Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 841
Filtrar
Más filtros

Intervalo de año de publicación
1.
Neuroimage ; 291: 120596, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554783

RESUMEN

BACKGROUND: Left prefrontal intermittent theta-burst stimulation (iTBS) has emerged as a safe and effective transcranial magnetic stimulation (TMS) treatment protocol in depression. Though network effects after iTBS have been widely studied, the deeper mechanistic understanding of target engagement is still at its beginning. Here, we investigate the feasibility of a novel integrated TMS-fMRI setup and accelerated echo planar imaging protocol to directly observe the immediate effects of full iTBS treatment sessions. OBJECTIVE/HYPOTHESIS: In our effort to explore interleaved iTBS-fMRI feasibility, we hypothesize that TMS will induce acute BOLD signal changes in both the stimulated area and interconnected neural regions. METHODS: Concurrent TMS-fMRI with full sessions of neuronavigated iTBS (i.e. 600 pulses) of the left dorsolateral prefrontal cortex (DLPFC) was investigated in 18 healthy participants. In addition, we conducted four TMS-fMRI sessions in a single patient on long-term maintenance iTBS for bipolar depression to test the transfer to clinical cases. RESULTS: Concurrent TMS-fMRI was feasible for iTBS sequences with 600 pulses. During interleaved iTBS-fMRI, an increase of the BOLD signal was observed in a network including bilateral DLPFC regions. In the clinical case, a reduced BOLD response was found in the left DLPFC and the subgenual anterior cingulate cortex, with high variability across individual sessions. CONCLUSIONS: Full iTBS sessions as applied for the treatment of depressive disorders can be established in the interleaved iTBS-fMRI paradigm. In the future, this experimental approach could be valuable in clinical samples, for demonstrating target engagement by iTBS protocols and investigating their mechanisms of therapeutic action.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Giro del Cíngulo , Corteza Prefontal Dorsolateral
2.
Eur J Neurosci ; 59(4): 595-612, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37605315

RESUMEN

Brain rhythms of sleep reflect neuronal activity underlying sleep-associated memory consolidation. The modulation of brain rhythms, such as the sleep slow oscillation (SO), is used both to investigate neurophysiological mechanisms as well as to measure the impact of sleep on presumed functional correlates. Previously, closed-loop acoustic stimulation in humans targeted to the SO Up-state successfully enhanced the slow oscillation rhythm and phase-dependent spindle activity, although effects on memory retention have varied. Here, we aim to disclose relations between stimulation-induced hippocampo-thalamo-cortical activity and retention performance on a hippocampus-dependent object-place recognition task in mice by applying acoustic stimulation at four estimated SO phases compared to sham condition. Across the 3-h retention interval at the beginning of the light phase closed-loop stimulation failed to improve retention significantly over sham. However, retention during SO Up-state stimulation was significantly higher than for another SO phase. At all SO phases, acoustic stimulation was accompanied by a sharp increase in ripple activity followed by about a second-long suppression of hippocampal sharp wave ripple and longer maintained suppression of thalamo-cortical spindle activity. Importantly, dynamics of SO-coupled hippocampal ripple activity distinguished SOUp-state stimulation. Non-rapid eye movement (NREM) sleep was not impacted by stimulation, yet preREM sleep duration was effected. Results reveal the complex effect of stimulation on the brain dynamics and support the use of closed-loop acoustic stimulation in mice to investigate the inter-regional mechanisms underlying memory consolidation.


Asunto(s)
Electroencefalografía , Consolidación de la Memoria , Humanos , Ratones , Animales , Estimulación Acústica , Consolidación de la Memoria/fisiología , Hipocampo/fisiología , Sueño/fisiología
3.
Eur J Neurosci ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721642

RESUMEN

Both the primary motor cortex (M1) and the cerebellum are crucial for postural stability and deemed as potential targets for non-invasive brain stimulation (NIBS) to enhance balance performance. However, the optimal target remains unknown. The purpose of this study was to compare the role of M1 and the cerebellum in modulating balance performance in young healthy adults using facilitatory 5 Hz repetitive transcranial magnetic stimulation (rTMS). Twenty-one healthy young adults (mean age = 27.95 ± 1.15 years) received a single session of 5 Hz rTMS on M1 and the cerebellum in a cross-over order with a 7-day washout period between the two sessions. Three balance assessments were performed on the Biodex Balance system SD: Limits of Stability (LOS), modified Clinical Test of Sensory Interaction on Balance (mCTSIB), and Balance Error Scoring System (BESS). No significant effect of rTMS was found on the LOS. The effect of rTMS on the mCTSIB was mediated by stimulation target, proprioception, and vision (p = .003, ηp 2 = 0.37). Cerebellar rTMS improved the mCTSIB sway index under eyes closed-foam surface condition (p = .02), whereas M1 rTMS did not result in improvement on the mCTSIB. The effect of rTMS on the BESS was mediated by stimulation target, posture, and proprioception (p = .049, ηp 2 = 0.14). Cerebellar rTMS enhanced reactive balance performance during most sensory deprived conditions.

4.
Neuropsychol Rev ; 34(1): 338-361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36877327

RESUMEN

Despite the numerous pharmacological interventions targeting dementia, no disease-modifying therapy is available, and the prognosis remains unfavorable. A promising perspective involves tackling high-frequency gamma-band (> 30 Hz) oscillations involved in hippocampal-mediated memory processes, which are impaired from the early stages of typical Alzheimer's Disease (AD). Particularly, the positive effects of gamma-band entrainment on mouse models of AD have prompted researchers to translate such findings into humans using transcranial alternating current stimulation (tACS), a methodology that allows the entrainment of endogenous cortical oscillations in a frequency-specific manner. This systematic review examines the state-of-the-art on the use of gamma-tACS in Mild Cognitive Impairment (MCI) and dementia patients to shed light on its feasibility, therapeutic impact, and clinical effectiveness. A systematic search from two databases yielded 499 records resulting in 10 included studies and a total of 273 patients. The results were arranged in single-session and multi-session protocols. Most of the studies demonstrated cognitive improvement following gamma-tACS, and some studies showed promising effects of gamma-tACS on neuropathological markers, suggesting the feasibility of gamma-tACS in these patients anyhow far from the strong evidence available for mouse models. Nonetheless, the small number of studies and their wide variability in terms of aims, parameters, and measures, make it difficult to draw firm conclusions. We discuss results and methodological limitations of the studies, proposing possible solutions and future avenues to improve research on the effects of gamma-tACS on dementia.


Asunto(s)
Disfunción Cognitiva , Demencia , Estimulación Transcraneal de Corriente Directa , Humanos , Cognición , Disfunción Cognitiva/terapia , Demencia/terapia , Memoria , Estimulación Transcraneal de Corriente Directa/métodos
5.
Cerebellum ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438828

RESUMEN

The overlap between motor and cognitive signs resulting from posterior parietal cortex (PPC) and cerebellar lesions can mask their relative contribution in the sensorimotor integration process. This study aimed to identify distinguishing motor and cognitive features to disentangle PPC and cerebellar involvement in two sensorimotor-related functions: gait and body schema representation. Thirty healthy volunteers were enrolled and randomly assigned to PPC or cerebellar stimulation. Sham stimulation and 1 Hz-repetitive-Transcranial-Magnetic-Stimulation were delivered over P3 or cerebellum before a balance and a walking distance estimation task. Each trial was repeated with eyes open (EO) and closed (EC). Eight inertial measurement units recorded spatiotemporal and kinematic variables of gait. Instability increased in both groups after real stimulation: PPC inhibition resulted in increased instability in EC conditions, as evidenced by increased ellipse area and range of movement in medio-lateral and anterior-posterior (ROMap) directions. Cerebellar inhibition affected both EC (increased ROMap) and EO stability (greater displacement of the center of mass). Inhibitory stimulation (EC vs. EO) affected also gait spatiotemporal variability, with a high variability of ankle and knee angles plus different patterns in the two groups (cerebellar vs parietal). Lastly, PPC group overestimates distances after real stimulation (EC condition) compared to the cerebellar group. Stability, gait variability, and distance estimation parameters may be useful clinical parameters to disentangle cerebellar and PPC sensorimotor integration deficits. Clinical differential diagnosis efficiency can benefit from this methodological approach.

6.
J Neural Transm (Vienna) ; 131(5): 505-508, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38233662

RESUMEN

Addictions comprises heterogenous psychiatric conditions caused by the complex interaction of genetic, neurobiological, psychological, and environmental factors with a chronic relapsing-remitting pattern. Despite the long-standing efforts of preclinical and clinical research studies, addiction field has seen relatively slow progress when it comes to the development of new therapeutic interventions, most of which failed to demonstrate a significant efficacy. This is likely due to the very complex interplay of many factors that contribute to both the development and expression of addictions. The imbalance between the salience and the reward brain network circuitry has been proposed as the neurobiological mechanisms explaining the pathognomonic symptoms of addictions.Non-invasive neuromodulation techniques have been proposed as a promising therapeutic intervention to restore these brain circuits dysfunctions. Here, we propose a multi-level strategy to innovate the diagnosis and the treatment of addictive disorders.


Asunto(s)
Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Trastornos Relacionados con Sustancias/terapia , Conducta Adictiva/terapia , Conducta Adictiva/fisiopatología , Encéfalo/fisiopatología
7.
Acta Psychiatr Scand ; 150(1): 5-21, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38616056

RESUMEN

INTRODUCTION: Despite its high lifetime prevalence rate and the elevated disability caused by posttraumatic stress disorder (PTSD), treatments exhibit modest efficacy. In consideration of the abnormal connectivity between the dorsolateral prefrontal cortex (DLPFC) and amygdala in PTSD, several randomized controlled trials (RCTs) addressing the efficacy of different noninvasive brain stimulation (NIBS) modalities for PTSD management have been undertaken. However, previous RCTs have reported inconsistent results. The current network meta-analysis (NMA) aimed to compare the efficacy and acceptability of various NIBS protocols in PTSD management. METHODS: We systematically searched ClinicalKey, Cochrane Central Register of Controlled Trials, Embase, ProQuest, PubMed, ScienceDirect, Web of Science, and ClinicalTrials.gov to identify relevant RCTs. The targeted RCTs was those comparing the efficacy of NIBS interventions, such as transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and transcutaneous cervical vagal nerve stimulation, in patients with PTSD. The NMA was conducted using a frequentist model. The primary outcomes were changes in the overall severity of PTSD and acceptability (to be specific, rates of dropouts for any reason). RESULTS: We identified 14 RCTs that enrolled 686 participants. The NMA demonstrated that among the investigated NIBS types, high-frequency rTMS over bilateral DLPFCs was associated with the greatest reduction in overall PTSD severity. Further, in comparison with the sham controls, excitatory stimulation over the right DLPFC with/without excitatory stimulation over left DLPFC were associated with significant reductions in PTSD-related symptoms, including depression and anxiety symptoms, and overall PTSD severity. CONCLUSIONS: This NMA demonstrated that excitatory stimulation over the right DLPFC with or without excitatory stimulation over left DLPFC were associated with significant reductions in PTSD-related symptoms. TRIAL REGISTRATION: PROSPERO CRD42023391562.


Asunto(s)
Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Trastornos por Estrés Postraumático , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Humanos , Aceptación de la Atención de Salud , Trastornos por Estrés Postraumático/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento , Estimulación del Nervio Vago/métodos
8.
Brain Topogr ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689065

RESUMEN

This review aims to demonstrate the connections between event-related potentials (ERPs), event-related oscillations (EROs), and non-invasive brain stimulation (NIBS), with a specific focus on transcranial alternating current stimulation (tACS). We begin with a short examination and discussion of the relation between ERPs and EROs. Then, we investigate the diverse fields of NIBS, highlighting tACS as a potent tool for modulating neural oscillations and influencing cognitive performance. Emphasizing the impact of tACS on individual ERP components, this article offers insights into the potential of conventional tACS for targeted stimulation of single ERP components. Furthermore, we review recent articles that explore a novel approach of tACS: ERP-aligned tACS. This innovative technique exploits the temporal precision of ERP components, aligning tACS with specific neural events to optimize stimulation effects and target the desired neural response. In conclusion, this review combines current knowledge to explore how ERPs, EROs, and NIBS interact, particularly highlighting the modulatory possibilities offered by tACS. The incorporation of ERP-aligned tACS introduces new opportunities for future research, advancing our understanding of the complex connection between neural oscillations and cognitive processes.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38407625

RESUMEN

Transcranial direct current stimulation (tDCS) of the prefrontal cortex might beneficially influence neurocognitive dysfunctions associated with major depressive disorder (MDD). However, previous studies of neurocognitive effects of tDCS have been inconclusive. In the current study, we analyzed longitudinal, neurocognitive data from 101 participants of a randomized controlled multicenter trial (DepressionDC), investigating the efficacy of bifrontal tDCS (2 mA, 30 min/d, for 6 weeks) in patients with MDD and insufficient response to selective serotonin reuptake inhibitors (SSRI). We assessed whether active tDCS compared to sham tDCS elicited beneficial effects across the domains of memory span, working memory, selective attention, sustained attention, executive process, and processing speed, assessed with a validated, digital test battery. Additionally, we explored whether baseline cognitive performance, as a proxy of fronto-parietal-network functioning, predicts the antidepressant effects of active tDCS versus sham tDCS. We found no statistically significant group differences in the change of neurocognitive performance between active and sham tDCS. Furthermore, baseline cognitive performance did not predict the clinical response to tDCS. Our findings indicate no advantage in neurocognition due to active tDCS in MDD. Additional research is required to systematically investigate the effects of tDCS protocols on neurocognitive performance in patients with MDD.

10.
Cereb Cortex ; 33(11): 7061-7075, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36749004

RESUMEN

Paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are non-invasive brain stimulation methods that are used to modulate cortical excitability. Whether one technique is superior to the others in achieving this outcome and whether individuals that respond to one intervention are more likely to respond to another remains largely unknown. In the present study, the neurophysiological aftereffects of three excitatory neurostimulation protocols were measured with transcranial magnetic stimulation (TMS). Twenty minutes of PAS at an ISI of 25 ms, anodal tDCS, 20-Hz tACS, and Sham stimulation were administered to 31 healthy adults in a repeated measures design. Compared with Sham, none of the stimulation protocols significantly modulated corticospinal excitability (input/ouput curve and slope, TMS stimulator intensity required to elicit MEPs of 1-mV amplitude) or intracortical excitability (short- and long-interval intracortical inhibition, intracortical facilitation, cortical silent period). Sham-corrected responder analysis estimates showed that an average of 41 (PAS), 39 (tDCS), and 39% (tACS) of participants responded to the interventions with an increase in corticospinal excitability. The present data show that three stimulation protocols believed to increase cortical excitability are associated with highly heterogenous and variable aftereffects that may explain a lack of significant group effects.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Progresión de la Enfermedad , Electrodos , Potenciales Evocados Motores , Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos
11.
Int Urogynecol J ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953997

RESUMEN

INTRODUCTION AND HYPOTHESIS: Transcranial direct current stimulation (tDCS) can enhance muscle function in healthy individuals. However, it is unknown if tDCS associated with pelvic floor muscle training (PFMT) can improve pelvic floor muscle function (PFMF) in healthy women. The aim of this study was to investigate the acute effect of a single session of tDCS in PFMF compared with sham-tDCS in healthy women. METHODS: A double-blind, cross-over, randomized clinical trial was conducted with healthy, nulliparous and sexually active women. PFMF was assessed by bidigital palpation (PERFECT scale) and intravaginal pressure by a manometer (Peritron™). Participants randomly underwent two tDCS sessions (active and sham) 7 days apart. The electrode was positioned equal for both protocols, the anode electrode in the supplementary motor area (M1) and the cathode electrode in the right supraorbital frontal cortex (Fp2). The current was applied for 20 min at 2 mA in active stimulation and for 30 s in sham-tDCS. The tDCS applications were associated with verbal instructions to PFMT in a seated position. After each tDCS session PFMF was reevaluated. RESULTS: Twenty young healthy women (aged 23.4 ± 1.7 years; body mass index 21.7 ± 2.2 kg/m2) were included. No difference was observed in power, endurance, and intravaginal pressure of PFMF (p > 0.05). The number of sustained contractions improved from 3.0 (2.0-3.5) to 4.0 (3.0-5.0) after active-tDCS (p = 0.0004) and was superior to sham-tDCS (p = 0.01). CONCLUSION: The number of sustained contractions of PFM improved immediately after a single active-tDCS session, with a difference compared with the post-intervention result of sham-tDCS in healthy young women.

12.
Neurol Sci ; 45(7): 2951-2968, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695969

RESUMEN

Individuals suffering from long-COVID can present with "brain fog", which is characterized by a range of cognitive impairments, such as confusion, short-term memory loss, and difficulty concentrating. To date, several potential interventions for brain fog have been considered. Notably, no systematic review has comprehensively discussed the impact of each intervention type on brain fog symptoms. We included studies on adult (aged > 18 years) individuals with proven long- COVID brain-fog symptoms from PubMed, MEDLINE, Central, Scopus, and Embase. A search limit was set for articles published between 01/2020 and 31/12/2023. We excluded studies lacking an objective assessment of brain fog symptoms and patients with preexisting neurological diseases that affected cognition before COVID-19 infection. This review provided relevant information from 17 studies. The rehabilitation studies utilized diverse approaches, leading to a range of outcomes in terms of the effectiveness of the interventions. Six studies described noninvasive brain stimulation, and all showed improvement in cognitive ability. Three studies described hyperbaric oxygen therapy, all of which showed improvements in cognitive assessment tests and brain perfusion. Two studies showed that the use of Palmitoylethanolamide and Luteolin (PEA-LUT) improved cognitive impairment. Noninvasive brain stimulation and hyperbaric oxygen therapy showed promising results in the treatment of brain fog symptoms caused by long-COVID, with improved perfusion and cortical excitability. Furthermore, both rehabilitation strategies and PEA-LUT administration have been associated with improvements in symptoms of brain fog. Future studies should explore combinations of interventions and include longer follow-up periods to assess the long-term effects of these treatments.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Humanos , COVID-19/complicaciones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Disfunción Cognitiva/fisiopatología , Síndrome Post Agudo de COVID-19 , Oxigenoterapia Hiperbárica/métodos , SARS-CoV-2 , Estimulación Magnética Transcraneal/métodos , Encéfalo , Estimulación Transcraneal de Corriente Directa/métodos
13.
Aging Clin Exp Res ; 36(1): 37, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345751

RESUMEN

BACKGROUND: Non-invasive brain stimulation (NIBS) is a burgeoning approach with the potential to significantly enhance cognition and functional abilities in individuals who have undergone a stroke. However, the current evidence lacks robust comparisons and rankings of various NIBS methods concerning the specific stimulation sites and parameters used. To address this knowledge gap, this systematic review and meta-analysis seek to offer conclusive evidence on the efficacy and safety of NIBS in treating post-stroke cognitive impairment. METHODS: A systematic review of randomized control trials (RCT) was performed using Bayesian network meta-analysis. We searched RCT in the following databases until June 2022: Cochrane Central Register of Controlled Trials (CENTRAL), PUBMED, and EMBASE. We compared any active NIBS to control in terms of improving cognition function and activities of daily living (ADL) capacity following stroke. RESULTS: After reviewing 1577 retrieved citations, a total of 26 RCTs were included. High-frequency (HF)-repetitive transcranial magnetic stimulation (rTMS) (mean difference 2.25 [95% credible interval 0.77, 3.66]) was identified as a recommended approach for alleviating the global severity of cognition. Dual-rTMS (27.61 [25.66, 29.57]) emerged as a favorable technique for enhancing ADL function. In terms of stimulation targets, the dorsolateral prefrontal cortex exhibited a higher ranking in relation to the global severity of cognition. CONCLUSIONS: Among various NIBS techniques, HF-rTMS stands out as the most promising intervention for enhancing cognitive function. Meanwhile, Dual-rTMS is highly recommended for improving ADL capacity.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Metaanálisis en Red , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Encéfalo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia
14.
J Neuroeng Rehabil ; 21(1): 38, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509563

RESUMEN

BACKGROUND: Temporal interference (TI) stimulation, an innovative non-invasive brain stimulation technique, has the potential to activate neurons in deep brain regions. The objective of this study was to evaluate the effects of repetitive TI stimulation targeting the lower limb motor control area (i.e., the M1 leg area) on lower limb motor function in healthy individuals, which could provide evidence for further translational application of non-invasive deep brain stimulation. METHODS: In this randomized, double-blinded, parallel-controlled trial, 46 healthy male adults were randomly divided into the TI or sham group. The TI group received 2 mA (peak-to-peak) TI stimulation targeting the M1 leg area with a 20 Hz frequency difference (2 kHz and 2.02 kHz). Stimulation parameters of the sham group were consistent with those of the TI group but the current input lasted only 1 min (30 s ramp-up and ramp-down). Both groups received stimulation twice daily for five consecutive days. The vertical jump test (countermovement jump [CMJ], squat jump [SJ], and continuous jump [CJ]) and Y-balance test were performed before and after the total intervention session. Two-way repeated measures ANOVA (group × time) was performed to evaluate the effects of TI stimulation on lower limb motor function. RESULTS: Forty participants completed all scheduled study visits. Two-way repeated measures ANOVA showed significant group × time interaction effects for CMJ height (F = 8.858, p = 0.005) and SJ height (F = 6.523, p = 0.015). The interaction effect of the average CJ height of the first 15 s was marginally significant (F = 3.550, p = 0.067). However, there was no significant interaction effect on the Y balance (p > 0.05). Further within-group comparisons showed a significant post-intervention increase in the height of the CMJ (p = 0.004), SJ (p = 0.010) and the average CJ height of the first 15 s (p = 0.004) in the TI group. CONCLUSION: Repetitive TI stimulation targeting the lower limb motor control area effectively increased vertical jump height in healthy adult males but had no significant effect on dynamic postural stability.


Asunto(s)
Extremidad Inferior , Músculo Esquelético , Adulto , Humanos , Masculino , Músculo Esquelético/fisiología , Proyectos de Investigación
15.
Neuroimage ; 277: 120227, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321357

RESUMEN

Transcranial focused Ultrasound Stimulation (TUS) at low intensities is emerging as a novel non-invasive brain stimulation method with higher spatial resolution than established transcranial stimulation methods and the ability to selectively stimulate also deep brain areas. Accurate control of the focus position and strength of the TUS acoustic waves is important to enable a beneficial use of the high spatial resolution and to ensure safety. As the human skull causes strong attenuation and distortion of the waves, simulations of the transmitted waves are needed to accurately determine the TUS dose distribution inside the cranial cavity. The simulations require information of the skull morphology and its acoustic properties. Ideally, they are informed by computed tomography (CT) images of the individual head. However, suited individual imaging data is often not readily available. For this reason, we here introduce and validate a head template that can be used to estimate the average effects of the skull on the TUS acoustic wave in the population. The template was created from CT images of the heads of 29 individuals of different ages (between 20-50 years), gender and ethnicity using an iterative non-linear co-registration procedure. For validation, we compared acoustic and thermal simulations based on the template to the average of the simulation results of all 29 individual datasets. Acoustic simulations were performed for a model of a focused transducer driven at 500 kHz, placed at 24 standardized positions by means of the EEG 10-10 system. Additional simulations at 250 kHz and 750 kHz at 16 of the positions were used for further confirmation. The amount of ultrasound-induced heating at 500 kHz was estimated for the same 16 transducer positions. Our results show that the template represents the median of the acoustic pressure and temperature maps from the individuals reasonably well in most cases. This underpins the usefulness of the template for the planning and optimization of TUS interventions in studies of healthy young adults. Our results further indicate that the amount of variability between the individual simulation results depends on the position. Specifically, the simulated ultrasound-induced heating inside the skull exhibited strong interindividual variability for three posterior positions close to the midline, caused by a high variability of the local skull shape and composition. This should be taken into account when interpreting simulation results based on the template.


Asunto(s)
Encéfalo , Cráneo , Humanos , Cráneo/diagnóstico por imagen , Cráneo/anatomía & histología , Simulación por Computador , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Ultrasonografía/métodos , Acústica
16.
Eur J Neurosci ; 58(4): 3074-3097, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37407275

RESUMEN

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate brain activity through the application of low-intensity electrical currents. Based on its reported effects on corticospinal excitability (CSE), tDCS has been used to study cognition in healthy individuals and reduce symptoms in a variety of clinical conditions. Despite its increasing popularity as a research and clinical tool, high interindividual variability has been reported in the response to protocols using transcranial magnetic stimulation (TMS) to assess tDCS-induced changes in CSE leading to several nonsignificant findings. In this systematic review, studies that reported no significant modulation of CSE following tDCS were identified from PubMed and Embase (Ovid) databases. Forty-three articles were identified where demographic, TMS and tDCS parameters were extracted. Overall, stimulation parameters, CSE measurements and participant characteristics were similar to those described in studies reporting positive results and were likewise heterogeneous between studies. Small sample sizes and inadequate blinding were notable features of the reviewed studies. This systematic review suggests that studies reporting nonsignificant findings do not markedly differ from those reporting significant modulation of CSE.

17.
BMC Neurosci ; 24(1): 25, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020275

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS) has been shown to have positive effects on exercise performance and cognitive function in the normal ambient condition. Hypoxia is deemed a stressful situation with detrimental effects on physiological, psychological, cognitive, and perceptual responses of the body. Nevertheless, no study has evaluated the efficacy of tDCS for counteracting the negative effects of hypoxic conditions on exercise performance and cognition so far. Hence, in the present study, we investigated the effects of anodal tDCS on endurance performance, cognitive function, and perceptual responses in hypoxia. PARTICIPANTS AND METHODS: Fourteen endurance-trained males participated in five experimental sessions. After familiarization and measuring peak power output in hypoxia, in the first and second sessions, through the 3rd to 5th sessions, participants performed a cycling endurance task until exhaustion after 30 min hypoxic exposure at resting position followed by 20 min of anodal stimulation of the motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), or sham-tDCS. Color-word Stroop test and choice reaction time were measured at baseline and after exhaustion. Time to exhaustion, heart rate, saturated O2, EMG amplitude of the vastus lateralis, vastus medialis, and rectus femoris muscles, RPE, affective response, and felt arousal were also measured during the task under hypoxia. RESULTS: The results showed a longer time to exhaustion (+ 30.96%, p=0.036), lower RPE (- 10.23%, p = 0.045) and higher EMG amplitude of the vastus medialis muscle (+ 37.24%, p=0.003), affective response (+ 260%, p=0.035) and felt arousal (+ 28.9%, p=0.029) in the DLPFC tDCS compared to sham. The choice reaction time was shorter in DLPFC tDCS compared to sham (- 17.55%, p=0.029), and no differences were seen in the color-word Stroop test among the conditions under hypoxia. M1 tDCS resulted in no significant effect for any outcome measure. CONCLUSIONS: We concluded that, as a novel finding, anodal stimulation of the left DLPFC might provide an ergogenic aid for endurance performance and cognitive function under the hypoxic condition probably via increasing neural drive to the working muscles, lowering RPE, and increasing perceptual responses.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Masculino , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Corteza Prefontal Dorsolateral , Corteza Prefrontal/fisiología , Cognición , Músculos
18.
Mov Disord ; 38(12): 2209-2216, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37811802

RESUMEN

OBJECTIVE: Low-intensity transcranial focused ultrasound (TUS) is a novel method for neuromodulation. We aimed to study the feasibility of stimulating the bilateral primary motor cortices (M1) with accelerated theta-burst TUS (a-tbTUS) on neurophysiologic and clinical outcomes in Parkinson's disease (PD). METHODS: Patients were randomly assigned to receive active or sham a-tbTUS for the first visit and the alternate condition on the second visit, at least 10 days apart. a-tbTUS was administered in three consecutive sonications at 30-minute intervals. We used an accelerated protocol to produce an additive effect of stimulation. Patients were studied in the OFF-medication state. Transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) were used to assess motor cortical excitability before and after TUS. Clinical outcomes after a-tbTUS administration were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS)-III. RESULTS: A total of 20 visits were conducted in 10 PD patients. Compared to the baseline, TMS-elicited MEP amplitudes significantly increased following active but not sham sonication (P = 0.0057). MEP amplitudes were also higher following a-tbTUS than sham sonication (P = 0.0064). There were no statistically significant changes in MDS-UPDRS-III scores with active or sham a-tbTUS. CONCLUSIONS: a-tbTUS increases motor cortex excitability and is a feasible non-invasive neuromodulation strategy in PD. Future studies should determine optimal dosing parameters and the durability of neurophysiologic and clinical outcomes in PD patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Corteza Motora , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/terapia , Proyectos Piloto , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiología , Potenciales Evocados Motores/fisiología
19.
Psychol Med ; 53(3): 908-917, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34284836

RESUMEN

BACKGROUND: Preclinical findings suggest that transcranial infrared laser stimulation (TILS) improves fear extinction learning and cognitive function by enhancing prefrontal cortex (PFC) oxygen metabolism. These findings prompted our investigation of treating pathological fear using this non-invasive stimulation approach either alone to the dorsolateral PFC (dlPFC), or to the ventromedial PFC (vmPFC) in combination with exposure therapy. METHODS: Volunteers with pathological fear of either enclosed spaces, contamination, public speaking, or anxiety-related bodily sensations were recruited for this randomized, single-blind, sham-controlled trial with four arms: (a) Exposure + TILS_vmPFC (n = 29), (b) Exposure + sham TILS_vmPFC (n = 29), (c) TILS_dlPFC alone (n = 26), or (d) Sham TILS _dlPFC alone (n = 28). Post-treatment assessments occurred immediately following treatment. Follow-up assessments occurred 2 weeks after treatment. RESULTS: A total of 112 participants were randomized [age range: 18-63 years; 96 females (85.71%)]. Significant interactions of Group × Time and Group × Context indicated differential treatment effects on retention (i.e. between time-points, averaged across contexts) and on generalization (i.e. between contexts, averaged across time-points), respectively. Among the monotherapies, TILS_dlPFC outperformed SHAM_dlPFC in the initial context, b = -13.44, 95% CI (-25.73 to -1.15), p = 0.03. Among the combined treatments, differences between EX + TILS_vmPFC and EX + SHAM_vmPFC were non-significant across all contrasts. CONCLUSIONS: TILS to the dlPFC, one of the PFC regions implicated in emotion regulation, resulted in a context-specific benefit as a monotherapy for reducing fear. Contrary to prediction, TILS to the vmPFC, a region implicated in fear extinction memory consolidation, did not enhance exposure therapy outcome.


Asunto(s)
Miedo , Terapia Implosiva , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Miedo/fisiología , Terapia Implosiva/métodos , Extinción Psicológica , Método Simple Ciego , Corteza Prefrontal/fisiología , Rayos Láser
20.
Cerebellum ; 22(1): 120-128, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35060078

RESUMEN

Oscillatory activity in the cerebellum and linked networks is an important aspect of neuronal processing and functional implementation of behavior. So far, it was challenging to quantify and study cerebellar oscillatory signatures in human neuroscience due to the constraints of non-invasive cerebellar electrophysiological recording and interventional techniques. The emerging cerebellar transcranial alternating current stimulation technique (CB-tACS) is a promising tool, which may partially overcome this challenge and provides an exciting non-invasive opportunity to better understand cerebellar physiology.Several studies have successfully demonstrated that CB-tACS can modulate the cerebellar outflow and cerebellum-linked behavior. In the present narrative review, we summarize current studies employing the CB-tACS approach and discuss open research questions. Hereby, we aim to provide an overview on this emerging electrophysiological technique and strive to promote future research in the field. CB-tACS will contribute in the further deciphering of cerebellar oscillatory signatures and its role for motor, cognitive, or affective functions. In long term, CB-tACS could develop into a therapeutic tool for retuning disturbed oscillatory activity in cerebellar networks underlying brain disorders.


Asunto(s)
Encefalopatías , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Cerebelo/fisiología , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA