Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nano Lett ; 24(33): 10380-10387, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39120059

RESUMEN

The advancement of effective nasal mucoadhesive delivery faces challenges due to rapid mucociliary clearance (MCC). Conventional studies have employed mucoadhesive materials, mainly forming spherical nanoparticles, but these offer limited adhesion to the nasal mucosa. This study hypothesizes that a 2D nanoscale structure utilizing adhesive polyphenols can provide a superior strategy for countering MCC, aligning with the planar mucosal layers. We explore the use of tannic acid (TA), a polyphenolic molecule known for its adhesive properties and ability to form complexes with biomolecules. Our study introduces an unprecedented 2D nanopatch, assembled through the interaction of TA with green fluorescent protein (GFP), and cell-penetrating peptide (CPP). This 2D nanopatch demonstrates robust adhesion to nasal mucosa and significantly enhances immunoglobulin A secretions, suggesting its potential for enhancing nasal vaccine delivery. The promise of a polyphenol-enabled adhesive 2D nanopatch signifies a pivotal shift from conventional spherical nanoparticles, opening new pathways for delivery strategies through respiratory mucoadhesion.


Asunto(s)
Mucosa Nasal , Polifenoles , Taninos , Taninos/química , Polifenoles/química , Polifenoles/administración & dosificación , Mucosa Nasal/metabolismo , Mucosa Nasal/inmunología , Animales , Nanopartículas/química , Humanos , Péptidos de Penetración Celular/química , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/química , Adhesivos/química , Depuración Mucociliar/efectos de los fármacos , Inmunoglobulina A , Ratones
2.
Small ; 20(40): e2310363, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38895967

RESUMEN

Commitment to the 3Rs principle (Replacement, Reduction, and Refinement) led to the development of a cell-based system to measure buccal bioadhesion in vitro and replace the use of porcine buccal and esophageal tissues (PBT and PET, respectively). Additionally, the aim is to bridge the gap in knowledge regarding the bioadhesion properties of PBT and PET. The in vitro models are based on the human buccal epithelial cell line-TR146 without ("Model I") or with ("Model II") 5% (w/v) mucous layer. The in vitro setup also provides a method to evaluate the bioadhesion between two soft materials. Standard bioadhesive hydrogels (alginate, chitosan, and gelatin) are used to test and compare the results from the in vitro models to the ex vivo tissues. The ex vivo and in vitro models show increased bioadhesion as the applied force and contact time increases. Furthermore, Model I exhibits bioadhesion values-of alginate, chitosan, and gelatin-comparable to those obtained with PBT. It is also found that contact time and applied force similarly affect PBT and PET bioadhesion, while PET exhibits greater values. In conclusion, Model I can replace PBT for measuring bioadhesion and be incorporated into the experimental design of bioadhesive DDS, thus minimizing animal tissue usage.


Asunto(s)
Mucosa Bucal , Animales , Humanos , Porcinos , Quitosano/química , Línea Celular , Adhesividad , Hidrogeles/química , Alginatos/química , Mejilla , Gelatina/química , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología
3.
Crit Rev Food Sci Nutr ; : 1-29, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141568

RESUMEN

Dietary fiber-rich foods have been associated with numerous health benefits, including a reduced risk of cardiovascular and metabolic diseases. Harnessing the potential to deliver positive health outcomes rests on our understanding of the underlying mechanisms that drive these associations. This review addresses data and concepts concerning plant-based food functionality by dissecting the cascade of physical and chemical digestive processes and interactions that underpin these physiological benefits. Functional transformations of dietary fiber along the gastrointestinal tract from the stages of oral processing and gastric emptying to intestinal digestion and colonic fermentation influence its capacity to modulate digestion, transit, and commensal microbiome. This analysis highlights the significance, limitations, and challenges in decoding the complex web of interactions to establish a coherent framework connecting specific fiber components' molecular and macroscale interactions across multiple length scales within the gastrointestinal tract. One critical area that requires closer examination is the interaction between fiber, mucus barrier, and the commensal microbiome when considering food structure design and personalized nutritional strategies for beneficial physiologic effects. Understanding the response of specific fibers, particularly concerning an individual's physiology, will offer the opportunity to exploit these functional characteristics to elicit specific, symptom-targeting effects or use fiber types as adjunctive therapies.

4.
Mar Drugs ; 22(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38535439

RESUMEN

Drug administration by oral delivery is the preferred route, regardless of some remaining challenges, such as short resident time and toxicity issues. One strategy to overcome these barriers is utilizing mucoadhesive vectors that can increase intestinal resident time and systemic uptake. In this study, biomimetic nanoparticles (NPs) were produced from 14 types of edible algae and evaluated for usage as oral DDSs by measuring their size, surface charge, morphology, encapsulation efficiency, mucoadhesion force, and cellular uptake into Caco-2 cells. The NPs composed of algal materials (aNPs) exhibited a spherical morphology with a size range of 126-606 nm and a surface charge of -9 to -38 mV. The mucoadhesive forces tested ex vivo against mice, pigs, and sheep intestines revealed significant variation between algae and animal models. Notably, Arthospira platensis (i.e., Spirulina) NPs (126 ± 2 nm, -38 ± 3 mV) consistently exhibited the highest mucoadhesive forces (up to 3127 ± 272 µN/mm²). Moreover, a correlation was found between high mucoadhesive force and high cellular uptake into Caco-2 cells, further supporting the potential of aNPs by indicating their ability to facilitate drug absorption into the human intestinal epithelium. The results presented herein serve as a proof of concept for the possibility of aNPs as oral drug delivery vehicles.


Asunto(s)
Biomimética , Nanopartículas , Humanos , Animales , Ratones , Ovinos , Porcinos , Células CACO-2 , Transporte Biológico , Sistemas de Liberación de Medicamentos
5.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273341

RESUMEN

Inhalable formulations with cyclodextrins (CDs) as solubility and absorption enhancers show promise for pulmonary delivery. Thiolated hydroxypropyl-ß-cyclodextrin (HP-ß-CD-SH) has mucoadhesive properties, enhancing drug absorption. Moreover, it has self-aggregation capability, which could further improve absorption and drug stability, as well as reduce irritation. This study aims to stabilize CD nanoaggregates using bifunctional cross-linkers and evaluate their benefits for lung drug delivery compared to pristine HP-ß-CD-SH. METHODS: The effectiveness of cross-linked HP-ß-CD-SH nanoparticles (HP-ß-CD-SH-NP) was compared to transient nanoaggregates in enhancing the activity of dexamethasone (DMS) and olive leaf extracts (OLE). DMS, a poorly soluble drug commonly used in lung treatments, and OLE, known for its antioxidant properties, were chosen. Drug-loaded HP-ß-CD-SH-NP were prepared and nebulized onto a lung epithelial Air-Liquid Interface (ALI) model, assessing drug permeation and activity. RESULTS: HP-ß-CD-SH with 25% thiolation was synthesized via microwave reaction, forming 150 nm nanoaggregates and stabilized 400 nm HP-ß-CD-SH-NP. All carriers showed good complexing ability with DMS and OLE and were biocompatible in the lung ALI model. HP-ß-CD-SH promoted DMS absorption, while stabilized HP-ß-CD-SH-NP protected against oxidative stress. CONCLUSION: HP-ß-CD-SH is promising for lung delivery, especially as stabilized nanoaggregates, offering versatile administration for labile molecules like natural extracts.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Dexametasona , Sistemas de Liberación de Medicamentos , 2-Hidroxipropil-beta-Ciclodextrina/química , Animales , Humanos , Dexametasona/química , Dexametasona/administración & dosificación , Dexametasona/farmacología , Dexametasona/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Compuestos de Sulfhidrilo/química , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Nanopartículas/química , Administración por Inhalación , Portadores de Fármacos/química , beta-Ciclodextrinas/química , Ratas
6.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791397

RESUMEN

Oromucosal drug delivery, both local and transmucosal (buccal), is an effective alternative to traditional oral and parenteral dosage forms because it increases drug bioavailability and reduces systemic drug toxicity. The oral mucosa has a good blood supply, which ensures that drug molecules enter the systemic circulation directly, avoiding drug metabolism during the first passage through the liver. At the same time, the mucosa has a number of barriers, including mucus, epithelium, enzymes, and immunocompetent cells, that are designed to prevent the entry of foreign substances into the body, which also complicates the absorption of drugs. The development of oromucosal drug delivery systems based on mucoadhesive biopolymers and their derivatives (especially thiolated and catecholated derivatives) is a promising strategy for the pharmaceutical development of safe and effective dosage forms. Solid, semi-solid and liquid pharmaceutical formulations based on biopolymers have several advantageous properties, such as prolonged residence time on the mucosa due to high mucoadhesion, unidirectional and modified drug release capabilities, and enhanced drug permeability. Biopolymers are non-toxic, biocompatible, biodegradable and may possess intrinsic bioactivity. A rational approach to the design of oromucosal delivery systems requires an understanding of both the anatomy/physiology of the oral mucosa and the physicochemical and biopharmaceutical properties of the drug molecule/biopolymer, as presented in this review. This review summarizes the advances in the pharmaceutical development of mucoadhesive oromucosal dosage forms (e.g., patches, buccal tablets, and hydrogel systems), including nanotechnology-based biopolymer nanoparticle delivery systems (e.g., solid lipid particles, liposomes, biopolymer polyelectrolyte particles, hybrid nanoparticles, etc.).


Asunto(s)
Sistemas de Liberación de Medicamentos , Mucosa Bucal , Humanos , Biopolímeros/química , Sistemas de Liberación de Medicamentos/métodos , Mucosa Bucal/metabolismo , Animales
7.
Pharm Dev Technol ; 29(1): 1-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38015058

RESUMEN

One of the most prevalent cancers affecting women globally is cervical cancer. Cervical cancer is thought to cause 570 000 new cases annually, and standard treatments can have serious side effects. In this work, the main aim is to design, fabrication, and evaluation of carboplatin loaded chitosan coated liposomal formulation (CCLF-I) for vaginal delivery in the treatment of cervical cancer. The particle size and polydispersity index of the CCLF-1 were observed at 269.33 ± 1.15 and 0.40 ± 0.002 nm, respectively. The in vitro mucin binding studies showed good adhesiveness of CCLF-I as compared to plain liposomes (CPLF-I), which was found at 23.49 and 10.80%, respectively. The ex-vivo percent drug permeation from plain liposomal formulation (CPLF-I) was found to be higher in comparison to chitosan coated liposomal formulation which was 56.33% while in CCLF-I it was observed 47.32% this is due to, higher retainability of delivery system (CCLF-I) on targeted site attained by coating of mucoadhesive polymer on liposomes. Ex vivo tissue retention studies exhibited 24.2% of CCLF-I in comparison to 10.34% from plain drug formulation (CPLF-I). The in vivo vaginal retention studies exhibited 14% of drug retention after 24 h from the novel formulation in comparison to 6% from the plain formulation. The developed CCLF-I formulation would open a new avenue in the cervical treatment.


Asunto(s)
Quitosano , Neoplasias del Cuello Uterino , Femenino , Humanos , Liposomas , Carboplatino , Proyectos de Investigación , Neoplasias del Cuello Uterino/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula
8.
Ann Pharm Fr ; 82(5): 848-864, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38685472

RESUMEN

Quetiapine Fumarate (QF) is an atypical antipsychotic with poor oral bioavailability (9%) due to its low permeability and pH-dependent solubility. Therefore, this study aims to design QF-loaded polyethylene glycol (PEG) functionalized graphene oxide nanosheets (GON) for nasal delivery of QF. In brief, GO was synthesized using a modified Hummers process, followed by ultra-sonication to produce GON. Subsequently, PEG-functionalized GON was prepared using carbodiimide chemistry (PEG-GON). QF was then decorated onto the cage of PEG-GON using the π-π stacking phenomenon (QF@PEG-GON). The QF@PEG-GON nanocomposite underwent several spectral characterizations, in vitro drug release, mucoadhesion study, ex vivo diffusion study, etc. The surface morphology of QF@PEG-GON nanocomposite validates the cracked nature of the nanocomposite, whereas the diffractograms and thermogram of nanocomposite confirm the conversion of QF into an amorphous form with uniform distribution in PEG-GON. Moreover, an ex vivo study of PEG-GON demonstrates superior mucoadhesion capacity due to its surface functional groups and hydrophilicity. The percent drug loading content and percent entrapment efficiency of the nanocomposite were found to be 9.2±0.62% and 92.3±1.02%, respectively. The developed nanocomposite exhibited 43.82±1.65% drug release within 24h, with the Korsemeyer-Peppas model providing the best-fit release kinetics (R2: 0.8614). Here, the interlayer spacing of PEG-GON prevented prompt diffusion of the buffer, leading to a delayed release pattern. In conclusion, the anticipated QF@PEG-GON nanocomposite shows promise as a nanocarrier platform for nasal delivery of QF.


Asunto(s)
Antipsicóticos , Liberación de Fármacos , Grafito , Nanocompuestos , Polietilenglicoles , Fumarato de Quetiapina , Grafito/química , Polietilenglicoles/química , Fumarato de Quetiapina/farmacocinética , Fumarato de Quetiapina/química , Fumarato de Quetiapina/administración & dosificación , Antipsicóticos/química , Antipsicóticos/administración & dosificación , Antipsicóticos/farmacocinética , Nanocompuestos/química , Animales , Administración Intranasal , Portadores de Fármacos/química
9.
Mol Pharm ; 20(10): 5006-5018, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37656937

RESUMEN

Tenofovir disoproxil fumarate (TDF)-loaded bioadhesive chitosan microparticles (CM) were developed by an emulsification internal gelation technique. Among different batches produced, ECH-4 was found to display a high % entrapment efficiency (68.93 ± 1.76%) and sustained drug release of 88.05 ± 0.38% at 24 h. Solid state characterization of ECH-4 employing DSC and PXRD indicated that the TDF existed in an amorphous state as a solid-solid solution in chitosan. Scanning electron microscopy revealed CM of ECH-4 was spherical in shape with a rough surface topography. Laser scattering analysis using Malvern Master sizer indicated that particle size of ECH-4 was in the range of 0.52 ± 0.10 µm to 284.79 ± 21.42 µm with a surface-mean diameter of 12.41 ± 0.06 µm. Ex vivo mucoadhesion studies using rabbit mucosa as a substrate indicated that 10.34 ± 2.08% of CM of ECH-4 was retained at the end of 24 h. The microparticles of ECH-4 were incorporated into dispersible tablets (DT-TCM) intended for intravaginal administration, in view to arrest the pre-exposure transmission of HIV during sexual intercourse. In vitro release from the dispersible tablet (F3) into simulated vaginal fluid (pH 4.5) displayed a sustained release profile of TDF as 89.98 ± 1.61% of TDF was released at 24 h. The in vitro dissolution profile of the DT-TCM was found to be similar to that of TDF loaded CM with the values of f1 (difference factor) and f2 (similarity factor) being 1.52 and 78.02, respectively. Therefore, DT-TCM would be a promising novel drug delivery platform for pre-exposure prophylaxis against HIV.


Asunto(s)
Fármacos Anti-VIH , Quitosano , Infecciones por VIH , Profilaxis Pre-Exposición , Humanos , Femenino , Animales , Conejos , Tenofovir/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Fármacos Anti-VIH/uso terapéutico , Cremas, Espumas y Geles Vaginales/uso terapéutico , Profilaxis Pre-Exposición/métodos , Comprimidos
10.
Mol Pharm ; 20(3): 1624-1630, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36705398

RESUMEN

Gastroretentive dosage forms are intended to stay inside the stomach for a long period of time while releasing an active pharmaceutical ingredient. Such systems may offer significant benefits for numerous drugs compared to other sustained release systems, such as improved pharmacokinetics/bioavailability and reduced intake frequency and thereby improved adherence to the medical therapy. However, there is no gastroretentive product on the market with proven reliable gastroretentive properties in humans. A major obstacle is the motility pattern of the stomach in the fasting state in humans, which reliably ensures gastric emptying of even large indigestible objects into the small intestine. One promising approach to avoid gastric emptying is adhesion of the drug delivery system to the gastric mucosa. In order to achieve mucoadhesive properties, minitablets containing Carbopol 71G NF were developed and compared to minitablets without adhesive properties. In a specialized mucoadhesive test system, the adhesion time was prolonged for adhesive minitablets (240 min) compared to non-adhesive minitablets (30 min). The in vivo transit behavior was investigated using magnetic resonance imaging in 11 healthy volunteers in fasted state in a crossover setup. It was found that the gastric residence time (GRT) of the adhesive minitablets (median of 37.5 min with IQR = 22.5-52.5) was statistically significantly prolonged compared to the non-adhesive minitablets (median of 7.5 with IQR = 7.5-22.5), indicating a delay in gastric emptying by adhesion to the gastric mucosa. However, the system needs further improvement to create a clinical benefit. Furthermore, it was observed that for 9 of 22 administrations (three minitablets were given simultaneously with every administration), the minitablets were not emptied together but showed different GRTs.


Asunto(s)
Acrilatos , Sistemas de Liberación de Medicamentos , Humanos , Sistemas de Liberación de Medicamentos/métodos , Estómago , Mucosa Gástrica , Adhesivos , Vaciamiento Gástrico , Preparaciones de Acción Retardada
11.
Chem Pharm Bull (Tokyo) ; 71(1): 70-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36596514

RESUMEN

In this study, we developed a water-soluble complex-hydrogel viscosity-controlled formulation of amphotericin B (AmB). AmB is insoluble in water, but borax makes it soluble by forming a complex with AmB. Borax also forms complexes with poly(vinyl alcohol) (PVA) to produce viscous hydrogels. Furthermore, boric acid interacts with mucin expressed in corneal epithelial cells. Accordingly, by utilizing these properties of borax simultaneously, we prepared a water-soluble AmB complex-hydrogel with poly(vinyl alcohol)/borate (PVA-B-AmB), which is suitable for eye drops. PVA-B-AmB was easily prepared by simply mixing aqueous AmB solution dissolved in borax, PVA solution, and water. The 11B-NMR results suggested that PVA-B-AmB existed by bonding PVA and AmB via boronic acid. PVA-B-AmB (gel ratio = 0.55) has a viscosity of 18.3 ± 0.5 mPa·s and is suitable for ophthalmic formulations. This formulation exhibited sustained release of AmB of approximately 45% at 24 h. It was also shown that this formulation interacts with mucin. These results suggest that PVA-B-AmB can be used as a water-soluble AmB preparation suitable for ophthalmic use.


Asunto(s)
Anfotericina B , Hidrogeles , Anfotericina B/química , Alcohol Polivinílico/química , Boratos , Mucinas , Agua
12.
Sci Technol Adv Mater ; 24(1): 2175586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36896456

RESUMEN

We developed a new muco-adhesive hydrogel composed of cationic guar gum (CGG) and boric acid (BA). The CGG-BA precursor solution of 0.5-2% w/v concentration exhibited fluidity at low pH (3-5), while gelation occurred within 1 min at physiological pH (7-8) conditions. Scanning electron microscopy and Fourier-transform infrared spectroscopy results confirmed the change in physical and chemical behavior, respectively, with change in pH. The pH-responsive self-healing ability was analyzed through microscopy and rheology. CGG-BA hydrogels showed good self-healing property at pH 7.4. The in vitro biocompatibility test of the hydrogel studied using NIH3T3 and NHEK cells showed that it was non-toxic at concentrations of CGG-BA below 2% w/v. Ex vivo mucoadhesive tests confirmed the hydrogel's potential for use as a muco-adhesive. Burst pressure tests were conducted using pig esophageal mucosa and the results showed that at pH 7.4, 1% w/v CGG-BA self-healable hydrogel resisted about 8 ± 2 kPa pressure, comparable to that of Fibrin glue. This was higher than that at solution (pH 5) and brittle gel (pH 10) conditions. To confirm the good adhesive strength of the self-healable hydrogels, lap shear tests conducted, resulted in adhesive strengths measured in the range of 1.0 ± 0.5-2.0 ± 0.6 kPa, which was also comparable to fibrin glue control 1.8 ± 0.6 kPa. Hydrogel weight measurements showed that 40-80% gel lasted under physiological conditions for 10 h. The results suggest that CGG-BA hydrogel has potential as a pH responsive mucosal protectant biomaterial.

13.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047562

RESUMEN

Intranasal drug delivery is convenient and provides a high bioavailability but requires the use of mucoadhesive nanocarriers. Chitosan is a well-established polymer for mucoadhesive applications but can suffer from poor cytocompatibility and stability upon administration. In this work, we present a method to obtain stable and cytocompatible crosslinked chitosan nanoparticles. We used 2,6-pyridinedicarboxylic acid as a biocompatible crosslinker and compared the obtained particles with those prepared by ionotropic gelation using sodium tripolyphosphate. Nanoparticles were tested to evaluate the size and the surface charge, as well as their stability in storage conditions (4 °C), at the nasal cavity temperature (32 °C), and at the body temperature (37 °C). The crosslinked chitosan nanoparticles showed a size around 150 nm and a surface charge of 10.3 mV ± 0.9 mV, both compatible with the intranasal drug administration. Size and surface charge parameters did not significantly vary over time, indicating the good stability of these nanoparticles. We finally tested their cytocompatibility in vitro using SHSY5Y human neuroblastoma and RPMI 2650 human nasal epithelial cells, with positive results. In conclusion, the proposed synthetic system shows an interesting potential as a drug carrier for intranasal delivery.


Asunto(s)
Quitosano , Nanopartículas , Humanos , Administración Intranasal , Adhesivos , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos , Tamaño de la Partícula
14.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834134

RESUMEN

Due to their structural, morphological, and behavioral characteristics (e.g., large volume and adjustable pore size, wide functionalization possibilities, excellent biocompatibility, stability, and controlled biodegradation, the ability to protect cargoes against premature release and unwanted degradation), mesoporous silica particles (MSPs) are emerging as a promising diagnostic and delivery platform with a key role in the development of next-generation theranostics, nanovaccines, and formulations. In this study, MSPs with customized characteristics in-lab prepared were fully characterized and used as carriers for doxorubicin (DOX). The drug loading capacity and the release profile were evaluated in media with different pH values, mimicking the body conditions. The release data were fitted to Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin kinetic models to evaluate the release constant and the mechanism. The in vitro behavior of functionalized silica particles showed an enhanced cytotoxicity on human breast cancer (MCF-7) cells. Bio- and mucoadhesion on different substrates (synthetic cellulose membrane and porcine tissue mucosa)) and antimicrobial activity were successfully assessed, proving the ability of the OH- or the organically modified MSPs to act as antimicrobial and mucoadhesive platforms for drug delivery systems with synergistic effects.


Asunto(s)
Antiinfecciosos , Neoplasias de la Mama , Nanopartículas , Animales , Humanos , Porcinos , Femenino , Dióxido de Silicio/química , Nanopartículas/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias de la Mama/tratamiento farmacológico , Antiinfecciosos/uso terapéutico , Portadores de Fármacos/química , Porosidad , Liberación de Fármacos
15.
J Drug Deliv Sci Technol ; 79: 104082, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36530548

RESUMEN

In 2019 the emergence of SARS-COV-2 caused pandemic situation worldwide and claimed ∼6.4 M lives (WHO 2022). Favipiravir (FAV) is recommended as a therapy for Covid-19 which belongs to BCS class III with a short half-life of 2-5.5h. Thus, the objective of current study was the development of favipiravir loaded PLGA nanoparticles (NPs) by box-behnken design. Moreover, these NPs were entrapped in thermosensitive gel to increase the permeation through nasal route. The nanoparticles exhibit particle size of 175.6 ± 2 nm with >70 ± 0.5 %EE. NPs showed PDI (0.130) and zeta potential (-17.1 mV) suggesting homogeneity and stability of NPs. DSC, XRD, and FTIR studies concluded absence of any interaction of FAV and the excipients. SEM and AFM studies demonstrated spherical morphology of NPs with smooth surface. The NPs entrapped in-situ gel showed clarity and pH 5.5-6.1. The gelation temperature of NPs dispersed in-situ gel was found in the range of 35 °C -37 °C. The gel has viscosity in range of 34592-4568 cps. The texture analysis profile of gel showed good gelling properties. Dissolution study suggested a sustained release of FAV from NPs (24h) and NPs dispersed gel (32h) as compared to FAV solution (4h). The gel showed good mucoadhesion properties (9373.9 dyne/cm2). Ex-vivo permeation through nasal mucosa of goat elucidated NPs dispersed gel demonstrated significantly higher permeation than solution and NPs. Therefore, it would be a prospective formulation to combat Covid-19 infection with high patient compliance.

16.
AAPS PharmSciTech ; 24(7): 194, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752361

RESUMEN

The objective of this study was to generate fluconazole-loaded mucoadhesive nanogels to address the problem of hydrophobicity of fluconazole (FL). An inclusion complex was formulated with sulfhydryl-ß-CD (SH-ß-CD) followed by nanogels formation by a Schiff base reaction of carbopol 940 (CA-940) and gelatin (GE). For characterization, PXRD, FT-IR analysis, drug content, and phase solubility studies were performed. Similarly, nanogels were assessed for particle size, zeta potential, organoleptic, and spreadability studies. Moreover, drug contents, rheological, in vitro drug permeation, release kinetics, toxicity, and stability studies of nanogels were performed. Furthermore, mucoadhesive characteristics over the buccal mucosal membrane of the goat were evaluated. The nanogels formulated with a higher amount of CA-940 and subsequently loaded with the inclusion complexes of FL showed promising results. PXRD and FT-IR analysis confirmed the physical complexes by displaying a reduction in the intensity of peaks of FL. The average particle size of nanogels was in the range of 257 to 361 nm. The highest drug content of 88% was encapsulated within the FL-SH-ß-CD complex. All formulations at 0.5-1% concentration displayed no toxicity to the Caco-2 cell lines. Nanogels loaded with FL-SH-ß-CD complexes showed 18-fold improved mucoadhesion on the buccal mucous membrane of the goat when compared to simple nanogels. The in vitro permeation study exhibited significantly enhanced permeation and first-order concentration-dependent drug release was observed. On the bases of these findings, we can conclude that a mucoadhesive nanogel-based drug delivery system can be an ideal therapy for candidiasis.

17.
Mar Drugs ; 20(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35200680

RESUMEN

Neuroprotection in glaucoma using epoetin beta (EPOß) has yielded promising results. Our team has developed chitosan-hyaluronic acid nanoparticles (CS/HA) designed to carry EPOß into the ocular globe, improving the drug's mucoadhesion and retention time on the ocular surface to increase its bioavailability. In the present in vivo study, we explored the possibility of delivering EPOß to the eye through subconjunctival administration of chitosan-hyaluronic acid-EPOß (CS/HA-EPOß) nanoparticles. Healthy Wistar Hannover rats (n = 21) were split into 7 groups and underwent complete ophthalmological examinations, including electroretinography and microhematocrit evaluations before and after the subconjunctival administrations. CS/HA-EPOß nanoparticles were administered to the right eye (OD), and the contralateral eye (OS) served as control. At selected timepoints, animals from each group (n = 3) were euthanized, and both eyes were enucleated for histological evaluation (immunofluorescence and HE). No adverse ocular signs, no changes in the microhematocrits (≈45%), and no deviations in the electroretinographies in both photopic and scotopic exams were observed after the administrations (p < 0.05). Intraocular pressure remained in the physiological range during the assays (11-22 mmHg). EPOß was detected in the retina by immunofluorescence 12 h after the subconjunctival administration and remained detectable until day 21. We concluded that CS/HA nanoparticles could efficiently deliver EPOß into the retina, and this alternative was considered biologically safe. This nanoformulation could be a promising tool for treating retinopathies, namely optic nerve degeneration associated with glaucoma.


Asunto(s)
Quitosano/química , Eritropoyetina/farmacocinética , Ácido Hialurónico/química , Nanopartículas , Animales , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Eritropoyetina/administración & dosificación , Eritropoyetina/toxicidad , Ojo/metabolismo , Masculino , Ratas , Ratas Wistar , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/toxicidad , Retina/metabolismo , Factores de Tiempo
18.
Mar Drugs ; 20(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35323455

RESUMEN

Background: The present study aimed to fabricate surface-modified chitosan nanoparticles with two mucoadhesive polymers (sodium alginate and polyethylene glycol) to optimize their protein encapsulation efficiency, improve their mucoadhesion properties, and increase their stability in biological fluids. Method: Ionotropic gelation was employed to formulate chitosan nanoparticles and surface modification was performed at five different concentrations (0.05, 0.1, 0.2, 0.3, 0.4% w/v) of sodium alginate (ALG) and polyethylene glycol (PEG), with ovalbumin (OVA) used as a model protein antigen. The functional characteristics were examined by dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM)/scanning transmission electron microscopy (STEM). Stability was examined in the presence of simulated gastric and intestinal fluids, while mucoadhesive properties were evaluated by in vitro mucin binding and ex vivo adhesion on pig oral mucosa tissue. The impact of the formulation and dissolution process on the OVA structure was investigated by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and circular dichroism (CD). Results: The nanoparticles showed a uniform spherical morphology with a maximum protein encapsulation efficiency of 81%, size after OVA loading of between 200 and 400 nm and zeta potential from 10 to 29 mV. An in vitro drug release study suggested successful nanoparticle surface modification by ALG and PEG, showing gastric fluid stability (4 h) and a 96 h sustained OVA release in intestinal fluid, with the nanoparticles maintaining their conformational stability (SDS-PAGE and CD analyses) after release in the intestinal fluid. An in vitro mucin binding study indicated a significant increase in mucin binding from 41 to 63% in ALG-modified nanoparticles and a 27-49% increase in PEG-modified nanoparticles. The ex vivo mucoadhesion showed that the powdered particles adhered to the pig oral mucosa. Conclusion: The ALG and PEG surface modification of chitosan nanoparticles improved the particle stability in both simulated gastric and intestinal fluids and improved the mucoadhesive properties, therefore constituting a potential nanocarrier platform for mucosal protein vaccine delivery.


Asunto(s)
Quitosano/química , Portadores de Fármacos/química , Nanopartículas/química , Vacunas/química , Adhesividad , Administración Oral , Alginatos/química , Animales , Antígenos/química , Liberación de Fármacos , Estabilidad de Medicamentos , Jugo Gástrico/química , Secreciones Intestinales/química , Mucosa Bucal , Mucinas/química , Ovalbúmina/química , Polietilenglicoles/química , Propiedades de Superficie , Porcinos
19.
Drug Dev Ind Pharm ; 48(11): 602-610, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36369943

RESUMEN

OBJECTIVE: Fabrication and analyses of mucoadhesive patches made from chitosan oligosaccharide for the purpose of oromucosal drug delivery. SIGNIFICANCE: The mucosal epithelium in the oral cavity, consisting of buccal and sublingual epithelium, has gained significant attention in the last decade as an alternative anatomical site for systemic drug delivery that could potentially minimize the challenges of solid oral dosage and parenteral delivery. In this study, we have fabricated and tested drug-loaded chitosan oligosaccharide-based patches for the oromucosal drug delivery. METHODS: The chitosan oligosaccharide (with and without alginate) based patches were fabricated using the conventional solvent casting method and were analyzed for their swelling capacity, hydrophilicity, anti-cancer activity, in vitro drug release, and in vivo drug release activity. The in-house developed artificial saliva was used for the swelling study. RESULTS: Alginate-containing patches showed lesser swelling ability compared to the bare chitosan oligosaccharide-based patches. The former was also found to be more hydrophobic compared to the latter one. Both the unloaded patches restricted the growth of epithelial cancer cells indicating their anti-cancer behavior. In vitro drug release indicated a super case II release pattern while in vivo study demonstrated the release of drug from the patch into the plasma indicating the purpose of the fabricated patch. CONCLUSIONS: The chitosan oligosaccharide-based mucoadhesive hydrogel patch fabricated in this study can be highly suitable for possible translational purposes.


Asunto(s)
Quitosano , Quitosano/química , Mucosa Bucal , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles , Oligosacáridos , Alginatos
20.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163377

RESUMEN

The sublingual mucosa is an attractive route for drug delivery, although challenged by a continuous flow of saliva that leads to a loss of drug by swallowing. It is of great benefit that drugs absorbed across the sublingual mucosa avoid exposure to the harsh environment of the gastro-intestinal lumen; this is especially beneficial for drugs of low physicochemical stability such as therapeutic peptides. In this study, a two-layered hybrid drug delivery system was developed for the sublingual delivery of the therapeutic peptide desmopressin. It consisted of peptide-loaded mucoadhesive electrospun chitosan/polyethylene oxide-based nanofibers (mean diameter of 183 ± 20 nm) and a saliva-repelling backing film to promote unidirectional release towards the mucosa. Desmopressin was released from the nanofiber-based hybrid system (approximately 80% of the loaded peptide was released within 45 min) in a unidirectional manner in vitro. Importantly, the nanofiber-film hybrid system protected the peptide from wash-out, as demonstrated in an ex vivo flow retention model with porcine sublingual mucosal tissue. Approximately 90% of the loaded desmopressin was retained at the surface of the ex vivo porcine sublingual mucosa after 15 min of exposure to flow rates representing salivary flow.


Asunto(s)
Desamino Arginina Vasopresina/farmacología , Moco/química , Nanofibras/química , Nanotecnología , Adhesividad , Animales , Preparaciones de Acción Retardada/farmacología , Relación Dosis-Respuesta a Droga , Nanofibras/ultraestructura , Saliva , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA