RESUMEN
Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.
Asunto(s)
Canales Iónicos , Canales de Sodio , Humanos , Animales , Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Sodio/metabolismo , Proteínas de la MembranaRESUMEN
The sodium (Na+) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (NaVs and CaVs, respectively). Unlike NaVs and CaVs, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145, and Y1436) that block these openings. Structural data suggest that occluded fenestrations underlie the pharmacological resistance of NALCN, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned residues with alanine (AAAA) and compared the effects of NaV, CaV, and NALCN blockers on both wild-type (WT) and AAAA channels. Most compounds behaved in a similar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cavity through distinct fenestrations, implying structural specificity to their modes of access. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug binding site(s) within the pore region. Intrigued by the activity of 2-APB and its analogues, we tested compounds containing the diphenylmethane/amine moiety on WT channels. We identified clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the pharmacological resistance of NALCN, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties.
Asunto(s)
Fenitoína , Sitios de Unión , Humanos , Fenitoína/metabolismo , Fenitoína/farmacología , Compuestos de Boro/química , Compuestos de Boro/farmacología , Compuestos de Boro/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/genética , Células HEK293 , Animales , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/química , Proteínas de la MembranaRESUMEN
We tested the role of the sodium leak channel, NALCN, in pacemaking of dopaminergic neuron (DAN) subpopulations from adult male and female mice. In situ hybridization revealed NALCN RNA in all DANs, with lower abundance in medial ventral tegmental area (VTA) relative to substantia nigra pars compacta (SNc). Despite lower relative abundance of NALCN, we found that acute pharmacological blockade of NALCN in medial VTA DANs slowed pacemaking by 49.08%. We also examined the electrophysiological properties of projection-defined VTA DAN subpopulations identified by retrograde labeling. Inhibition of NALCN reduced pacemaking in DANs projecting to medial nucleus accumbens (NAc) and others projecting to lateral NAc by 70.74% and 31.98%, respectively, suggesting that NALCN is a primary driver of pacemaking in VTA DANs. In SNc DANs, potentiating NALCN by lowering extracellular calcium concentration speeded pacemaking in wildtype but not NALCN conditional knockout mice, demonstrating functional presence of NALCN. In contrast to VTA DANs, however, pacemaking in SNc DANs was unaffected by inhibition of NALCN. Instead, we found that inhibition of NALCN increased the gain of frequency-current plots at firing frequencies slower than spontaneous firing. Similarly, inhibition of the hyperpolarization-activated cyclic nucleotide-gated (HCN) conductance increased gain but had little effect on pacemaking. Interestingly, simultaneous inhibition of NALCN and HCN resulted in significant reduction in pacemaker rate. Thus, we found NALCN makes substantial contributions to driving pacemaking in VTA DAN subpopulations. In SNc DANs, NALCN is not critical for pacemaking but inhibition of NALCN makes cells more sensitive to hyperpolarizing stimuli.SIGNIFICANCE STATEMENT Pacemaking in midbrain dopaminergic neurons (DAN) relies on multiple subthreshold conductances, including a sodium leak. Whether the sodium leak channel, NALCN, contributes to pacemaking in DANs located in the VTA and the SNc has not yet been determined. Using electrophysiology and pharmacology, we show that NALCN plays a prominent role in driving pacemaking in projection-defined VTA DAN subpopulations. By contrast, pacemaking in SNc neurons does not rely on NALCN. Instead, the presence of NALCN regulates the excitability of SNc DANs by reducing the gain of the neuron's response to inhibitory stimuli. Together, these findings will inform future efforts to obtain DAN subpopulation-specific treatments for use in neuropsychiatric disorders.
Asunto(s)
Neuronas Dopaminérgicas , Canales de Sodio , Área Tegmental Ventral , Animales , Femenino , Masculino , Ratones , Neuronas Dopaminérgicas/fisiología , Canales Iónicos , Proteínas de la Membrana , Mesencéfalo , Ratones Noqueados , Porción Compacta de la Sustancia Negra , Canales de Sodio/metabolismo , Canales de Sodio/fisiología , Sustancia Negra/fisiología , Área Tegmental Ventral/fisiologíaRESUMEN
Neurons in the suprachiasmatic nucleus (SCN) generate circadian changes in the rates of spontaneous action potential firing that regulate and synchronize daily rhythms in physiology and behavior. Considerable evidence suggests that daily rhythms in the repetitive firing rates (higher during the day than at night) of SCN neurons are mediated by changes in subthreshold potassium (K+) conductance(s). An alternative "bicycle" model for circadian regulation of membrane excitability in clock neurons, however, suggests that an increase in NALCN-encoded sodium (Na+) leak conductance underlies daytime increases in firing rates. The experiments reported here explored the role of Na+ leak currents in regulating daytime and nighttime repetitive firing rates in identified adult male and female mouse SCN neurons: vasoactive intestinal peptide-expressing (VIP+), neuromedin S-expressing (NMS+) and gastrin-releasing peptide-expressing (GRP+) cells. Whole-cell recordings from VIP+, NMS+, and GRP+ neurons in acute SCN slices revealed that Na+ leak current amplitudes/densities are similar during the day and at night, but have a larger impact on membrane potentials in daytime neurons. Additional experiments, using an in vivo conditional knockout approach, demonstrated that NALCN-encoded Na+ currents selectively regulate daytime repetitive firing rates of adult SCN neurons. Dynamic clamp-mediated manipulation revealed that the effects of NALCN-encoded Na+ currents on the repetitive firing rates of SCN neurons depend on K+ current-driven changes in input resistances. Together, these findings demonstrate that NALCN-encoded Na+ leak channels contribute to regulating daily rhythms in the excitability of SCN neurons by a mechanism that depends on K+ current-mediated rhythmic changes in intrinsic membrane properties.SIGNIFICANCE STATEMENT Elucidating the ionic mechanisms responsible for generating daily rhythms in the rates of spontaneous action potential firing of neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals, is an important step toward understanding how the molecular clock controls circadian rhythms in physiology and behavior. While numerous studies have focused on identifying subthreshold K+ channel(s) that mediate day-night changes in the firing rates of SCN neurons, a role for Na+ leak currents has also been suggested. The results of the experiments presented here demonstrate that NALCN-encoded Na+ leak currents differentially modulate daily rhythms in the daytime/nighttime repetitive firing rates of SCN neurons as a consequence of rhythmic changes in subthreshold K+ currents.
Asunto(s)
Neuronas del Núcleo Supraquiasmático , Ratones , Masculino , Femenino , Animales , Potenciales de la Membrana/fisiología , Potenciales de Acción/fisiología , Ritmo Circadiano/fisiología , Neuronas/fisiología , Núcleo Supraquiasmático/fisiología , Mamíferos , Canales Iónicos , Proteínas de la MembranaRESUMEN
Many neurons in the mammalian brain show pacemaking activity: rhythmic generation of action potentials in the absence of sensory or synaptic input. Slow pacemaking of neurons releasing modulatory transmitters is easy to rationalize. More surprisingly, many neurons in the motor system also show pacemaking activity, often rapid, including cerebellar Purkinje neurons that fire spontaneously at 20-100 Hz, as well as key neurons in the basal ganglia, including subthalamic nucleus neurons and globus pallidus neurons. Although the spontaneous rhythmic firing of pacemaking neurons is phenomenologically similar to cardiac pacemaking, the underlying ionic mechanism in most neurons is quite different than for cardiac pacemaking. Few spontaneously active neurons rely on HCN 'pacemaker' channels for their activity. Most commonly, a central element is 'persistent' sodium current, steady-state subthreshold current carried by the same voltage-dependent sodium channels that underlie fast action potentials. Persistent sodium current is a steeply voltage-dependent current with a midpoint near -60 mV, which results in regenerative spontaneous depolarization once it produces a net inward current when summed with all other background currents, often at voltages as negative as -70 mV. This 'engine' of pacemaking is present in almost all neurons and must be held in check in non-pacemaking neurons by sufficiently large competing outward currents from background potassium channels. The intrinsic propensity of neurons to fire spontaneously underlies key normal functions such as respiration and generates the complex background oscillatory circuits revealed in EEGs, but can also produce out-of-control oscillations of overall brain function in epilepsy, ataxia and tremor.
RESUMEN
It is well recognized that changes in the extracellular concentration of calcium ions influence the excitability of neurons, yet what mechanism(s) mediate these effects is still a matter of debate. Using patch-clamp recordings from rat hippocampal CA1 pyramidal neurons, we examined the contribution of G-proteins and intracellular calcium-dependent signaling mechanisms to changes in intrinsic excitability evoked by altering the extracellular calcium concentration from physiological (1.2 mM) to a commonly used experimental (2 mM) level. We find that the inhibitory effect on intrinsic excitability of calcium ions is mainly expressed as an increased threshold for action potential firing (with no significant effect on resting membrane potential) that is not blocked by either the G-protein inhibitor GDPßS or the calcium chelator BAPTA. Our results therefore argue that in the concentration range studied, G-protein coupled calcium-sensing receptors, non-selective cation conductances, and intracellular calcium signaling pathways are not involved in mediating the effect of extracellular calcium ions on intrinsic excitability. Analysis of the derivative of the action potential, dV/dt versus membrane potential, indicates a current shift towards more depolarized membrane potentials at the higher calcium concentration. Our results are thus consistent with a mechanism in which extracellular calcium ions act directly on the voltage-gated sodium channels by neutralizing negative charges on the extracellular surface of these channels to modulate the threshold for action potential activation.
RESUMEN
BACKGROUND: Endometriosis is a common, chronic disease among fertile-aged women. Disease course may be highly invasive, requiring extensive surgery. The etiology of endometriosis remains elusive, though a high level of heritability is well established. Several low-penetrance predisposing loci have been identified, but high-risk susceptibility remains undetermined. Endometriosis is known to increase the risk of epithelial ovarian cancers, especially of endometrioid and clear cell types. Here, we have analyzed a Finnish family where four women have been diagnosed with surgically verified, severely symptomatic endometriosis and two of the patients also with high-grade serous carcinoma. RESULTS: Whole-exome sequencing revealed three rare candidate predisposing variants segregating with endometriosis. The variants were c.1238C>T, p.(Pro413Leu) in FGFR4, c.5065C>T, p.(Arg1689Trp) in NALCN, and c.2086G>A, p.(Val696Met) in NAV2. The only variant predicted deleterious by in silico tools was the one in FGFR4. Further screening of the variants in 92 Finnish endometriosis and in 19 endometriosis-ovarian cancer patients did not reveal additional carriers. Histopathology, positive p53 immunostaining, and genetic analysis supported the high-grade serous subtype of the two tumors in the family. CONCLUSIONS: Here, we provide FGFR4, NALCN, and NAV2 as novel high-risk candidate genes for familial endometriosis. Our results also support the association of endometriosis with high-grade serous carcinoma. Further studies are required to validate the findings and to reveal the exact pathogenesis mechanisms of endometriosis. Elucidating the genetic background of endometriosis defines the etiology of the disease and provides opportunities for expedited diagnostics and personalized treatments.
Asunto(s)
Carcinoma , Endometriosis , Neoplasias Ováricas , Humanos , Femenino , Anciano , Endometriosis/genética , Predisposición Genética a la Enfermedad , Secuenciación del Exoma , Neoplasias Ováricas/genética , Neoplasias Ováricas/patologíaRESUMEN
BACKGROUND: Analgesia is an important effect of volatile anaesthetics, for which the spinal cord is a critical neural target. However, how supraspinal mechanisms modulate analgesic potency of volatile anaesthetics is not clear. We investigated the contribution of the central amygdala (CeA) to the analgesic effects of isoflurane and sevoflurane. METHODS: Analgesic potencies of volatile anaesthetics were tested during optogenetic and chemogenetic inhibition of CeA neurones. In vivo calcium imaging was used to measure neuronal activities of CeA neuronal subtypes under volatile anaesthesia. Contributions of the sodium leak channel (NALCN) in GABAergic CeA (CeAGABA) neurones to analgesic effects of volatile anaesthetics were explored by specific NALCN knockdown. Electrophysiological recordings on acute brain slices were applied to measure volatile anaesthetic modulation of CeA neuronal activity by NALCN. RESULTS: Optogenetic or chemogenetic silencing CeA neurones reduced the analgesic effects of isoflurane or sevoflurane in vivo. The calcium signals of CeAGABA neurones increased during exposure to isoflurane or sevoflurane at analgesic concentrations. Knockdown of NALCN in CeAGABA neurones attenuated antinociceptive effects of isoflurane, sevoflurane, or both. For example, mean concentrations of isoflurane, sevoflurane, or both that induced immobility to tail-flick stimuli were significantly increased (isoflurane: 1.17 [0.05] vol% vs 1.24 [0.04] vol%, P=0.01; sevoflurane: 2.65 [0.07] vol% vs 2.81 [0.07] vol%; P<0.001). In brain slices, isoflurane, sevoflurane, or both at clinical concentrations increased NALCN-mediated holding currents and conductance in CeAGABA neurones, which increased excitability of CeAGABA neurones in an NALCN-dependent manner. CONCLUSIONS: The analgesic potencies of volatile anaesthetics are partially mediated by modulation of NALCN in CeAGABA neurones.
Asunto(s)
Anestésicos por Inhalación , Núcleo Amigdalino Central , Isoflurano , Sevoflurano , Animales , Anestésicos por Inhalación/farmacología , Sevoflurano/farmacología , Ratones , Isoflurano/farmacología , Núcleo Amigdalino Central/efectos de los fármacos , Núcleo Amigdalino Central/metabolismo , Masculino , Ratones Endogámicos C57BL , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Analgésicos/farmacologíaRESUMEN
INTRODUCTION: Neurodevelopmental disorders (NDDs) refer to a broad range of diseases including developmental delay, intellectual disability, epilepsy, autism spectrum disorders, and attention-deficit/hyperactivity disorder caused by dysfunctions in tightly controlled brain development. The genetic backgrounds of NDDs are quite heterogeneous; to date, recessive or dominant variations in numerous genes have been implicated. Herein, we present a large consanguineous family from Turkiye, who has been suffering from NDDs with two distinct clinical presentations. METHODS AND RESULTS: Combined in-depth genetic approaches led us to identify a homozygous frameshift variant in NALCN related to NDD and expansion of dodecamer repeat in CSTB related to Unverricht-Lundborg disease (ULD). Additionally, we sought to functionally analyze the NALCN variant in terms of mRNA expression level and current alteration. We have both detected a decrease in the level of premature stop codon-bearing mRNA possibly through nonsense-mediated mRNA decay mechanism and also an increased current in patch-clamp recordings for the expressed truncated protein. CONCLUSION: In conclusion, increased consanguinity may lead to the revealing of distinct rare neurogenetic diseases in a single family. Exome sequencing is generally considered the first-tier diagnostic test in individuals with NDD. Yet we underline the fact that customized approaches other than exome sequencing may be used as in the case of ULD to aid diagnosis and better genetic counseling.
Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Síndrome de Unverricht-Lundborg , Humanos , Consanguinidad , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Síndrome de Unverricht-Lundborg/genética , Discapacidad Intelectual/genética , Codón sin SentidoRESUMEN
In multipolar nigral dopamine (DA) neurons, the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. However, the causal link between them is unknown. Here we report that the proximal dendritic localization of NALCN underlies pacemaking and burst firing in DA neurons. Our morphological analysis of nigral DA neurons reveals that TRPC3 is ubiquitously expressed in the whole somatodendritic compartment, but NALCN is localized within the PDCs. Blocking either TRPC3 or NALCN channels abolished pacemaking. However, only blocking NALCN, not TRPC3, degraded burst discharges. Furthermore, local glutamate uncaging readily induced burst discharges within the PDCs, compared with other parts of the neuron, and NALCN channel inhibition dissipated burst generation, indicating the importance of NALCN to the high excitability of PDCs. Therefore, we conclude that PDCs serve as a common base for tonic and burst firing in nigral DA neurons. KEY POINTS: Midbrain dopamine (DA) neurons are slow pacemakers that can generate tonic and burst firings, and the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. We find that slow tonic firing depends on the basal activity of both the NALCN and TRPC3 channels, but that burst firing does not require TRPC3 channels but relies only on NALCN channels. We find that TRPC3 is ubiquitously expressed in the entire somatodendritic compartment, but that NALCN exists only within the PDCs in nigral DA neurons. We show that NALCN channel localization confers high excitability on PDCs and is essential for burst generation in nigral DA neurons. These results suggest that PDCs serve as a common base for tonic and burst firing in nigral DA neurons.
Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo , Sustancia Negra/metabolismo , Mesencéfalo , Potenciales de AcciónRESUMEN
The sodium leak channel (NALCN) gene encodes a sodium leak channel that plays an important role in the regulation of the resting membrane potential and the control of neuronal excitability. Mutations in the NALCN gene have been reported in patients with infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF) and congenital contractures of the limbs and face with hypotonia and developmental delay (CLIFAHDD syndrome). We describe the case of a father with drug-resistant left temporo-orbitofrontal epilepsy and his son with mildly-symptomatic temporal epilepsy (only recurrent déjà vu auras) whose genetic panels identified a likely pathogenic deletion of exon 27 on the NALCN gene. Our study helps broaden the clinical spectrum of diseases associated with mutations in the NALCN gene.
Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Canales Iónicos , Hipotonía Muscular/genética , Epilepsia del Lóbulo Temporal/genética , Canales de Sodio/genética , Epilepsia/genética , Sodio , Proteínas de la Membrana/genéticaRESUMEN
NALCN channelosome complex contributes to maintaining resting membrane potential. The complex has four domains including two intracellular domains (UNC79 and UNC80), one transmembrane domain (NALCN) and one extracellular domain (FAM155A). Mutations in UNC80 were previously linked to infantile hypotonia with psychomotor retardation and characteristics facies 2. A 6-year-old male with neurodevelopmental disorder was referred for clinical exome sequencing. Sanger sequencing was conducted for variant confirmation and segregation analysis. The index had severe to profound neurodevelopmental delay, progressive failure to thrive, severe constipation and reflux, and sociable skills. Trio exome sequencing identified a homozygous c.6495G > A change causing p.Trp2165Ter in UNC80 in the proband. The variant was novel and predicted to be deleterious. We reported a novel nonsense mutation in UNC80. Our case also established the association between, and sociable skills and severe gastrointestinal problems.
Asunto(s)
Codón sin Sentido , Proteínas de la Membrana , Niño , Humanos , Masculino , Proteínas Portadoras/genética , Codón sin Sentido/genética , Proteínas de la Membrana/genética , Hipotonía Muscular/genética , MutaciónRESUMEN
Infantile hypotonia with psychomotor retardation and characteristic facies 1 (IHPRF1) is caused by biallelic mutations in the NALCN gene, the major ion channel responsible for the background Na + conduction in neurons. Through whole-exome sequencing (WES), we report three novel homozygous variants in three families, including c.1434 + 1G > A, c.3269G > A, and c.2648G > T, which are confirmed and segregated by Sanger sequencing. Consequently, intron 12's highly conserved splice donor location is disrupted by the pathogenic c.1434 + 1G > A variation, most likely causing the protein to degrade through nonsense-mediated decay (NMD). Subsequently, a premature stop codon is thus generated at amino acid 1090 of the protein as a result of the pathogenic c.3269G > A; p.W1090* variation, resulting in NMD or truncated protein production. Lastly, the missense mutation c.2648G > T; p.G883V can play a critical role in the interplay of functional domains. This study introduces recurrent urinary tract infections for the first time, broadening the phenotypic range of IHPRF1 syndrome in addition to the genotypic spectrum. This trait may result from insufficient bladder emptying, which may be related to the NALCN channelosome's function in background Na + conduction. This work advances knowledge about the molecular genetic underpinnings of IHPRF1 and introduces a novel phenotype through the widespread use of whole exome sequencing.
Asunto(s)
Canales de Sodio , Infecciones Urinarias , Humanos , Canales de Sodio/genética , Canales de Sodio/metabolismo , Canales Iónicos/genética , Proteínas de la Membrana/genética , Fenotipo , Mutación Missense , Síndrome , Infecciones Urinarias/genética , Mutación/genéticaRESUMEN
Elevated excitability of glutamatergic neurons in the lateral parabrachial nucleus (PBL) is associated with the pathogenesis of inflammatory pain, but the underlying molecular mechanisms are not fully understood. Sodium leak channel (NALCN) is widely expressed in the central nervous system and regulates neuronal excitability. In this study, chemogenetic manipulation was used to explore the association between the activity of PBL glutamatergic neurons and pain thresholds. Complete Freund's adjuvant (CFA) was used to construct an inflammatory pain model in mice. Pain behaviour was tested using von Frey filaments and Hargreaves tests. Local field potential (LFP) was used to record the activity of PBL glutamatergic neurons. Gene knockdown techniques were used to investigate the role of NALCN in inflammatory pain. We further explored the downstream projections of PBL using cis-trans-synaptic tracer virus. The results showed that chemogenetic inhibition of PBL glutamatergic neurons increased pain thresholds in mice, whereas chemogenetic activation produced the opposite results. CFA plantar modelling increased the number of C-Fos protein and NALCN expression in PBL glutamatergic neurons. Knockdown of NALCN in PBL glutamatergic neurons alleviated CFA-induced pain. CFA injection induced C-Fos protein expression in central nucleus amygdala (CeA) neurons, which was suppressed by NALCN knockdown in PBL glutamatergic neurons. Therefore, elevated expression of NALCN in PBL glutamatergic neurons contributes to the development of inflammatory pain via PBL-CeA projections.
Asunto(s)
Núcleos Parabraquiales , Ratones , Animales , Núcleos Parabraquiales/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Canales de Sodio/metabolismo , Dolor/metabolismo , Neuronas/metabolismo , Sodio/metabolismoRESUMEN
In whole-cell voltage clamped bovine adrenal chromaffin cells maintained at a holding potential of -70 mV, a single 5 ns, 5 MV/m pulse elicited an inward current carried mainly by Na+ that displayed inward rectification and a reversal potential near -3 mV, a voltage consistent with a non-selective cation current. The broad-spectrum inhibitors of transient receptor potential (TRP) channels, La3+ (10 µM), Gd3+ (10 µM), SKF-96365 (50 µM) and 2-aminoethoxydiphenyl borane (2-APB; 100 µM), inhibited the current similarly by â¼72%, â¼83%, â¼68% and â¼76%, respectively. Depleting membrane cholesterol with methyl-ß-cyclodextrin (MßCD; 1-6 mg/ml) or inhibiting phosphatidylinositol 4,5-bisphosphate (PIP2) synthesis with wortmannin (20 and 40 µM) produced a similar level of inhibition on the NEP-induced conductance as the broad spectrum TRP channel inhibitors. Moreover, no additive inhibitory effect was detected by combining MßCD (3 mg/ml), wortmannin (20 µM) and La3+ (10 µM), suggesting that each agent targeted different levels of the same pathway to exert a full effect. RT-PCR experiments revealed robust expression at the mRNA level of TRPC4, TRPC5 and TRPM7 channels for which specific blockers were available. Whereas the TRPM7 blocker FTY720 had no effect, the TRPC4/5 channel inhibitor M084 (20 µM) blocked the conductance by â¼50%, indicating that TRPC4 and/or TRPC5 channel(s) may be partially involved in mediating the NEP-induced current. CP-96345 (20 µM), a specific blocker of the sodium leak current channel (NALCN), also reduced the NEP-induced current. The inhibition was â¼30% and additive to that caused by the TRPC4/5 blocker M084. RT-PCR experiments confirmed the expression of this channel at the mRNA level. Taken as a whole, these data provide evidence that a large fraction of the current evoked by a 5 ns pulse in adrenal chromaffin cells may be carried by both TRPC4/5 channels and the NALCN channel. Understanding the biophysical properties of the NEP-elicited conductance in a neural-type cell will be extremely valuable for the future development of NEP stimulation approaches for neuromodulation.
Asunto(s)
Células Cromafines , Canales Catiónicos TRPM , Animales , Cationes/metabolismo , Bovinos , Células Cromafines/metabolismo , Potenciales de la Membrana , ARN Mensajero/metabolismo , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPM/metabolismo , Wortmanina/metabolismo , Wortmanina/farmacologíaRESUMEN
KEY POINTS: Mouse chromaffin cells in acute adrenal slices exhibit two distinct spiking patterns, a repetitive mode and a bursting mode. A sodium background conductance operates at rest as demonstrated by the membrane hyperpolarization evoked by a low Na+ -containing extracellular saline. This sodium background current is insensitive to TTX, is not blocked by Cs+ ions and displays a linear I-V relationship at potentials close to chromaffin cell resting potential. Its properties are reminiscent of those of the sodium leak channel NALCN. In the adrenal gland, Nalcn mRNA is selectively expressed in chromaffin cells. The study fosters our understanding of how the spiking pattern of chromaffin cells is regulated and adds a sodium background conductance to the list of players involved in the stimulus-secretion coupling of the adrenomedullary tissue. ABSTRACT: Chromaffin cells (CCs) are the master neuroendocrine units for the secretory function of the adrenal medulla and a finely-tuned regulation of their electrical activity is required for appropriate catecholamine secretion in response to the organismal demand. Here, we aim at deciphering how the spiking pattern of mouse CCs is regulated by the ion conductances operating near the resting membrane potential (RMP). At RMP, mouse CCs display a composite firing pattern, alternating between active periods composed of action potentials spiking with a regular or a bursting mode, and silent periods. RMP is sensitive to changes in extracellular sodium concentration, and a low Na+ -containing saline hyperpolarizes the membrane, regardless of the discharge pattern. This RMP drive reflects the contribution of a depolarizing conductance, which is (i) not blocked by tetrodotoxin or caesium, (ii) displays a linear I-V relationship between -110 and -40 mV, and (iii) is carried by cations with a conductance sequence gNa > gK > gCs . These biophysical attributes, together with the expression of the sodium-leak channel Nalcn transcript in CCs, state credible the contribution of NALCN. This inaugural report opens new research routes in the field of CC stimulus-secretion coupling, and extends the inventory of tissues in which NALCN is expressed to neuroendocrine glands.
Asunto(s)
Médula Suprarrenal , Células Cromafines , Potenciales de Acción , Animales , Iones , Ratones , SodioRESUMEN
Yeasts and fungi generate Ca2+ signals in response to environmental stresses through Ca2+ channels essentially composed of Cch1 and Mid1. Cch1 is homologous to the pore-forming α1 subunit of animal voltage-gated Ca2+ channels (VGCCs) and sodium leak channels nonselective (NALCNs), whereas Mid1 is a membrane-associated protein similar to the regulatory α2/δ subunit of VGCCs and the regulatory subunit of NALCNs. Although the physiological roles of Cch1/Mid1 channels are known, their molecular regulation remains elusive, including subunit interactions regulating channel functionality. Herein, we identify amino acid residues involved in interactions between the pore-forming Cch1 subunit and the essential regulatory Mid1 subunit of Saccharomyces cerevisiaeIn vitro mutagenesis followed by functional assays and co-immunoprecipitation experiments reveal that three residues present in a specific extracellular loop in the repeat III region of Cch1 are required for interaction with Mid1, and that one essential Mid1 residue is required for interaction with Cch1. Importantly, these residues are necessary for Ca2+ channel activity and are highly conserved in fungal and animal counterparts. We discuss that this unique subunit interaction-based regulatory mechanism for Cch1 differs from that of VGCCs/NALCNs.
Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Canales de Calcio/genética , Glicoproteínas de Membrana/genética , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Crisponi/cold-induced sweating syndrome (CS/CISS) is an autosomal recessive disease characterized by hyperthermia, camptodactyly, feeding and respiratory difficulties often leading to sudden death in the neonatal period. The affected individuals who survived the first critical years of life, develop cold-induced sweating and scoliosis in early childhood. The disease is caused by variants in the CRLF1 or in the CLCF1 gene. Both proteins form a heterodimeric complex that acts on cells expressing the ciliary neurotrophic factor receptor (CNTFR). CS/CISS belongs to the family of "CNTFR-related disorders" showing a similar clinical phenotype. Recently, variants in other genes, including KLHL7, NALCN, MAGEL2 and SCN2A, previously linked to other diseases, have been associated with a CS/CISS-like phenotype. Therefore, retinitis pigmentosa and Bohring-Optiz syndrome-like (KLHL7), Congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome (NALCN), Chitayat-Hall/Schaaf-Yang syndrome (MAGEL2), and early infantile epileptic encephalopathy-11 syndrome (SCN2A) all share an overlapping phenotype with CS/CISS, especially in the neonatal period. This review aims to summarize the existing literature on CS/CISS, focusing on the current state of differential diagnosis, pathogenesis and treatment concepts in order to achieve an accurate and rapid diagnosis. This will improve patient management and enable specific treatments for the affected individuals.
Asunto(s)
Craneosinostosis/diagnóstico , Citocinas/genética , Deformidades Congénitas de la Mano/diagnóstico , Hiperhidrosis/diagnóstico , Discapacidad Intelectual/diagnóstico , Receptores de Citocinas/genética , Trismo/congénito , Subunidad alfa del Receptor del Factor Neurotrófico Ciliar/genética , Craneosinostosis/genética , Craneosinostosis/patología , Muerte Súbita/patología , Diagnóstico Diferencial , Facies , Deformidades Congénitas de la Mano/patología , Deformidades Congénitas de la Mano/terapia , Humanos , Hiperhidrosis/patología , Hiperhidrosis/terapia , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Escoliosis/diagnóstico , Trismo/diagnóstico , Trismo/patología , Trismo/terapiaRESUMEN
NALCN encodes a sodium ion leak channel expressed in the nervous system that conducts a persistent influx of sodium ions to facilitate action potential formation. Homozygous or compound heterozygous loss of function variants in NALCN cause infantile hypotonia with psychomotor retardation and characteristic facies-1 (IHPRF1; OMIM 615419). Through exome and Sanger sequencing, we found two siblings of Afro-Caribbean ancestry who are homozygous for a known NALCN pathogenic variant, p.Arg735Ter, leading to failure to thrive, severe hypotonia, and dolichocephaly. The older sibling died suddenly without a known etiology after evaluation but before molecular diagnosis. An international collaboration originating from a resource limited Caribbean island facilitated molecular diagnosis. Due to its small population, geographical isolation, and low socioeconomic status, the island lacks many specialty medical services, including clinical genetics. Descriptions of genetic disorders affecting individuals of Afro-Caribbean ancestry are rarely reported in the medical literature. Diagnosis of IHPRF1 is important, as individuals with biallelic pathogenic NALCN variants are severely affected and potentially are at risk for cardiorespiratory arrest. Additionally, knowing the pathogenic variants allows the possibility of prenatal or preimplantation genetic diagnosis.
Asunto(s)
Predisposición Genética a la Enfermedad , Canales Iónicos/genética , Proteínas de la Membrana/genética , Hipotonía Muscular/genética , Trastornos Psicomotores/genética , Región del Caribe , Exoma/genética , Femenino , Homocigoto , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/patología , Mutación Missense/genética , Trastornos Psicomotores/diagnóstico , Trastornos Psicomotores/patología , HermanosRESUMEN
Crisponi/cold-induced sweating syndrome (CS/CISS) is a rare autosomal recessive disorder characterized by a complex phenotype (hyperthermia and feeding difficulties in the neonatal period, followed by scoliosis and paradoxical sweating induced by cold since early childhood) and a high neonatal lethality. CS/CISS is a genetically heterogeneous disorder caused by mutations in CRLF1 (CS/CISS1), CLCF1 (CS/CISS2) and KLHL7 (CS/CISS-like). Here, a whole exome sequencing approach in individuals with CS/CISS-like phenotype with unknown molecular defect revealed unpredicted alternative diagnoses. This approach identified putative pathogenic variations in NALCN, MAGEL2 and SCN2A. They were already found implicated in the pathogenesis of other syndromes, respectively the congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome, the Schaaf-Yang syndrome, and the early infantile epileptic encephalopathy-11 syndrome. These results suggest a high neonatal phenotypic overlap among these disorders and will be very helpful for clinicians. Genetic analysis of these genes should be considered for those cases with a suspected CS/CISS during neonatal period who were tested as mutation negative in the known CS/CISS genes, because an expedited and corrected diagnosis can improve patient management and can provide a specific clinical follow-up.