Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cancer Metastasis Rev ; 43(3): 1095-1116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38602594

RESUMEN

Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Progresión de la Enfermedad , Metástasis de la Neoplasia , Neoplasias , Microambiente Tumoral , Humanos , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/terapia , Animales , Terapia Molecular Dirigida
2.
J Cell Mol Med ; 28(2): e18038, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38124399

RESUMEN

Junctional adhesion molecular 3 (JAM3) is downregulated by hypermethylation in cancers but is unclear in cholangiocarcinoma. The JAM3 expression level was checked in cholangiocarcinoma cell lines and tissues. Methylated JAM3 was detected in cell lines, tissues and plasma cell-free DNAs (cfDNA). The roles of JAM3 in cholangiocarcinoma were studied by transfection of siRNA and pCMV3-JAM3. The survival analysis was based on the Gene Set Cancer Analysis (GSCA) database. JAM3 was downregulated in HCCC-9810 and HuCCT1 cell lines and tissues by hypermethylation. Methylated JAM3 was detected in cfDNAs with 53.3% sensitivity and 96.6% specificity. Transfection of pCMV3-JAM3 into HCCC-9810 and HuCCT1 induced apoptosis and suppressed cell proliferation, migration and invasion. The depletion of JAM3 in RBE cells using siRNA decreased apoptosis and increased cell proliferation, migration and invasion. Hypermethylation of JAM3 was associated with tumour differentiation, metastasis and TNM stage. Downregulation and hypermethylation of JAM3 were related to poor progression-free survival. Junctional adhesion molecular 3 may function as a tumour suppressor in cholangiocarcinoma. Methylated JAM3 DNA may represent a non-invasive molecular marker for the early detection of cholangiocarcinoma and prognosis.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Regulación hacia Abajo/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Biomarcadores , Proliferación Celular/genética , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo
3.
Plant Mol Biol ; 114(4): 73, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874648

RESUMEN

Functional genomics through transgenesis has provided faster and more reliable methods for identifying, characterizing, and utilizing genes or quantitative trait loci linked to agronomic traits to target yield. The present study explored the role of Big Grain1 (BG1) gene of rice (Oryza sativa L.) in yield improvement of crop plants. We aimed to identify the genetic variation of OsBG1 in various indica rice cultivars by studying the allelic polymorphism of the gene, while also investigating the gene's potential to increase crop yield through the transgenic approach. Our study reports the presence of an extra 393 bp sequence having two 6 bp enhancer elements in the 3' regulatory sequence of OsBG1 in the large-grain cultivar IR64 but not in the small-grain cultivar Badshahbhog. A single copy of the OsBG1 gene in both the cultivars and a 4.1-fold higher expression of OsBG1 in IR64 than in Badshahbhog imply that the grain size is positively correlated with the level of OsBG1 expression in rice. The ectopic expression of OsBG1 under the endosperm-specific glutelin C promoter in Badshahbhog enhanced the flag leaf length, panicle weight, and panicle length by an average of 33.2%, 33.7%, and 30.5%, respectively. The length of anthers, spikelet fertility, and grain yield per plant increased in transgenic rice lines by an average of 27.5%, 8.3%, and 54.4%, respectively. Heterologous expression of OsBG1 under the constitutive 2xCaMV35S promoter improved the number of seed pods per plant and seed yield per plant in transgenic tobacco lines by an average of 2.2-fold and 2.6-fold, respectively. Improving crop yield is crucial to ensure food security and socio-economic stability, and identifying suitable genetic factor is the essential step towards this endeavor. Our findings suggest that the OsBG1 gene is a promising candidate for improving the grain yield of monocot and dicot plant systems by molecular breeding and genetic engineering.


Asunto(s)
Grano Comestible , Regulación de la Expresión Génica de las Plantas , Nicotiana , Oryza , Proteínas de Plantas , Plantas Modificadas Genéticamente , Oryza/genética , Oryza/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Semillas/genética , Semillas/crecimiento & desarrollo
4.
Curr Genet ; 70(1): 12, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093429

RESUMEN

Insoluble phosphorous compounds solubilization by soil bacteria is of great relevance since it puts available the phosphorus to be used by plants. The production of organic acids is the main microbiological mechanism by which insoluble inorganic phosphorus compounds are solubilized. In Gram negative bacteria, gluconic acid is synthesized by the activity of the holoenzyme glucose dehydrogenase-pyrroloquinoline quinine named GDH-PQQ. The use of marker genes is a very useful tool to evaluate the persistence of the introduced bacteria and allow to follow-up the effect of biotic and abiotic factors on these beneficial microorganisms in the soil. In previous studies we detected the presence of the pqqE gene in a great percentage of both non-culturable and culturable native soil bacteria. The objective of this study was to analyze the phylogeny of the sequence of pqqE gene and its potential for the study of phosphate solubilizing bacteria from pure and mixed bacterial cultures and rhizospheric soil samples. For this, the presence of the pqqE gene in the genome of phosphate solubilizing bacteria that belong to several bacteria was determined by PCR. Also, this gene was analyzed from mixed bacterial cultures and rhizospheric soil associated to peanut plants inoculated or not with phosphate solubilizing bacteria. For this, degenerate primers designed from several bacterial genera and specific primers for the genus Pseudomonas spp., designed in this study, were used. DNA template used from simple or mixed bacterial cultures and from rhizospheric soil samples was obtained using two different DNA extraction techniques. Results indicated that pqqE gene amplification product was found in the genome of all Gram negative phosphate solubilizing bacteria analyzed. It was possible to detect this gene in the DNA obtained from mixed cultures where these bacteria grew in interaction with other microorganisms and in that obtained from rhizospheric soil samples inoculated or not with these bacteria. The phylogenetic analysis indicated that pqqE gene is a conserved gene within related genera. In conclusion, pqqE gene could be a potential marker for the study of phosphate solubilizing bacterial populations.


Asunto(s)
Fosfatos , Filogenia , Microbiología del Suelo , Fosfatos/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Gramnegativas/clasificación , Solubilidad , Marcadores Genéticos , Rizosfera , Plantas/microbiología
5.
BMC Plant Biol ; 24(1): 412, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760706

RESUMEN

Under greenhouse conditions, the resistance of 18 different genotypes of flax to powdery mildew was evaluated. To investigate genetic diversity and identify the molecular and biochemical markers linked to powdery mildew resistance in the tested genotypes, two molecular marker systems-start codon targeted (SCoT) and inter-simple sequence repeat (ISSR)-as well as a biochemical marker (protein profiles, antioxidant enzyme activity, and secondary metabolites) were used. Based on the results, the genotypes were classified into four categories: highly susceptible, susceptible, moderately susceptible, and moderately resistant. The genotypes differed significantly in powdery mildew severity: Polk had a severity of 92.03% and Leona had a severity of 18.10%. Compared to the other genotypes, the moderately resistant genotypes had higher levels of flavonoids, antioxidant enzymes, phenolics, and straw yield; nevertheless, their hydrogen peroxide and malondialdehyde levels were lower. Protein profiles revealed 93.75% polymorphism, although the ISSR marker displayed more polymorphism (78.4%) than the SCoT marker (59.7%). Specific molecular and biochemical markers associated with powdery mildew resistance were identified. The 18 genotypes of flax were divided into two major clusters by the dendrogram based on the combined data of molecular markers. The first main cluster included Leona (genotype number 7), considered moderate resistance to powdery mildew and a separate phenetic line. The second main cluster included the other 17 genotypes, which are grouped together in a sub-cluster. This means that, besides SCoT, ISSR markers can be a useful supplementary technique for molecular flax characterization and for identifying genetic associations between flax genotypes under powdery mildew infection.


Asunto(s)
Resistencia a la Enfermedad , Lino , Variación Genética , Genotipo , Enfermedades de las Plantas , Lino/genética , Lino/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Ascomicetos/fisiología , Biomarcadores/metabolismo
6.
BMC Plant Biol ; 24(1): 286, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627660

RESUMEN

Fruit length is a crucial agronomic trait of snake gourd (Trichosanthes anguina L); however, genes associated with fruit length have not been characterised. In this study, F2 snake gourd populations were generated by crossing the inbred lines, S1 and S2 (fruit lengths: 110 and 20 cm, respectively). Subsequently, bulk segregant analysis, sequencing, and fine-mapping were performed on the F2 population to identify target genes. Our findings suggest that the fruit length of snake gourd is regulated by a major-effect regulatory gene. Mining of genes regulating fruit length in snake gourd to provide a basis for subsequent selection and breeding of new varieties. Genotype-phenotype association analysis was performed on the segregating F2 population comprising 6,000 plants; the results indicate that the target gene is located on Chr4 (61,846,126-61,865,087 bp, 18.9-kb interval), which only carries the annotated candidate gene, Tan0010544 (designated TFL). TFL belongs to the MADS-box family, one of the largest transcription factor families. Sequence analysis revealed a non-synonymous mutation of base C to G at position 202 in the coding sequence of TFL, resulting in the substitution of amino acid Gln to Glu at position 68 in the protein sequence. Subsequently, an InDel marker was developed to aid the marker-assisted selection of TFL. The TFL in the expression parents within the same period was analysed using quantitative real-time PCR; the TFL expression was significantly higher in short fruits than long fruits. Therefore, TFL can be a candidate gene for determining the fruit length in snake gourd. Collectively, these findings improve our understanding of the genetic components associated with fruit length in snake gourds, which could aid the development of enhanced breeding strategies for plant species.


Asunto(s)
Trichosanthes , Trichosanthes/genética , Frutas/genética , Fitomejoramiento , Fenotipo , Genes de Plantas/genética
7.
BMC Plant Biol ; 24(1): 517, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851667

RESUMEN

BACKGROUND: C. Oleifera is among the world's largest four woody plants known for their edible oil production, yet the contribution rate of improved varieties is less than 20%. The species traditional breeding is lengthy cycle (20-30 years), occupation of land resources, high labor cost, and low accuracy and efficiency, which can be enhanced by molecular marker-assisted selection. However, the lack of high-quality molecular markers hinders the species genetic analysis and molecular breeding. RESULTS: Through quantitative traits characterization, genetic diversity assessment, and association studies, we generated a selection population with wide genetic diversity, and identified five excellent high-yield parental combinations associated with four reliable high-yield ISSR markers. Early selection criteria were determined based on kernel fresh weight and cultivated 1-year seedling height, aided by the identification of these 4 ISSR markers. Specific assignment of selected individuals as paternal and maternal parents was made to capitalize on their unique attributes. CONCLUSIONS: Our results indicated that molecular markers-assisted breeding can effectively shorten, enhance selection accuracy and efficiency and facilitate the development of a new breeding system for C. oleifera.


Asunto(s)
Camellia , Fitomejoramiento , Fitomejoramiento/métodos , Camellia/genética , Marcadores Genéticos , Repeticiones de Microsatélite/genética , Variación Genética , Hibridación Genética
8.
Plant Biotechnol J ; 22(6): 1622-1635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38415985

RESUMEN

Fruit firmness is an important trait in sweet cherry breeding because it directly positively influences fruit transportability, storage and shelf life. However, the underlying genes responsible and the molecular mechanisms that control fruit firmness remain unknown. In this study, we identified a candidate gene, PavSCPL, encoding a serine carboxypeptidase-like protein with natural allelic variation, that controls fruit firmness in sweet cherry using map-based cloning and functionally characterized PavSCPL during sweet cherry fruit softening. Genetic analysis revealed that fruit firmness in the 'Rainier' × 'Summit' F1 population was controlled by a single dominant gene. Bulked segregant analysis combined with fine mapping narrowed the candidate gene to a 473-kb region (7418778-7 891 914 bp) on chromosome 6 which included 72 genes. The candidate gene PavSCPL, and a null allele harbouring a 5244-bp insertion in the second exon that completely inactivated PavSCPL expression and resulted in the extra-hard-flesh phenotype, were identified by RNA-sequencing analysis and gene cloning. Quantitative RT-PCR analysis revealed that the PavSCPL expression level was increased with fruit softening. Virus-induced gene silencing of PavSCPL enhanced fruit firmness and suppressed the activities of certain pectin-degrading enzymes in the fruit. In addition, we developed functional molecular markers for PavSCPL and the Pavscpl5.2-k allele that co-segregated with the fruit firmness trait. Overall, this research identified a crucial functional gene for fruit firmness. The results provide insights into the genetic control and molecular mechanism of the fruit firmness trait and present useful molecular markers for molecular-assisted breeding for fruit firmness in sweet cherry.


Asunto(s)
Carboxipeptidasas , Frutas , Proteínas de Plantas , Prunus avium , Frutas/genética , Prunus avium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Fenotipo , Regulación de la Expresión Génica de las Plantas , Mapeo Cromosómico , Alelos , Genes de Plantas/genética
9.
J Exp Bot ; 75(7): 1852-1871, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38226463

RESUMEN

Drought tolerance is a complex trait in soybean that is controlled by polygenetic quantitative trait loci (QTLs). In this study, wilting score, days-to-wilting, leaf relative water content, and leaf relative conductivity were used to identify QTLs associated with drought tolerance in recombinant inbred lines derived from a cross between a drought-sensitive variety, Lin, and a drought-tolerant variety, Meng. A total of 33 drought-tolerance QTLs were detected. Of these 17 were major QTLs. In addition, 15 were novel drought-tolerance QTLs. The most predominant QTL was on chromosome 11. This was detected in at least three environments. The overlapped mapping interval of the four measured traits was 0.2 cM in genetic distance (about 220 kb in physical length). Glyma.11g143500 (designated as GmUAA6), which encodes a UDP-N-acetylglucosamine transporter, was identified as the most likely candidate gene. The allele of GmUAA6 from Lin (GmUAA6Lin) was associated with improved soybean drought tolerance. Overexpression of GmUAA6Lin in Arabidopsis and soybean hairy roots enhanced drought tolerance. Furthermore, a 3-bp insertion/deletion (InDel) in the coding sequence of GmUAA6 explained up to 49.9% of the phenotypic variation in drought tolerance-related traits, suggesting that this InDel might be used in future marker-assisted selection of drought-tolerant lines in soybean breeding programs.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Resistencia a la Sequía , Fitomejoramiento , Fenotipo , Sequías
10.
Arch Microbiol ; 206(4): 200, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564016

RESUMEN

Fusarium wilt of lentil caused by Fusarium oxysporum f. sp. lentis (Fol) is a destructive pathogen limiting lentil production in India. In the present study, Secreted in Xylem (SIX) effectors genes were explored in Indian races of Fol and also a diagnostic tool for reliable detection of the disease was developed. Four SIX effectors genes, SIX11, SIX13, SIX6 and SIX2 were identified in 12 isolates of Fol belonging to seven races. SIX11 was present in all the races while SIX 13 was absent in race 6 and SIX6 was present only in race 4. The phylogenetic analysis revealed the conserved nature of the SIX genes within the forma specialis and showed sequence homology with F. oxysporum f. sp. pisi. The presence of three effectors, SIX11, SIX13 and SIX6 in race 4 correlates with high disease incidence in lentil germplasms. The in-silico characterization revealed the presence of signal peptide and localization of the effectors. Further SIX11 effector gene present in all the isolates was used to develop Fol-specific molecular marker for accurate detection. The marker developed could differentiate F. oxysporum f. sp. lycopersici, F. solani, F. oxysporum, Rhizoctonia solani and Sclerotium rolfsii and had a detection limit of 0.01ng µL- 1. The effector-based marker detection helps in the unambiguous detection of the pathogen under field conditions.


Asunto(s)
Fusarium , Filogenia , Marcadores Genéticos , Fusarium/genética , Xilema
11.
Plant Dis ; 108(7): 2065-2072, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38381966

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a destructive wheat disease pathogen. Thinopyrum elongatum is a valuable germplasm including diploid, tetraploid, and decaploid with plenty of biotic and abiotic resistance. In a previous study, we generated a stripe rust-resistant wheat-tetraploid Th. elongatum 1E/1D substitution line, K17-841-1. To further apply the wild germplasm for wheat breeding, we selected and obtained a new homozygous wheat-tetraploid Th. elongatum translocation line, T1BS⋅1EL, using genomic in situ hybridization, fluorescence in situ hybridization (FISH), oligo-FISH painting, and the wheat 55K single nucleotide polymorphism genotyping array. The T1BS⋅1EL is highly resistant to stripe rust at the seedling and adult stages. Pedigree and molecular marker analyses revealed that the resistance gene was located on the chromosome arm 1EL of tetraploid Th. elongatum, tentatively named Yr1EL. In addition, we developed and validated 32 simple sequence repeat markers and two kompetitive allele-specific PCR assays that were specific to the tetraploid Th. elongatum chromosome arm 1EL to facilitate marker-assisted selection for alien 1EL stripe rust resistance breeding. This will help us explore and locate the stripe rust resistance gene mapping on the 1E chromosome and deploy it in the wheat breeding program.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Poaceae , Puccinia , Tetraploidía , Translocación Genética , Triticum , Triticum/microbiología , Triticum/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Poaceae/genética , Poaceae/microbiología , Puccinia/fisiología , Cromosomas de las Plantas/genética , Basidiomycota/fisiología , Fitomejoramiento , Hibridación Fluorescente in Situ , Polimorfismo de Nucleótido Simple/genética , Genoma de Planta/genética
12.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542304

RESUMEN

Male sterility is a valuable trait for hybrid seed production in tomato (Solanum lycopersicum). The mutants male sterile-30 (ms-30) and ms-33 of tomato exhibit twisted stamens, exposed stigmas, and complete male sterility, thus holding potential for application in hybrid seed production. In this study, the ms-30 and ms-33 loci were fine-mapped to 53.3 kb and 111.2 kb intervals, respectively. Tomato PISTILLATA (TPI, syn. SlGLO2), a B-class MADS-box transcription factor gene, was identified as the most likely candidate gene for both loci. TPI is also the candidate gene of tomato male sterile mutant 7B-1 and sl-2. Allelism tests revealed that ms-30, ms-33, 7B-1, and sl-2 were allelic. Sequencing analysis showed sequence alterations in the TPI gene in all these mutants, with ms-30 exhibiting a transversion (G to T) that resulted in a missense mutation (S to I); ms-33 showing a transition (A to T) that led to alternative splicing, resulting in a loss of 46 amino acids in protein; and 7B-1 and sl-2 mutants showing the insertion of an approximately 4.8 kb retrotransposon. On the basis of these sequence alterations, a Kompetitive Allele Specific PCR marker, a sequencing marker, and an Insertion/Deletion marker were developed. Phenotypic analysis of the TPI gene-edited mutants and allelism tests indicated that the gene TPI is responsible for ms-30 and its alleles. Transcriptome analysis of ms-30 and quantitative RT-PCR revealed some differentially expressed genes associated with stamen and carpel development. These findings will aid in the marker-assisted selection for ms-30 and its alleles in tomato breeding and support the functional analysis of the TPI gene.


Asunto(s)
Infertilidad Masculina , Solanum lycopersicum , Humanos , Masculino , Solanum lycopersicum/genética , Alelos , Fitomejoramiento , Perfilación de la Expresión Génica , Infertilidad Masculina/genética , Estudios de Asociación Genética
13.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338653

RESUMEN

Peripheral inflammation and gait speed alterations are common in several neurological disorders and in the aging process, but the association between the two is not well established. The aim of this systematic literary review is to determine whether proinflammatory markers are a positive predictor for gait impairments and their complications, such as falls in older adults, and may represent a risk factor for slow gait speed and its complications. The systematic review was performed in line with the Preferred Report Items for Systematic Review and Meta-Analyses (PRISMA). A protocol for literature searches was structured a priori and designed according to the International Perspective Register of Systemic Review (PROSPERO: CRD42023451108). Peer-reviewed original articles were identified by searching seven electronic databases: Excerpta Medica Database (EMBASE), SciVerse (ScienceDirect), Scopus, PubMed, Medline, Web of Science, and the Cochrane Library. The search strategy was formulated based on a combination of controlled descriptors and/or keywords related to the topic and a manual search was conducted of the reference lists from the initially selected studies to identify other eligible studies. The studies were thoroughly screened using the following inclusion criteria: older adults, spatiotemporal gait characteristics, and proinflammatory markers. A meta-analysis was not performed due to the heterogeneity of the studies, and the results were narratively synthesized. Due to the clinical and methodological heterogeneity, the studies were combined in a narrative synthesis, grouped by the type of biomarkers evaluated. A standardized data extraction form was used to collect the following methodological outcome variables from each of the included studies: author, year, population, age, sample size, spatiotemporal gait parameters such as gait velocity, and proinflammatory markers such as TNF-α, high sensitivity C-reactive (CRP) proteins, and IL-6. We included 21 out of 51 studies in our review, which examined the association between inflammatory biomarkers and gait impairment. This review highlights the role of TNF-α, CRP, and IL-6 in gait impairment. Biomarkers play an important role in the decision-making process, and IL-6 can be an effective biomarker in establishing the diagnosis of slow gait speed. Further longitudinal research is needed to establish the use of molecular biomarkers in monitoring gait impairment.


Asunto(s)
Interleucina-6 , Factor de Necrosis Tumoral alfa , Biomarcadores , Marcha , Factores de Riesgo
14.
Breed Sci ; 73(4): 415-420, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38106505

RESUMEN

DNA markers are indispensable tools in genetics and genomics research as well as in crop breeding, particularly for marker-assisted selection. Recent advances in next-generation sequencing technology have made it easier to obtain genome sequences for various crop species, enabling the large-scale identification of DNA polymorphisms among varieties, which in turn has made DNA marker design more accessible. However, existing primer design software is not suitable for designing many types of genome-wide DNA markers from next-generation sequencing data. Here, we describe the development of V-primer, high-throughput software for designing insertion/deletion, cleaved amplified polymorphic sequence, and single-nucleotide polymorphism (SNP) markers. We validated the applicability of these markers in different crops. In addition, we performed multiplex PCR targeted amplicon sequencing using SNP markers designed with V-primer. Our results demonstrate that V-primer facilitates the efficient and accurate design of primers and is thus a useful tool for genetics, genomics, and crop breeding. V-primer is freely available at https://github.com/ncod3/vprimer.

15.
Cancer Lett ; 587: 216701, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38369004

RESUMEN

A new class of noncoding RNAs, tsRNAs are not only abundant in humans but also have high tissue specificity. Recently, an increasing number of studies have explored the correlations between tsRNAs and tumors, showing that tsRNAs can affect biological behaviors of tumor cells, such as proliferation, apoptosis and metastasis, by modulating protein translation, RNA transcription or posttranscriptional regulation. In addition, tsRNAs are widely distributed and stably expressed, which endows them with broad application prospects in diagnosing and predicting the prognosis of tumors, and they are expected to become new biomarkers. However, notably, the current research on tsRNAs still faces problems that need to be solved. In this review, we describe the characteristics of tsRNAs as well as their unique features and functions in tumors. Moreover, we also discuss the potential opportunities and challenges in clinical applications and research of tsRNAs.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Relevancia Clínica , MicroARNs/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética , ARN no Traducido
16.
Front Plant Sci ; 15: 1379637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638355

RESUMEN

Northeastern states of India are known for unique landraces of Capsicum spp. with geographical indications. However, little information is available about these valuable landraces of chillies. Surveys and collections were carried out in niche areas to find out their ecology and diversity through morphological traits and molecular analysis using microsatellite markers. Our result characterized the ecology of niche areas as cool (11.0°C-20.7°C) and humid (>60% relative humidity) climates for dalle-chilli (Capsicum annuum L.); mild-warm (12.2°C-28.6°C) and humid for king-chilli (C. chinense Jacq.); and cool to warm (11.3°C-33.1°C) and humid for bird's eye chilli (C. frutescens L.) during the crop period. The canonical correspondence analysis has shown the significant impact of temperature on the agro-morphological traits and distribution of the landraces in their niche areas. A wide variability was observed for different quantitative traits and yield attributing characters (fruit length, diameter, weight, and yield), showing high heritability (97.0%-99.0%), and genetic advance as a percentage of the mean (119.8%-434.0%). A total of 47 SSR markers used for the molecular analysis generated 230 alleles, ranging from 2 (HPMSE-7) to 10 (HPMSE-5), with an average of 4.89 alleles per locus. The average polymorphism information content was also high (0.61) and ranged from 0.20 (HPMSE-7) to 0.85 (CAMS-91). The observed average heterozygosity was lower than the expected value. Analysis of molecular variance has shown significant variation within (69%) and between (31%) of the populations of Capsicum spp. Based on Nei's genetic distance, bird's eye chilli and king-chilli were found to be closer to each other, whereas dalle-chilli, a tretraploid species, was closer to hot pepper (C. annuum). However, the flower size of dalle-chilli was large and found closer to king-chilli in color and differs from C. chinense due to the presence of calyx teeth. For quality traits, landraces king-chilli, dalle-chilli, and bird's eye chilli have shown 2.8, 2.0, and 1.4 times higher average capsaicin and 0.46, 0.25, and 0.22 times higher average oleoresin content over the hot pepper, respectively. The knowledge of ecology and diversity can be used in identifying new areas for production, selection of elite lines, conservation, and crop improvement.

17.
Sci Rep ; 14(1): 9783, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684694

RESUMEN

The subfamily Polygonoideae encompasses a diverse array of medicinal and horticultural plants that hold significant economic value. However, due to the lack of a robust taxonomy based on phylogenetic relationships, the classification within this family is perplexing, and there is also a scarcity of reports on the chloroplast genomes of many plants falling under this classification. In this study, we conducted a comprehensive analysis by sequencing and characterizing the complete chloroplast genomes of six Polygonoideae plants, namely Pteroxygonum denticulatum, Pleuropterus multiflorus, Pleuropterus ciliinervis, Fallopia aubertii, Fallopia dentatoalata, and Fallopia convolvulus. Our findings revealed that these six plants possess chloroplast genomes with a typical quadripartite structure, averaging 162,931 bp in length. Comparative chloroplast analysis, codon usage analysis, and repetitive sequence analysis demonstrated a high level of conservation within the chloroplast genomes of these plants. Furthermore, phylogenetic analysis unveiled a distinct clade occupied by P. denticulatum, while P. ciliinrvis displayed a closer relationship to the three plants belonging to the Fallopia genus. Selective pressure analysis based on maximum likelihood trees showed that a total of 14 protein-coding genes exhibited positive selection, with psbB and ycf1 having the highest number of positive amino acid sites. Additionally, we identified four molecular markers, namely petN-psbM, psal-ycf4, ycf3-trnS-GGA, and trnL-UAG-ccsA, which exhibit high variability and can be utilized for the identification of these six plants.


Asunto(s)
Genoma del Cloroplasto , Filogenia , Genoma del Cloroplasto/genética , Selección Genética , Marcadores Genéticos , Asteraceae/genética , Asteraceae/clasificación , Evolución Molecular , Uso de Codones
18.
J Agric Food Chem ; 72(17): 10138-10148, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38637271

RESUMEN

Passion fruit (Passiflora spp.) is an important fruit tree in the family Passifloraceae. The color of the fruit skin, a significant agricultural trait, is determined by the content of anthocyanin in passion fruit. However, the regulatory mechanisms behind the accumulation of anthocyanin in different passion fruit skin colors remain unclear. In the study, we identified and characterized a R2R3-MYB transcription factor, PeMYB114, which functions as a transcriptional activator in anthocyanin biosynthesis. Yeast one-hybrid system and dual-luciferase analysis showed that PeMYB114 could directly activate the expression of anthocyanin structural genes (PeCHS and PeDFR). Furthermore, a natural variation in the promoter region of PeMYB114 alters its expression. PeMYB114purple accessions with the 224-bp insertion have a higher anthocyanin level than PeMYB114yellow accessions with the 224-bp deletion. The findings enhance our understanding of anthocyanin accumulation in fruits and provide genetic resources for genome design for improving passion fruit quality.


Asunto(s)
Antocianinas , Frutas , Regulación de la Expresión Génica de las Plantas , Passiflora , Proteínas de Plantas , Regiones Promotoras Genéticas , Factores de Transcripción , Antocianinas/metabolismo , Antocianinas/genética , Passiflora/genética , Passiflora/metabolismo , Passiflora/química , Frutas/metabolismo , Frutas/genética , Frutas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación INDEL
19.
Front Endocrinol (Lausanne) ; 15: 1322731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562417

RESUMEN

Purpose: Telomerase reverse transcriptase (TERT) has been reported in papillary thyroid carcinoma (PTC). This study aimed to investigate the correlation of TERT promoter mutations with clinical and ultrasound (US) features in PTC and to develop a model to predict TERT promoter mutations. Methods: Preoperative US images, postoperative pathological features, and TERT promoter mutation information were evaluated in 365 PTC patients confirmed by surgery. Univariate and multivariate factor analyses were performed to identify risk factors for TERT promoter mutations. A predictive model was established to assess the clinical predictive value. Results: Of the 365 patients with PTC (498 nodules), the number of those with TERT promoter mutations was 67 cases (75 nodules), and the number of those without mutations was 298 cases (423 nodules). The median age was 40 years in the wild-type group and 60 years in the mutant group. Male patients made up 35.82% of the mutant group and 22.82% of the wild-type group. Multivariate analysis revealed that the independent risk factors associated with the occurrence of TERT promoter mutation in PTC were as follows: older age (odds ratio (OR) = 1.07; p = 0.002), maximum diameter of ≥ 10 mm (OR = 3.94; p < 0.0001), unilateral (OR = 4.15; p < 0.0001), multifocal (OR = 7.69; p < 0.0001), adjacent to the thyroid capsule (OR = 1.94; p = 0.044), and accompanied by other benign nodules (OR = 1.94, p = 0.039). A predictive model was established, and the area under the curve (AUC) of the receiver operating characteristic was 0.839. TERT promoter mutations were associated with high-risk US and clinical features compared with the wild-type group. Conclusion: TERT promoter mutations were associated with older ages. They were also found to be multifocal, with a maximum diameter of ≥ 10 mm, unilateral, adjacent to the thyroid capsule, and accompanied by other benign nodules. The predictive model was of high diagnostic value.


Asunto(s)
Carcinoma Papilar , Telomerasa , Neoplasias de la Tiroides , Humanos , Masculino , Adulto , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Carcinoma Papilar/diagnóstico por imagen , Carcinoma Papilar/genética , Carcinoma Papilar/patología , Regiones Promotoras Genéticas/genética , Mutación , Telomerasa/genética
20.
3 Biotech ; 14(1): 19, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38130685

RESUMEN

The prized Red banana, selected for superior qualities, demands strong genetic uniformity for successful clonal propagation and preservation. Ensuring this uniformity early in the growth of in vitro Red banana plants is essential, as gene mutations and chromosome rearrangements during tissue culture can jeopardize both cloning and germplasm conservation. In this situation, molecular markers play a pivotal role in confirming genetic stability. Thus the study aims to discover a marker that identifies tissue-cultured Red bananas from their virescent variants during initial sub-culturing. A marker linked to anthocyanin has been identified which effectively differentiated Red bananas from virescent variants and it was further validated in various banana cultivars, ornamental Musa species and their interspecific hybrids. The PCR-based marker showed remarkable specificity, discerning Red bananas from virescent variants during tissue culture. It also distinguished green and red offspring, cutting time and resource costs, and shortening the banana breeding cycle. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03868-6.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA