190-203, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37116543

RESUMEN

At present, the most widely used aluminum adjuvants have poor ability to induce effective Th1 type immune responses. Existing evidence suggests that manganese is a potential metal adjuvant by activating cyclic guanosine phospho-adenosine synthase (cGAS)-interferon gene stimulator protein (STING) signaling pathway to enhance humoral and cellular immune response. Hence, the effective modulation of metal components is expected to be a new strategy to improve the efficiency of vaccine immunization. Here, we constructed a manganese and aluminum dual-adjuvant antigen co-delivery system (MnO2-Al-OVA) to enhance the immune responses of subunit vaccines. Namely, the aluminum hydroxide was first fused on the surface of the pre-prepared MnO2 nanoparticles, which were synthesized by a simple redox reaction with potassium permanganate (KMnO4) and oleic acid (OA). The engineered MnO2-Al-OVA could remarkably promote cellular internalization and maturation of dendritic cells. After subcutaneous vaccination, MnO2-Al-OVA rapidly migrated into the lymph nodes (LNs) and efficiently activate the cGAS-STING pathway, greatly induced humoral and cellular immune responses. Of note, our findings underscore the importance of coordination manganese adjuvants in vaccine design by promoting the activation of the cGAS-STING-IFN-I pathway. With a good safety profile and facile preparation process, this dual-adjuvant antigen co-delivery nanovaccine has great potential for clinical translation prospects.


Asunto(s)
Aluminio , Nanopartículas , Aluminio/farmacología , Manganeso , Compuestos de Manganeso/farmacología , Óxidos , Adyuvantes Inmunológicos , Inmunidad Celular , Antígenos , Vacunas de Subunidad , Nucleotidiltransferasas/farmacología , Células Dendríticas , Inmunidad Humoral
5.
J Colloid Interface Sci ; 634: 836-851, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565625

RESUMEN

Chemodynamic therapy (CDT) is a novel cancer therapeutic strategy. However, barriers such as high glutathione (GSH) concentration and low concentration of metal ions intracellular reduce its treatment effect. In this work, a nanosystem named GA-Fe@HMDN-PEI-PEG with a "dynamic protection" property was reported for enhanced cancer CDT. Mesoporous hollow manganese dioxide (MnO2) nanoparticle (HMDN) was prepared to load gallic acid-ferrous (GA-Fe) nanodots fabricated from gallic acid (GA) and ferrous ion (Fe2+). Then the pores of HMDN were blocked by polyethyleneimine (PEI), which was then grafted with methoxy poly(ethylene glycol) (mPEG) through a pH-sensitive benzoic imine bond. mPEG could protect the nanoparticles (NPs) against the nonspecific uptake by normal cells and enhance their accumulation in the tumor. However, in the slightly acidic tumor microenvironment, hydrolysis of benzoic imine led to DePEGylation to reveal PEI for enhanced uptake by cancer cells. The reaction between HMDN and GSH could consume GSH and obtain manganese ion (Mn2+) for the Fenton-like reaction for CDT. GA-Fe nanodots could also offer Fe for the Fenton reaction, and reductive GA could reduce the high-valence ions to low-valence for reusing in Fenton and Fenton-like reactions. These properties allowed GA-Fe@HMDN-PEI-PEG for precise medicine with a high utilization rate and common side effects.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Compuestos de Manganeso/farmacología , Compuestos de Manganeso/química , Óxidos/farmacología , Óxidos/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Ácido Gálico , Iminas , Línea Celular Tumoral , Peróxido de Hidrógeno , Glutatión/química , Microambiente Tumoral
6.
Chemosphere ; 297: 134104, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35218779

RESUMEN

Developing low-cost and efficient materials for dye pollutant removal under mild condition remains a great challenge. Here K+ and Tb3+ co-doped porous MnO2 (K-Tb-MnO2) nanoparticles with tailored properties including crystal structure, surface area and catalytic activity have been synthesized. Experimental results reveal that K-Tb-MnO2 nanoparticle has higher specific surface area, Mn3+ content and surface oxygen vacancies than pristine MnO2 nanoparticle and single-doped MnO2 materials, showing the uniqueness of dual-doped metal ions. Using methyl blue (MB) as a model pollutant, its removal efficiency by K-Tb-MnO2 nanoparticles within 5 min is 93.6%, which is 18, 8.3, and 2.9 times higher than that of MnO2, K-MnO2, and Tb-MnO2 nanomaterials, respectively. Oxalic acid triggered MnO2 material dissolving assay and FT-IR spectrum suggested that remarkable performance of K-Tb-MnO2 nanoparticle toward MB removal can be attributed to a combined effect of adsorption (16% MB removal) and catalytic degradation (84% MB removal). Moreover, K-Tb-MnO2 nanoparticle mediated MB degradation is demonstrated to be a combination of non-radical oxidation by Mn3+ and radical-participated degradation, with 1O2 as the main species. And the intermediates and pathways of MB degradation were studied by liquid chromatography-mass spectrometry. Importantly, cell viability experiment suggests that the toxicity of MB dye could be efficiently alleviated after the treatment with K-Tb-MnO2 nanoparticle. These results demonstrate the great potential of the novel K-Tb-MnO2 particles to be used as a highly effective nanomaterials to reduce the risk of dye wastes toward the environment and human health.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Colorantes/toxicidad , Humanos , Compuestos de Manganeso/química , Óxidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química
7.
Biosens Bioelectron ; 216: 114373, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36058026

RESUMEN

Exosomes, carrying specific molecular information of their parent cells, have been regarded as a kind of promising noninvasive biomarker for liquid biopsy. Plentiful fluorescence methods have been proposed for exosome assay. However, most of them are dependent on nucleic acid signal amplification strategies, which require complicated sequence design and experimental operation. Herein, a metal-enhanced fluorescence (MEF) biochip based on shell-isolated Au@MnO2 nanoparticle array was designed for simple and sensitive assay of exosomes. The designed method consists of only two parts: signal conversion and MEF amplification. The conversion of exosome signals to DNA signals was realized by means of chain displacement reaction. The subtle conversion effectively averts the effect of steric hindrance on MEF while amplifying the signal easily for the first time. The MEF biochip based on shell-isolated Au@MnO2 nanoparticle array achieves a second signal amplification in a simple way. Profiting from the two signal amplifications, this strategy displays high sensitivity toward exosomes with a detection limit of 4.5 × 103 particles µL-1. Compared with the result without MEF, the sensitivity is enhanced about thirty times. As far as we know, this is the first attempt for exosome assay by using MEF strategy. In addition to the favorable fluorescence enhancement, both shell-isolated Au@MnO2 nanoparticles and Au@MnO2 nanoparticle array show excellent stability in buffer solutions, which is conducive to practical application. Moreover, the proposed method is able to distinguish breast cancer patients from healthy people, showing its potential for exosome-based liquid biopsy.


Asunto(s)
Técnicas Biosensibles , Exosomas , Nanopartículas , Técnicas Biosensibles/métodos , ADN/genética , Humanos , Compuestos de Manganeso , Óxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA