Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 116(1): 110765, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113975

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive bile duct malignancy with poor prognosis. To improve our understanding of the biological characteristics of CCA and develop effective therapies, appropriate preclinical models are required. Here, we established and characterized 12 novel patient-derived primary cancer cell (PDPC) models using multi-region sampling. At the genomic level of PDPCs, we observed not only commonly mutated genes, such as TP53, JAK3, and KMT2C, consistent with the reports in CCA, but also specific mutation patterns in each cell line. In addition, specific expression patterns with distinct biological functions and pathways involved were also observed in the PDPCs at the transcriptomic level. Furthermore, the drug-sensitivity results revealed that the PDPCs exhibited different responses to the six commonly used compounds. Our findings indicate that the established PDPCs can serve as novel in vitro reliable models to provide a crucial molecular basis for improving the understanding of tumorigenesis and its treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/metabolismo , Perfilación de la Expresión Génica/métodos , Neoplasias de los Conductos Biliares/metabolismo , Línea Celular Tumoral , Genómica , Conductos Biliares Intrahepáticos/metabolismo
2.
BMC Cancer ; 23(1): 118, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737737

RESUMEN

BACKGROUND: Conventional differential expression (DE) testing compares the grouped mean value of tumour samples to the grouped mean value of the normal samples, and may miss out dysregulated genes in small subgroup of patients. This is especially so for highly heterogeneous cancer like Hepatocellular Carcinoma (HCC). METHODS: Using multi-region sampled RNA-seq data of 90 patients, we performed patient-specific differential expression testing, together with the patients' matched adjacent normal samples. RESULTS: Comparing the results from conventional DE analysis and patient-specific DE analyses, we show that the conventional DE analysis omits some genes due to high inter-individual variability present in both tumour and normal tissues. Dysregulated genes shared in small subgroup of patients were useful in stratifying patients, and presented differential prognosis. We also showed that the target genes of some of the current targeted agents used in HCC exhibited highly individualistic dysregulation pattern, which may explain the poor response rate. DISCUSSION/CONCLUSION: Our results highlight the importance of identifying patient-specific DE genes, with its potential to provide clinically valuable insights into patient subgroups for applications in precision medicine.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica
3.
Cancers (Basel) ; 14(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326534

RESUMEN

Human solid malignancies harbour a heterogeneous set of cells with distinct genotypes and phenotypes. This heterogeneity is installed at multiple levels. A biological diversity is commonly observed between tumours from different patients (inter-tumour heterogeneity) and cannot be fully captured by the current consensus molecular classifications for specific cancers. To extend the complexity in cancer, there are substantial differences from cell to cell within an individual tumour (intra-tumour heterogeneity, ITH) and the features of cancer cells evolve in space and time. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity with an emphasis on ITH and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of ITH in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate ITH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA