Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.912
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(16): 2853-2878, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931019

RESUMEN

The surprising discovery that the diatomic gas nitric oxide (NO) is generated by mammalian cells and serves to regulate a multitude of physiological processes has continued to fascinate biologists for almost four decades. The biochemistry of NO is complex, and novel insights into the control of NO biosynthesis and mechanisms of signal transduction are continuously emerging. NO is a key regulator of cardiovascular function, metabolism, neurotransmission, immunity, and more, and aberrant NO signaling is a central feature of many major disorders including cardiovascular disease, diabetes, and cancer. Here, we discuss the basics of NO biology emphasizing recent advances in the field including novel means of increasing NO bioactivity with therapeutic and nutritional implications.


Asunto(s)
Enfermedades Cardiovasculares , Nitritos , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Fenómenos Fisiológicos Cardiovasculares , Humanos , Mamíferos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Nitritos/uso terapéutico , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 121(7): e2312930121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315860

RESUMEN

Emerging contaminants (EC) distributed on surfaces in the environment can be oxidized by gas phase species (top-down) or by oxidants generated by the underlying substrate (bottom-up). One class of EC is the neonicotinoid (NN) pesticides that are widely distributed in air, water, and on plant and soil surfaces as well as on airborne dust and building materials. This study investigates the OH oxidation of the systemic NN pesticide acetamiprid (ACM) at room temperature. ACM on particles and as thin films on solid substrates were oxidized by OH radicals either from the gas phase or from an underlying TiO2 or NaNO2 substrate, and for comparison, in the aqueous phase. The site of OH attack is both the secondary >CH2 group as well as the primary -CH3 group attached to the tertiary amine nitrogen, with the latter dominating. In the case of top-down oxidation of ACM by gas phase OH radicals, addition to the -CN group also occurs. Major products are carbonyls and alcohols, but in the presence of sufficient water, their hydrolyzed products dominate. Kinetics measurements show ACM is more reactive toward gas phase OH radicals than other NN nitroguanidines, with an atmospheric lifetime of a few days. Bottom-up oxidation of ACM on TiO2 exposed to sunlight outdoors (temperatures were above 30 °C) was also shown to occur and is likely to be competitive with top-down oxidation. These findings highlight the different potential oxidation processes for EC and provide key data for assessing their environmental fates and toxicologies.

3.
Proc Natl Acad Sci U S A ; 121(11): e2318320121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457518

RESUMEN

Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.


Asunto(s)
Cianobacterias , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Alostérica , Microscopía por Crioelectrón , Cianobacterias/metabolismo , Adenosina Trifosfato/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo
4.
Nano Lett ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985522

RESUMEN

Electroreduction of nitrate/nitrite to high-value-added products, including NH2OH, is an important way to achieve sustainable production of green energy. However, this electrosynthesis of NH2OH still suffers from poor selectivity due to the various competing reactions. Here, we screen out Ni-N4 and Cu-N4 catalysts for highly efficient nitrite electroreduction to NH2OH by adopting density functional theory (DFT) calculations. DFT calculations reveal that the high selectivity of Ni-N4 and Cu-N4 is ascribed to their weak adsorption of *NH2OH and *NH intermediates, thereby preventing the further reduction of NH2OH. Moreover, using *NO as a model intermediate, we studied the relationship between the 3d orbital occupancy and adsorption strength of the intermediate. It is found that Ni-N4 and Cu-N4 with fully occupied dxz, dyz, and dz2 orbitals have poor adsorption of *NO intermediate. This work provides a new route for NH2OH synthesis and offers perspectives on the crucial factors in determining the catalytic selectivity.

5.
J Physiol ; 602(5): 855-873, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38376957

RESUMEN

Myoglobin (Mb) plays an important role at rest and during exercise as a reservoir of oxygen and has been suggested to regulate NO• bioavailability under hypoxic/acidic conditions. However, its ultimate role during exercise is still a subject of debate. We aimed to study the effect of Mb deficiency on maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and exercise performance in myoglobin knockout mice (Mb-/- ) when compared to control mice (Mb+/+ ). Furthermore, we also studied NO• bioavailability, assessed as nitrite (NO2 - ) and nitrate (NO3 - ) in the heart, locomotory muscle and in plasma, at rest and during exercise at exhaustion both in Mb-/- and in Mb+/+ mice. The mice performed maximal running incremental exercise on a treadmill with whole-body gas exchange measurements. The Mb-/- mice had lower body mass, heart and hind limb muscle mass (P < 0.001). Mb-/- mice had significantly reduced maximal running performance (P < 0.001). V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ expressed in ml min-1 in Mb-/ - mice was 37% lower than in Mb+/+ mice (P < 0.001) and 13% lower when expressed in ml min-1  kg body mass-1 (P = 0.001). Additionally, Mb-/- mice had significantly lower plasma, heart and locomotory muscle NO2 - levels at rest. During exercise NO2 - increased significantly in the heart and locomotory muscles of Mb-/- and Mb+/+ mice, whereas no significant changes in NO2 - were found in plasma. Our study showed that, contrary to recent suggestions, Mb deficiency significantly impairs V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance in mice. KEY POINTS: Myoglobin knockout mice (Mb-/- ) possess lower maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and poorer maximal running performance than control mice (Mb+/+ ). Respiratory exchange ratio values at high running velocities in Mb-/- mice are higher than in control mice suggesting a shift in substrate utilization towards glucose metabolism in Mb-/- mice at the same running velocities. Lack of myoglobin lowers basal systemic and muscle NO• bioavailability, but does not affect exercise-induced NO2 - changes in plasma, heart and locomotory muscles. The present study demonstrates that myoglobin is of vital importance for V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance as well as explains why previous studies have failed to prove such a role of myoglobin when using the Mb-/- mouse model.


Asunto(s)
Mioglobina , Carrera , Ratones , Animales , Mioglobina/genética , Dióxido de Nitrógeno , Carrera/fisiología , Oxígeno , Prueba de Esfuerzo , Ratones Noqueados , Consumo de Oxígeno/fisiología
6.
Clin Infect Dis ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666412

RESUMEN

In a multi-hospital cohort study of 3392 patients, positive urinalysis parameters had poor positive predictive value for diagnosing urinary tract infection (UTI). Combined urinalysis parameters (pyuria or nitrite) performed better than pyuria alone for ruling out UTI. However, performance of all urinalysis parameters was poor in older women.

7.
Small ; : e2310409, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477694

RESUMEN

Electrochemical nitrite reduction reaction ( NO 2 - RR ${\mathrm{NO}}_{\mathrm{2}}^{\mathrm{ - }}{\mathrm{RR}}$ ), as a green and sustainable ammonia synthesis technology, has broad application prospects and environmental friendliness. Herein, an unconventional p-d orbital hybridization strategy is reported to realize the fabrication of defect-rich CuSb porous nanonetwork (CuSb PNs) electrocatalyst for NO 2 - RR ${\mathrm{NO}}_{\mathrm{2}}^ - {\mathrm{RR}}$ . The crystalline/amorphous heterophase structure is cleverly introduced into the porous nanonetworks, and this defect-rich structure exposes more atoms and activated boundaries. CuSb PNs exhibit a large NH3 yield ( r N H 3 ${{r}_{{\mathrm{N}}{{{\mathrm{H}}}_{\mathrm{3}}}}}$ ) of 946.1 µg h-1 m cat - 1 ${\mathrm{m}}_{{\mathrm{cat}}}^{ - {\mathrm{1}}}$ and a high faradaic efficiency (FE) of 90.7%. Experimental and theoretical studies indicate that the excellent performance of CuSb PNs results from the defect-rich porous nanonetworks structure and the p-d hybridization of Cu and Sb elements. This work describes a powerful pathway for the fabrication of p-d orbital hybrid defect-rich porous nanonetworks catalysts, and provides hope for solving the problem of nitrogen oxide pollution in the field of environment and energy.

8.
Small ; 20(22): e2309357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102797

RESUMEN

Ensuring an appropriate nitrite level in food is essential to keep the body healthy. However, it still remains a huge challenge to offer a portable and low-cost on-site food nitrite analysis without any expensive equipment. Herein, a portable integrated electrochemical sensing system (IESS) is developed to achieve rapid on-site nitrite detection in food, which is composed of a low-cost disposable microfluidic electrochemical patch for few-shot nitrite detection, and a reusable smartphone-assisted electronic device based on self-designed circuit board for signal processing and wireless transmission. The electrochemical patch based on MXene-Ti3C2Tx/multiwalled carbon nanotubes-cyanocobalamin (MXene/MWCNTs-VB12)-modified working electrode achieves high sensitivity of 10.533 µA mm-1 and low nitrite detection limit of 4.22 µm owing to strong electron transfer ability of hybrid MXene/MWCNTs conductive matrix and high nitrite selectivity of VB12 bionic enzyme-based ion-selective layer. Moreover, the portable IESS can rapidly collect pending testing samples through a microfluidic electrochemical patch within 1.0 s to conduct immediate nitrite analysis, and then wirelessly transmit data from a signal-processing electronic device to a smartphone via Bluetooth module. Consequently, this proposed portable IESS demonstrates rapid on-site nitrite analysis and wireless data transmission within one palm-sized electronic device, which would pave a new avenue in food safety and personal bespoke therapy.


Asunto(s)
Técnicas Electroquímicas , Nitritos , Nitritos/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Nanotubos de Carbono/química , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Electrodos , Límite de Detección , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
9.
Small ; : e2400538, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38600896

RESUMEN

This research adopts a new method combining calcination and pulsed laser irradiation in liquids to induce a controlled phase transformation of Fe, Co, Ni, Cu, and Mn transition-metal-based high-entropy Prussian blue analogs into single-phase spinel high-entropy oxide and face-centered cubic high-entropy alloy (HEA). The synthesized HEA, characterized by its highly conductive nature and reactive surface, demonstrates exceptional performance in capturing low-level nitrite (NO2 -) in an electrolyte, which leads to its efficient conversion into ammonium (NH4 +) with a Faradaic efficiency of 79.77% and N selectivity of 61.49% at -0.8 V versus Ag/AgCl. In addition, the HEA exhibits remarkable durability in the continuous nitrite reduction reaction (NO2 -RR), converting 79.35% of the initial NO2 - into NH4 + with an impressive yield of 1101.48 µm h-1 cm-2. By employing advanced X-ray absorption and in situ electrochemical Raman techniques, this study provides insights into the indirect NO2 -RR, highlighting the versatility and efficacy of HEA in sustainable electrochemical applications.

10.
Small ; 20(24): e2311439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38161250

RESUMEN

The electrocatalytic nitrite/nitrate reduction reaction (eNO2RR/eNO3RR) offer a promising route for green ammonia production. The development of low cost, highly selective and long-lasting electrocatalysts for eNO2RR/eNO3RR is challenging. Herein, a method is presented for constructing Cu3P-Fe2P heterostructures on iron foam (CuFe-P/IF) that facilitates the effective conversion of NO2 - and NO3 - to NH3. At -0.1 and -0.2 V versus RHE (reversible hydrogen electrode), CuFe-P/IF achieves a Faradaic efficiency (FE) for NH3 production of 98.36% for eNO2RR and 72% for eNO3RR, while also demonstrating considerable stability across numerous cycles. The superior performance of CuFe-P/IF catalyst is due tothe rich Cu3P-Fe2P heterstuctures. Density functional theory calculations have shed light on the distinct roles that Cu3P and Fe2P play at different stages of the eNO2RR/eNO3RR processes. Fe2P is notably active in the early stages, engaging in the capture of NO2 -/NO3 -, O─H formation, and N─OH scission. Conversely, Cu3P becomes more dominant in the subsequent steps, which involve the formation of N─H bonds, elimination of OH* species, and desorption of the final products. Finally, a primary Zn-NO2 - battery is assembled using CuFe-P/IF as the cathode catalyst, which exhibits a power density of 4.34 mW cm-2 and an impressive NH3 FE of 96.59%.

11.
Appl Environ Microbiol ; 90(4): e0203523, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38440981

RESUMEN

The generation of nitrite by the oral microbiota is believed to contribute to healthy cardiovascular function, with oral nitrate reduction to nitrite associated with systemic blood pressure regulation. There is the potential to manipulate the composition or activities of the oral microbiota to a higher nitrate-reducing state through nitrate supplementation. The current study examined microbial community composition and enzymatic responses to nitrate supplementation in sessile oral microbiota grown in continuous culture. Nitrate reductase (NaR) activity and nitrite concentrations were not significantly different to tongue-derived inocula in model biofilms. These were generally dominated by Streptococcus spp., initially, and a single nitrate supplementation resulted in the increased relative abundance of the nitrate-reducing genera Veillonella, Neisseria, and Proteus spp. Nitrite concentrations increased concomitantly and continued to increase throughout oral microbiota development. Continuous nitrate supplementation, over a 7-day period, was similarly associated with an elevated abundance of nitrate-reducing taxa and increased nitrite concentration in the perfusate. In experiments in which the models were established in continuous low or high nitrate environments, there was an initial elevation in nitrate reductase, and nitrite concentrations reached a relatively constant concentration over time similar to the acute nitrate challenge with a similar expansion of Veillonella and Neisseria. In summary, we have investigated nitrate metabolism in continuous culture oral biofilms, showing that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of putatively NaR-producing taxa.IMPORTANCEClinical evidence suggests that blood pressure regulation can be promoted by nitrite generated through the reduction of supplemental dietary nitrate by the oral microbiota. We have utilized oral microbiota models to investigate the mechanisms responsible, demonstrating that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of nitrate-reducing taxa.


Asunto(s)
Microbiota , Nitratos , Humanos , Nitratos/metabolismo , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Nitrato-Reductasa
12.
Appl Environ Microbiol ; 90(1): e0174123, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38078768

RESUMEN

Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one or some of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here, we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2, and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used both for electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in darkness. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a ß-galactosidase reporter, we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2- but not NO3- activated N2O reduction, but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.IMPORTANCEDenitrification is a form of microbial respiration wherein nitrate is converted via several nitrogen oxide intermediates into harmless dinitrogen gas. Partial denitrifying bacteria, which individually have some but not all denitrifying enzymes, can achieve complete denitrification as a community by cross-feeding nitrogen oxide intermediates. However, the last intermediate, nitrous oxide (N2O), is a potent greenhouse gas that often escapes, motivating efforts to understand and improve the efficiency of denitrification. Here, we found that at least some partial denitrifying N2O reducers can sense and respond to nitrogen oxide intermediates that they cannot otherwise use. The regulatory effects of nitrogen oxides on partial denitrifiers are thus an important consideration in understanding and applying denitrifying bacterial communities to combat greenhouse gas emissions.


Asunto(s)
Gases de Efecto Invernadero , Óxido Nitroso , Óxido Nitroso/metabolismo , Desnitrificación , Nitratos/metabolismo , Gases de Efecto Invernadero/metabolismo , Dióxido de Nitrógeno/metabolismo , Dióxido de Nitrógeno/farmacología , Bacterias/genética , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo
13.
Plant Cell Environ ; 47(5): 1668-1684, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282271

RESUMEN

Drought stress is one of the main environmental factors limiting plant growth and development. Plants adapt to changing soil moisture by modifying root architecture, inducing stomatal closure, and inhibiting shoot growth. The AP2/ERF transcription factor DREB2A plays a key role in maintaining plant growth in response to drought stress, but the molecular mechanism underlying this process remains to be elucidated. Here, it was found that overexpression of MdDREB2A positively regulated nitrogen utilisation by interacting with DRE cis-elements of the MdNIR1 promoter. Meanwhile, MdDREB2A could also directly bind to the promoter of MdSWEET12, which may enhance root development and nitrogen assimilation, ultimately promoting plant growth. Overall, this regulatory mechanism provides an idea for plants in coordinating with drought tolerance and nitrogen assimilation to maintain optimal plant growth and development under drought stress.


Asunto(s)
Sequías , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Sacarosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
14.
J Exp Bot ; 75(2): 563-577, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37843034

RESUMEN

A key feature in the establishment of symbiosis between plants and microbes is the maintenance of the balance between the production of the small redox-related molecule, nitric oxide (NO), and its cognate scavenging pathways. During the establishment of symbiosis, a transition from a normoxic to a microoxic environment often takes place, triggering the production of NO from nitrite via a reductive production pathway. Plant hemoglobins [phytoglobins (Phytogbs)] are a central tenant of NO scavenging, with NO homeostasis maintained via the Phytogb-NO cycle. While the first plant hemoglobin (leghemoglobin), associated with the symbiotic relationship between leguminous plants and bacterial Rhizobium species, was discovered in 1939, most other plant hemoglobins, identified only in the 1990s, were considered as non-symbiotic. From recent studies, it is becoming evident that the role of Phytogbs1 in the establishment and maintenance of plant-bacterial and plant-fungal symbiosis is also essential in roots. Consequently, the division of plant hemoglobins into symbiotic and non-symbiotic groups becomes less justified. While the main function of Phytogbs1 is related to the regulation of NO levels, participation of these proteins in the establishment of symbiotic relationships between plants and microorganisms represents another important dimension among the other processes in which these key redox-regulatory proteins play a central role.


Asunto(s)
Óxido Nítrico , Simbiosis , Óxido Nítrico/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Bacterias/metabolismo , Hemoglobinas/metabolismo
15.
Chemistry ; 30(3): e202303151, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37875461

RESUMEN

Initiated by triarylamine radical cation salt (TBPA), the direct C-H bond functionalization of α-N-aryltetrahydroisoquinoline esters was smoothly realized, giving a series of α-hydroxylated derivatives with a quaternary carbon center in good yields. Differently, in the presence of tert-butyl nitrite (TBN), the C-N single bond was cleaved to keto esters. The mechanistic study revealed that these reactions were mediated by a similar mechanism, in which the N-nitrosation might provide a driving force to the C-N bond cleavage.

16.
Chemistry ; : e202402295, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985519

RESUMEN

Nitrite (NO2-) serves as a pool of nitric oxide (NO) in biological systems under hypoxic conditions, and it is transformed to NO by nitrite reductase (NiR) enzyme in the presence of acid. However, NO synthases generate NO in normoxic conditions. Previously, acid-induced NO2- reduction chemistry was modeled on mono-metallic 3d-metals, generating metal-nitrosyls or NO(g) with H2O or H2O2 products. Herein, to understand the relative potency of a bimetallic system, we report the acid-induced reductive conversion of η2-bound NO2- to NO on CuII-CoII centers of a hetero-bimetallic CuII­nitrito-CoII complex, [(LN8H)CuII­NO2-­CoII]3+ (CuII-NO2--CoII, 2) bearing an octadentate N8-cryptand ligand (LN8H). The CuII-NO2--CoII generates [CuII(LN8H)CoII]4+ (1) upon reaction with one equiv. acid (HClO4, H+ ions source) with NO(g) via a presumed transient nitrousacid (ONOH) intermediate species. Likewise, this NO2- reduction was found to form H2O, which is believed to be from the decomposition of H2O2, an intermediate species. In addition, complex 2, in the presence of more than one equiv. H+ ions also showed the formation of NO(g) with H2O. Mechanistic investigations, using 15N-labeled-15NO2-, 18O-labeled-18O14N16O- and 2H-labeled-DClO4 (D+ source), revealed that the N-atom and O-atom in the 14/15NO and 14N18O gases are derived from NO2- ligand and H-atom in H2O derived from H+-source, respectively.

17.
Arch Microbiol ; 206(4): 179, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498215

RESUMEN

Sediments underlying marine hypoxic zones are huge sinks of unreacted complex organic matter, where despite acute O2 limitation, obligately aerobic bacteria thrive, and steady depletion of organic carbon takes place within a few meters below the seafloor. However, little knowledge exists about the sustenance and complex carbon degradation potentials of aerobic chemoorganotrophs in these sulfidic ecosystems. We isolated and characterized a number of aerobic bacterial chemoorganoheterotrophs from across a ~ 3 m sediment horizon underlying the perennial hypoxic zone of the eastern Arabian Sea. High levels of sequence correspondence between the isolates' genomes and the habitat's metagenomes and metatranscriptomes illustrated that the strains were widespread and active across the sediment cores explored. The isolates catabolized several complex organic compounds of marine and terrestrial origins in the presence of high or low, but not zero, O2. Some of them could also grow anaerobically on yeast extract or acetate by reducing nitrate and/or nitrite. Fermentation did not support growth, but enabled all the strains to maintain a fraction of their cell populations over prolonged anoxia. Under extreme oligotrophy, limited growth followed by protracted stationary phase was observed for all the isolates at low cell density, amid high or low, but not zero, O2 concentration. While population control and maintenance could be particularly useful for the strains' survival in the critically carbon-depleted layers below the explored sediment depths (core-bottom organic carbon: 0.5-1.0% w/w), metagenomic data suggested that in situ anoxia could be surmounted via potential supplies of cryptic O2 from previously reported sources such as Nitrosopumilus species.


Asunto(s)
Ecosistema , Oxígeno , Humanos , Oxígeno/metabolismo , Sedimentos Geológicos/microbiología , Carbono/metabolismo , Bacterias , Hipoxia
18.
Fish Shellfish Immunol ; 151: 109690, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866347

RESUMEN

Leucine is an essential amino acid for fish. The ability of leucine to resist stress in fish has not been reported. Nitrite is a common pollutant in the aquatic environment. Therefore, we investigated the effects of dietary leucine on growth performance and nitrite-induced liver damage, mitochondrial dysfunction, autophagy, and apoptosis for sub-adult grass carp. A total of 450 grass carp (615.91 ± 1.15 g) were selected and randomly placed into 18 net cages. The leucine contents of the six diets were 2.91, 5.90, 8.92, 11.91, 14.93, and 17.92 g/kg, respectively. After a 9-week feeding trial, the nitrite exposure experiment was set up for 96 h. These results indicated that dietary leucine significantly promoted FW, WG, PWG, and SGR of sub-adult grass carp (P < 0.05). Appropriate levels of dietary leucine (11.91-17.92 g/kg) decreased the activities of serum parameters (glucose, cortisol, and methemoglobin contents, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase), the contents of reactive oxygen species (ROS), nitric oxide (NO) and peroxynitrite (ONOO-). In addition, appropriate levels of dietary leucine (11.91-17.92 g/kg) increased the mRNA levels of mitochondrial biogenesis genes (PGC-1α, Nrf1/2, TFAM), fusion-related genes (Opa1, Mfn1/2) (P < 0.05), and decreased the mRNA levels of caspase 3, caspase 8, caspase 9, fission-related gene (Drp1), mitophagy-related genes (Pink1, Parkin) and autophagy-related genes (Beclin1, Ulk1, Atg5, Atg7, Atg12) (P < 0.05). Appropriate levels of dietary leucine (8.92-17.92 g/kg) also increased the protein levels of AMP-activated protein kinase (AMPK), prostacyclin (p62) and decreased the protein levels of protein light chain 3 (LC3), E3 ubiquitin ligase (Parkin), and Cytochrome c (Cytc). Appropriate levels of leucine (8.92-17.92 g/kg) could promote growth performance and alleviate nitrite-induced mitochondrial dysfunction, autophagy, apoptosis for sub-adult grass carp. Based on quadratic regression analysis of PWG and serum GPT activity, dietary leucine requirements of sub-adult grass carp were recommended to be 12.47 g/kg diet and 12.55 g/kg diet, respectively.

19.
Environ Sci Technol ; 58(2): 1152-1163, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38166438

RESUMEN

Coastal wetlands are hotspots for methane (CH4) production, reducing their potential for global warming mitigation. Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) plays a crucial role in bridging carbon and nitrogen cycles, contributing significantly to CH4 consumption. However, the role of n-DAMO in reducing CH4 emissions in coastal wetlands is poorly understood. Here, the ecological functions of the n-DAMO process in different saltmarsh vegetation habitats as well as bare mudflats were quantified, and the underlying microbial mechanisms were explored. Results showed that n-DAMO rates were significantly higher in vegetated habitats (Scirpus mariqueter and Spartina alterniflora) than those in bare mudflats (P < 0.05), leading to an enhanced contribution to CH4 consumption. Compared with other habitats, the contribution of n-DAMO to the total anaerobic CH4 oxidation was significantly lower in the Phragmites australis wetland (15.0%), where the anaerobic CH4 oxidation was primarily driven by ferric iron (Fe3+). Genetic and statistical analyses suggested that the different roles of n-DAMO in various saltmarsh wetlands may be related to divergent n-DAMO microbial communities as well as environmental parameters such as sediment pH and total organic carbon. This study provides an important scientific basis for a more accurate estimation of the role of coastal wetlands in mitigating climate change.


Asunto(s)
Nitratos , Humedales , Metano , Anaerobiosis , Poaceae , Oxidación-Reducción , Carbono , Nitritos
20.
J Fluoresc ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967859

RESUMEN

Nitrite ions (NO2-), as one of the leading type-A inorganic-anion, showing significant-effects in the aquatic environment and also to humans health. Whereas, the higher uptake causes detrimental threat to human health leading to various chronic diseases, thus demanding efficient, reliable and convenient method for its monitoring. For this purpose, in the present research study we have fabricated the mimetic nonozyme like catalyst based colorimetric nitrite sensor. The acetic acid capped Zinc Oxide (ZnO) nanosheets (NSs) were introduce as per-oxidase mimetic like catalyst which shows high efficiency towards the oxidative catalysis of colorless tetramethylbenzidine (TMB) to oxidized-TMB (blue color) in the presence of Hydrogen-peroxide (H2O2). The present nitrite ions will stimulate the as formed oxidized-TMB (TMBox), and will caused diazotization reaction (diazotized-TMBox), which will not only decreases the peak intensity of UV-visible peak of TMBox at 652 nm but will also produces another peak at 446 nm called as diazotized-TMBox peak, proving the catalytic reaction between the nitrite ions and TMBox. Further, the prepared colorimetric sensor exhibits better sensitivity with a wider range of concentration (1 × 10-3-4.50 × 10-1 µM), lowest limit of detection (LOD) of 0.22 ± 0.05 nM and small limit of quantification (LOQ) 0.78 ± 0.05 nM having R2 value of 0.998. Further, the colorimetric sensor also manifest strong selectivity towards NO2- as compared to other interference in drinking water system. Resultantly, the prepared sensor with outstanding repeatability, stability, reproducibility, re-usability and its practicability in real water samples also exploit its diverse applications in food safety supervision and environmental monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA