Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.016
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(3): 676-691.e16, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306983

RESUMEN

Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.


Asunto(s)
Movimiento , Neuronas , Encéfalo/fisiología , Movimiento/fisiología , Neuronas/fisiología , Tálamo/fisiología , Memoria
2.
Cell ; 187(7): 1745-1761.e19, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38518772

RESUMEN

Proprioception tells the brain the state of the body based on distributed sensory neurons. Yet, the principles that govern proprioceptive processing are poorly understood. Here, we employ a task-driven modeling approach to investigate the neural code of proprioceptive neurons in cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated muscle spindle signals through musculoskeletal modeling and generated a large-scale movement repertoire to train neural networks based on 16 hypotheses, each representing different computational goals. We found that the emerging, task-optimized internal representations generalize from synthetic data to predict neural dynamics in CN and S1 of primates. Computational tasks that aim to predict the limb position and velocity were the best at predicting the neural activity in both areas. Since task optimization develops representations that better predict neural activity during active than passive movements, we postulate that neural activity in the CN and S1 is top-down modulated during goal-directed movements.


Asunto(s)
Neuronas , Propiocepción , Animales , Propiocepción/fisiología , Neuronas/fisiología , Encéfalo/fisiología , Movimiento/fisiología , Primates , Redes Neurales de la Computación
3.
Cell ; 186(14): 3062-3078.e20, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37343561

RESUMEN

Seemingly simple behaviors such as swatting a mosquito or glancing at a signpost involve the precise coordination of multiple body parts. Neural control of coordinated movements is widely thought to entail transforming a desired overall displacement into displacements for each body part. Here we reveal a different logic implemented in the mouse gaze system. Stimulating superior colliculus (SC) elicits head movements with stereotyped displacements but eye movements with stereotyped endpoints. This is achieved by individual SC neurons whose branched axons innervate modules in medulla and pons that drive head movements with stereotyped displacements and eye movements with stereotyped endpoints, respectively. Thus, single neurons specify a mixture of endpoints and displacements for different body parts, not overall displacement, with displacements for different body parts computed at distinct anatomical stages. Our study establishes an approach for unraveling motor hierarchies and identifies a logic for coordinating movements and the resulting pose.


Asunto(s)
Fijación Ocular , Movimientos Sacádicos , Animales , Ratones , Movimientos Oculares , Neuronas/fisiología , Colículos Superiores/fisiología , Rombencéfalo , Movimientos de la Cabeza/fisiología
4.
Cell ; 186(1): 162-177.e18, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608651

RESUMEN

The cortex influences movement by widespread top-down projections to many nervous system regions. Skilled forelimb movements require brainstem circuitry in the medulla; however, the logic of cortical interactions with these neurons remains unexplored. Here, we reveal a fine-grained anatomical and functional map between anterior cortex (AC) and medulla in mice. Distinct cortical regions generate three-dimensional synaptic columns tiling the lateral medulla, topographically matching the dorso-ventral positions of postsynaptic neurons tuned to distinct forelimb action phases. Although medial AC (MAC) terminates ventrally and connects to forelimb-reaching-tuned neurons and its silencing impairs reaching, lateral AC (LAC) influences dorsally positioned neurons tuned to food handling, and its silencing impairs handling. Cortico-medullary neurons also extend collaterals to other subcortical structures through a segregated channel interaction logic. Our findings reveal a precise alignment between cortical location, its function, and specific forelimb-action-tuned medulla neurons, thereby clarifying interaction principles between these two key structures and beyond.


Asunto(s)
Movimiento , Neuronas , Ratones , Animales , Movimiento/fisiología , Neuronas/fisiología , Miembro Anterior/fisiología , Tronco Encefálico
5.
Cell ; 183(3): 605-619.e22, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33031743

RESUMEN

Exploration of novel environments ensures survival and evolutionary fitness. It is expressed through exploratory bouts and arrests that change dynamically based on experience. Neural circuits mediating exploratory behavior should therefore integrate experience and use it to select the proper behavioral output. Using a spatial exploration assay, we uncovered an experience-dependent increase in momentary arrests in locations where animals arrested previously. Calcium imaging in freely exploring mice revealed a genetically and projection-defined neuronal ensemble in the basolateral amygdala that is active during self-paced behavioral arrests. This ensemble was recruited in an experience-dependent manner, and closed-loop optogenetic manipulation of these neurons revealed that they are sufficient and necessary to drive experience-dependent arrests during exploration. Projection-specific imaging and optogenetic experiments revealed that these arrests are effected by basolateral amygdala neurons projecting to the central amygdala, uncovering an amygdala circuit that mediates momentary arrests in familiar places but not avoidance or anxiety/fear-like behaviors.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Núcleo Amigdalino Central/fisiología , Conducta Exploratoria/fisiología , Red Nerviosa/fisiología , Animales , Complejo Nuclear Basolateral/diagnóstico por imagen , Conducta Animal/fisiología , Núcleo Amigdalino Central/diagnóstico por imagen , Femenino , Locomoción , Aprendizaje Automático , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Imagen Óptica
6.
Cell ; 177(3): 669-682.e24, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30929904

RESUMEN

Throughout mammalian neocortex, layer 5 pyramidal (L5) cells project via the pons to a vast number of cerebellar granule cells (GrCs), forming a fundamental pathway. Yet, it is unknown how neuronal dynamics are transformed through the L5→GrC pathway. Here, by directly comparing premotor L5 and GrC activity during a forelimb movement task using dual-site two-photon Ca2+ imaging, we found that in expert mice, L5 and GrC dynamics were highly similar. L5 cells and GrCs shared a common set of task-encoding activity patterns, possessed similar diversity of responses, and exhibited high correlations comparable to local correlations among L5 cells. Chronic imaging revealed that these dynamics co-emerged in cortex and cerebellum over learning: as behavioral performance improved, initially dissimilar L5 cells and GrCs converged onto a shared, low-dimensional, task-encoding set of neural activity patterns. Thus, a key function of cortico-cerebellar communication is the propagation of shared dynamics that emerge during learning.


Asunto(s)
Cerebelo/metabolismo , Neocórtex/metabolismo , Animales , Conducta Animal , Calcio/metabolismo , Miembro Anterior/fisiología , Ratones , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Neocórtex/patología , Opsinas/genética , Opsinas/metabolismo , Células Piramidales/metabolismo
7.
Annu Rev Neurosci ; 47(1): 145-166, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38663092

RESUMEN

The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.


Asunto(s)
Cerebelo , Aprendizaje , Movimiento , Cerebelo/fisiología , Animales , Humanos , Aprendizaje/fisiología , Movimiento/fisiología
8.
Annu Rev Cell Dev Biol ; 32: 491-526, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27576118

RESUMEN

Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.


Asunto(s)
Movimiento Celular , Plasticidad de la Célula , Simulación por Computador , Animales , Humanos , Modelos Biológicos
9.
Mol Cell ; 81(1): 115-126.e7, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33259810

RESUMEN

In all branches of life, stalled translation intermediates are recognized and processed by ribosome-associated quality control (RQC) pathways. RQC begins with the splitting of stalled ribosomes, leaving an unfinished polypeptide still attached to the large subunit. Ancient and conserved NEMF family RQC proteins target these incomplete proteins for degradation by the addition of C-terminal "tails." How such tailing can occur without the regular suite of translational components is, however, unclear. Using single-particle cryo-electron microscopy (EM) of native complexes, we show that C-terminal tailing in Bacillus subtilis is mediated by NEMF protein RqcH in concert with RqcP, an Hsp15 family protein. Our structures reveal how these factors mediate tRNA movement across the ribosomal 50S subunit to synthesize polypeptides in the absence of mRNA or the small subunit.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura
10.
Mol Cell ; 80(2): 311-326.e4, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32970994

RESUMEN

To determine whether double-strand break (DSB) mobility enhances the physical search for an ectopic template during homology-directed repair (HDR), we tested the effects of factors that control chromatin dynamics, including cohesin loading and kinetochore anchoring. The former but not the latter is altered in response to DSBs. Loss of the nonhistone high-mobility group protein Nhp6 reduces histone occupancy and increases chromatin movement, decompaction, and ectopic HDR. The loss of nucleosome remodeler INO80-C did the opposite. To see whether enhanced HDR depends on DSB mobility or the global chromatin response, we tested the ubiquitin ligase mutant uls1Δ, which selectively impairs local but not global movement in response to a DSB. Strand invasion occurs in uls1Δ cells with wild-type kinetics, arguing that global histone depletion rather than DSB movement is rate limiting for HDR. Impaired break movement in uls1Δ correlates with elevated MRX and cohesin loading, despite normal resection and checkpoint activation.


Asunto(s)
Roturas del ADN de Doble Cadena , Nucleosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Bleomicina/farmacología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/metabolismo , Histonas/metabolismo , Modelos Biológicos , Fosforilación , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Cuerpos Polares del Huso/metabolismo , Cohesinas
11.
Annu Rev Physiol ; 86: 277-300, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37906945

RESUMEN

Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.


Asunto(s)
Canalopatías , Corea , Epilepsia , Animales , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio , Canalopatías/genética , Epilepsia/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética
12.
Annu Rev Neurosci ; 42: 459-483, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31018098

RESUMEN

Deciding what to do and when to move is vital to our survival. Clinical and fundamental studies have identified basal ganglia circuits as critical for this process. The main input nucleus of the basal ganglia, the striatum, receives inputs from frontal, sensory, and motor cortices and interconnected thalamic areas that provide information about potential goals, context, and actions and directly or indirectly modulates basal ganglia outputs. The striatum also receives dopaminergic inputs that can signal reward prediction errors and also behavioral transitions and movement initiation. Here we review studies and models of how direct and indirect pathways can modulate basal ganglia outputs to facilitate movement initiation, and we discuss the role of cortical and dopaminergic inputs to the striatum in determining what to do and if and when to do it. Complex but exciting scenarios emerge that shed new light on how basal ganglia circuits modulate self-paced movement initiation.


Asunto(s)
Ganglios Basales/fisiología , Cognición/fisiología , Movimiento/fisiología , Vías Nerviosas/fisiología , Animales , Humanos , Actividad Motora/fisiología , Recompensa
13.
Annu Rev Neurosci ; 42: 485-504, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283898

RESUMEN

Neuronal circuits that regulate movement are distributed throughout the nervous system. The brainstem is an important interface between upper motor centers involved in action planning and circuits in the spinal cord ultimately leading to execution of body movements. Here we focus on recent work using genetic and viral entry points to reveal the identity of functionally dedicated and frequently spatially intermingled brainstem populations essential for action diversification, a general principle conserved throughout evolution. Brainstem circuits with distinct organization and function control skilled forelimb behavior, orofacial movements, and locomotion. They convey regulatory parameters to motor output structures and collaborate in the construction of complex natural motor behaviors. Functionally tuned brainstem neurons for different actions serve as important integrators of synaptic inputs from upstream centers, including the basal ganglia and cortex, to regulate and modulate behavioral function in different contexts.


Asunto(s)
Tronco Encefálico/fisiología , Neuronas Motoras/fisiología , Movimiento/fisiología , Médula Espinal/fisiología , Animales , Humanos , Locomoción/fisiología , Vías Nerviosas/fisiología
14.
Proc Natl Acad Sci U S A ; 121(3): e2309906121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38198528

RESUMEN

During free viewing, faces attract gaze and induce specific fixation patterns corresponding to the facial features. This suggests that neurons encoding the facial features are in the causal chain that steers the eyes. However, there is no physiological evidence to support a mechanistic link between face-encoding neurons in high-level visual areas and the oculomotor system. In this study, we targeted the middle face patches of the inferior temporal (IT) cortex in two macaque monkeys using an functional magnetic resonance imaging (fMRI) localizer. We then utilized muscimol microinjection to unilaterally suppress IT neural activity inside and outside the face patches and recorded eye movements while the animals free viewing natural scenes. Inactivation of the face-selective neurons altered the pattern of eye movements on faces: The monkeys found faces in the scene but neglected the eye contralateral to the inactivation hemisphere. These findings reveal the causal contribution of the high-level visual cortex in eye movements.


Asunto(s)
Movimientos Oculares , Neuronas , Animales , Ojo , Técnicas Histológicas , Macaca
15.
Proc Natl Acad Sci U S A ; 121(41): e2316827121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39312680

RESUMEN

Movement is a key means by which animals cope with variable environments. As they move, animals construct individual niches composed of the environmental conditions they experience. Niche axes may vary over time and covary with one another as animals make tradeoffs between competing needs. Seasonal migration is expected to produce substantial niche variation as animals move to keep pace with major life history phases and fluctuations in environmental conditions. Here, we apply a time-ordered principal component analysis to examine dynamic niche variance and covariance across the annual cycle for four species of migratory crane: common crane (Grus grus, n = 20), demoiselle crane (Anthropoides virgo, n = 66), black-necked crane (Grus nigricollis, n = 9), and white-naped crane (Grus vipio, n = 9). We consider four key niche components known to be important to aspects of crane natural history: enhanced vegetation index (resources availability), temperature (thermoregulation), crop proportion (preferred foraging habitat), and proximity to water (predator avoidance). All species showed a primary seasonal niche "rhythm" that dominated variance in niche components across the annual cycle. Secondary rhythms were linked to major species-specific life history phases (migration, breeding, and nonbreeding) as well as seasonal environmental patterns. Furthermore, we found that cranes' experiences of the environment emerge from time-dynamic tradeoffs among niche components. We suggest that our approach to estimating the environmental niche as a multidimensional and time-dynamical system of tradeoffs improves mechanistic understanding of organism-environment interactions.


Asunto(s)
Migración Animal , Aves , Ecosistema , Estaciones del Año , Animales , Migración Animal/fisiología , Aves/fisiología
16.
Proc Natl Acad Sci U S A ; 121(35): e2407298121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163331

RESUMEN

Studying the mechanisms shaping age-related changes in behavior ("behavioral aging") is important for understanding population dynamics in our changing world. Yet, studies that capture within-individual behavioral changes in wild populations of long-lived animals are still scarce. Here, we used a 15-y GPS-tracking dataset of a social obligate scavenger, the griffon vulture (Gyps fulvus), to investigate age-related changes in movement and social behaviors, and disentangle the role of behavioral plasticity and selective disappearance in shaping such patterns. We tracked 142 individuals for up to 12 y and found a nonlinear increase in site fidelity with age: a sharp increase in site fidelity before sexual maturity (<5 y old), stabilization during adulthood (6 to 15 y), and a further increase at old age (>15 y). This pattern resulted from individuals changing behavior throughout their life (behavioral plasticity) and not from selective disappearance. Mature vultures increased the predictability of their movement routines and spent more nights at the most popular roosting sites compared to younger individuals. Thus, adults likely have a competitive advantage over younger conspecifics. These changes in site fidelity and movement routines were mirrored in changes to social behavior. Older individuals interacted less with their associates (decreasing average strength with age), particularly during the breeding season. Our results reveal a variety of behavioral aging patterns in long-lived species and underscore the importance of behavioral plasticity in shaping such patterns. Comprehensive longitudinal studies are imperative for understanding how plasticity and selection shape the persistence of wild animal populations facing human-induced environmental changes.


Asunto(s)
Envejecimiento , Conducta Animal , Animales , Envejecimiento/fisiología , Conducta Animal/fisiología , Dinámica Poblacional , Conducta Social , Falconiformes/fisiología , Femenino , Masculino
17.
Proc Natl Acad Sci U S A ; 121(12): e2308922121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38442141

RESUMEN

Fossils encompassing multiple individuals provide rare direct evidence of behavioral interactions among extinct organisms. However, the fossilization process can alter the spatial relationship between individuals and hinder behavioral reconstruction. Here, we report a Baltic amber inclusion preserving a female-male pair of the extinct termite species Electrotermes affinis. The head-to-abdomen contact in the fossilized pair resembles the tandem courtship behavior of extant termites, although their parallel body alignment differs from the linear alignment typical of tandem runs. To solve this inconsistency, we simulated the first stage of amber formation, the immobilization of captured organisms, by exposing living termite tandems to sticky surfaces. We found that the posture of the fossilized pair matches trapped tandems and differs from untrapped tandems. Thus, the fossilized pair likely is a tandem running pair, representing the direct evidence of the mating behavior of extinct termites. Furthermore, by comparing the postures of partners on a sticky surface and in the amber inclusion, we estimated that the male likely performed the leader role in the fossilized tandem. Our results demonstrate that past behavioral interactions can be reconstructed despite the spatial distortion of body poses during fossilization. Our taphonomic approach demonstrates how certain behaviors can be inferred from fossil occurrences.


Asunto(s)
Isópteros , Humanos , Femenino , Masculino , Animales , Ámbar , Extinción Psicológica , Fósiles , Postura
18.
Proc Natl Acad Sci U S A ; 121(37): e2411293121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39236235

RESUMEN

The presaccadic preview of a peripheral target enhances the efficiency of its postsaccadic processing, termed the extrafoveal preview effect. Peripheral visual performance-and thus the quality of the preview-varies around the visual field, even at isoeccentric locations: It is better along the horizontal than vertical meridian and along the lower than upper vertical meridian. To investigate whether these polar angle asymmetries influence the preview effect, we asked human participants to preview four tilted gratings at the cardinals, until a central cue indicated which one to saccade to. During the saccade, the target orientation either remained or slightly changed (valid/invalid preview). After saccade landing, participants discriminated the orientation of the (briefly presented) second grating. Stimulus contrast was titrated with adaptive staircases to assess visual performance. Expectedly, valid previews increased participants' postsaccadic contrast sensitivity. This preview benefit, however, was inversely related to polar angle perceptual asymmetries; largest at the upper, and smallest at the horizontal meridian. This finding reveals that the visual system compensates for peripheral asymmetries when integrating information across saccades, by selectively assigning higher weights to the less-well perceived preview information. Our study supports the recent line of evidence showing that perceptual dynamics around saccades vary with eye movement direction.


Asunto(s)
Movimientos Sacádicos , Campos Visuales , Percepción Visual , Humanos , Movimientos Sacádicos/fisiología , Adulto , Percepción Visual/fisiología , Femenino , Masculino , Campos Visuales/fisiología , Estimulación Luminosa/métodos , Adulto Joven , Sensibilidad de Contraste/fisiología
19.
Proc Natl Acad Sci U S A ; 121(12): e2319582121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483998

RESUMEN

The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.


Asunto(s)
Ascomicetos , Virus Fúngicos , Malus , Micosis , Virus ARN , Ascomicetos/genética , Virus ARN/genética , Enfermedades de las Plantas/microbiología , Malus/metabolismo
20.
Proc Natl Acad Sci U S A ; 121(17): e2307213121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621134

RESUMEN

In the past three decades, there has been a rise in young academy movements in the Global North and South. Such movements, in at least Germany and the Netherlands, have been shown to be quite effective in connecting scientific work with society. Likewise, these movements share a common goal of developing interdisciplinary collaboration among young scientists, which contributes to the growth of a nation's-but also global-scientific endeavors. This paper focuses on the young academy movement in the fourth-largest country hosting the biggest Muslim population in the world, which is also the third-most populous democracy: Indonesia. We observe that there has been rising awareness among the young generation of scientists in Indonesia of the need to advocate for the use of sciences in responding to upcoming and current multidimensional crises. Science advocacy can be seen in their peer-based identification of Indonesia's future challenges, encompassing the fundamental areas for scientific inquiry, discovery, and intervention. We focus on the Indonesian Young Academy of Sciences (ALMI) and its network of young scientists. We describe ALMI's science communication practice, specifically SAINS45 and Science for Indonesia's Biodiversity, and how they have been useful for policymakers, media, and school engagements. The article closes with a reflection on future directions for the young academy movement in Indonesia and beyond.


Asunto(s)
Islamismo , Indonesia , Alemania , Países Bajos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA