Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cereb Cortex ; 31(9): 4115-4139, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34003210

RESUMEN

Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.


Asunto(s)
Norepinefrina/fisiología , Receptores Adrenérgicos/fisiología , Sistema Nervioso Simpático/fisiología , Tálamo/fisiología , Animales , Autorradiografía , Axones/fisiología , Dopamina beta-Hidroxilasa/metabolismo , Fenómenos Electrofisiológicos , Femenino , Macaca mulatta , Macaca nemestrina , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Receptores Adrenérgicos/efectos de los fármacos , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Sistema Nervioso Simpático/diagnóstico por imagen , Sistema Nervioso Simpático/efectos de los fármacos
2.
Addict Biol ; 19(1): 5-15, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22458530

RESUMEN

Positive and negative emotional experiences induced by addictive drugs play an important role in the development of dysfunctional drug-related memory, which becomes resistant to extinction and contributes to high rate of relapse. Those memories may undergo a process called reconsolidation that in some cases can be disrupted by pharmacological treatment. The basolateral amygdala (BLA) has been shown to mediate the reconsolidation of drug-related appetitive memory, but its role in withdrawal-related aversive memory remains elusive. The present study used conditioned place preference (CPP) and conditioned place aversion (CPA) paradigms to investigate the role of BLA and its noradrenergic receptors in reconsolidation of morphine-associated emotional memory in rats. We found that inhibition of protein synthesis in BLA disrupted the reconsolidation of morphine CPP (m-CPP) and CPA related to morphine withdrawal (m-CPA). A high dose of the ß-noradrenergic receptor antagonist propranolol (3 µg) in BLA-impaired reconsolidation of m-CPA but not m-CPP, whereas a low dose (0.3 µg) was ineffective. In contrast, neither low nor high doses of the α-noradrenergic receptor antagonist phentolamine (1 or 10 µg) blocked the reconsolidation of m-CPP and m-CPA. In addition, infusion of propranolol (3 µg) into nucleus accumbens after retrieval of either m-CPP or m-CPA did not affect its reconsolidation. The findings indicate that appetitive and aversive addictive memories share common neural substrates in BLA, but the specific neurotransmitter mechanism on reconsolidation of morphine-associated negative and positive memories can be dissociable.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Memoria/fisiología , Morfina/farmacología , Narcóticos/farmacología , Propranolol/farmacología , Receptores Adrenérgicos beta/fisiología , Antagonistas Adrenérgicos alfa/administración & dosificación , Antagonistas Adrenérgicos alfa/farmacología , Antagonistas Adrenérgicos beta/administración & dosificación , Amígdala del Cerebelo/fisiopatología , Análisis de Varianza , Animales , Anisomicina/administración & dosificación , Conducta Apetitiva/efectos de los fármacos , Conducta Apetitiva/fisiología , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Conducta de Elección/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Relación Dosis-Respuesta a Droga , Masculino , Memoria/efectos de los fármacos , Microinyecciones , Dependencia de Morfina/psicología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiopatología , Fentolamina/administración & dosificación , Fentolamina/farmacología , Propranolol/administración & dosificación , Inhibidores de la Síntesis de la Proteína/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/efectos de los fármacos , Recurrencia , Síndrome de Abstinencia a Sustancias/psicología
3.
Pharmacol Biochem Behav ; 236: 173710, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38262489

RESUMEN

Gamma-aminobutyric acid (GABA) disinhibition in medial hypothalamus (MH) nuclei of rats elicits some defensive reactions that are considered panic attack-like behaviours. Recent evidence showed that the norepinephrine-mediated system modulates fear-related defensive behaviours organised by MH neurons at least in part via noradrenergic receptors recruitment on midbrain tegmentum. However, it is unknown whether noradrenergic receptors of the MH also modulate the panic attack-like reactions. The aim of this work was to investigate the distribution of noradrenergic receptors in MH, and the effects of either α1-, α2- or ß-noradrenergic receptors blockade in the MH on defensive behaviours elaborated by hypothalamic nuclei. Defensive behaviours were evaluated after the microinjection of the selective GABAA receptor antagonist bicuculline into the MH that was preceded by microinjection of either WB4101, RX821002, propranolol (α1-, α2- and ß-noradrenergic receptor selective antagonists, respectively), or physiological saline into the MH of male Wistar rats. The α1-, α2- and ß-noradrenergic receptors were found in neuronal perikarya of all MH nuclei, and the α2-noradrenergic receptor were also found on glial cells mainly situated in the ventrolateral division of the ventromedial hypothalamic nucleus. The α1- and ß-noradrenergic receptors blockade in the MH decreased defensive attention and escape reactions elicited by the intra-MH microinjections of bicuculline. These findings suggest that, despite the profuse distributions of α1-, α2- and ß-noradrenergic receptors in the MH, both α1- and ß-noradrenergic receptor- rather than α2-noradrenergic receptor-signalling in MH are critical for the neuromodulation of panic-like behaviour.


Asunto(s)
Trastorno de Pánico , Ratas , Masculino , Animales , Núcleo Hipotalámico Ventromedial , Bicuculina/farmacología , Ratas Wistar , Transmisión Sináptica , Microinyecciones
4.
Front Syst Neurosci ; 17: 1173326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139472

RESUMEN

Anxiety disorders are the most common class of mental illness in the U.S., affecting 40 million individuals annually. Anxiety is an adaptive response to a stressful or unpredictable life event. Though evolutionarily thought to aid in survival, excess intensity or duration of anxiogenic response can lead to a plethora of adverse symptoms and cognitive dysfunction. A wealth of data has implicated the medial prefrontal cortex (mPFC) in the regulation of anxiety. Norepinephrine (NE) is a crucial neuromodulator of arousal and vigilance believed to be responsible for many of the symptoms of anxiety disorders. NE is synthesized in the locus coeruleus (LC), which sends major noradrenergic inputs to the mPFC. Given the unique properties of LC-mPFC connections and the heterogeneous subpopulation of prefrontal neurons known to be involved in regulating anxiety-like behaviors, NE likely modulates PFC function in a cell-type and circuit-specific manner. In working memory and stress response, NE follows an inverted-U model, where an overly high or low release of NE is associated with sub-optimal neural functioning. In contrast, based on current literature review of the individual contributions of NE and the PFC in anxiety disorders, we propose a model of NE level- and adrenergic receptor-dependent, circuit-specific NE-PFC modulation of anxiety disorders. Further, the advent of new techniques to measure NE in the PFC with unprecedented spatial and temporal resolution will significantly help us understand how NE modulates PFC function in anxiety disorders.

5.
Brain Res ; 1804: 148266, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36717012

RESUMEN

Although vagal nerve stimulation (VNS) has been employed with success for almost four decades in many central nervous system disturbances, the physiological and pharmacological processes underlying this therapy are still unclear. Searching for central mechanisms of VNS is clinically limited. Hence, in many experiments, VNS technique is tested on the model of laboratory animals. In the present study we proceed with the experiments to verify some central effects of VNS. Specifically, we focussed on the hippocampal formation (HPC) noradrenergic profile which underlines the VNS-induced theta oscillations in anesthetized rats (Broncel et al., 2017; 2021). The effects of noradrenaline (NE) and selective noradrenergic α and ß agonists and antagonists were tested in experiments organized in three stages. Initially, a nonspecific noradrenergic agonist, noradrenaline, was administrated. In the second stage, noradrenergic α and ß agonists were applied. In the last stage, the administration of selected agonists was pretreated by specific antagonists. The results of the present study provide evidence that the selective activation of HPC α1, α2, and ß1 noradrenergic receptors produce the inhibition of VNS-induced theta oscillations. Hippocampal ß2 and ß3 receptors were found not to be involved in the modulation of oscillations produced by the vagal nerve stimulation. The obtained outcomes are discussed in light of the effects of increased exogenous NE and induced release of endogenous NE.


Asunto(s)
Estimulación del Nervio Vago , Ratas , Animales , Estimulación del Nervio Vago/métodos , Norepinefrina/farmacología , Hipocampo
7.
Neuroscience ; 473: 13-28, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34418519

RESUMEN

The present study was undertaken to identify the noradrenergic receptors underlying the production of hippocampal formation (HPC) type 2 theta rhythm. The experiments were performed on urethanized rats wherein type 2 theta is the only rhythm present. In three independent stages of experiments, the effects of noradrenaline (NE) and selective noradrenergic α and ß agonists and antagonists were tested. We indicate that the selective activation of three HPC noradrenergic receptors, α1, α2 and ß1, induced a similar effect (i.e., inhibition) on type 2 theta rhythm. The remaining HPC ß2 and ß3 noradrenergic receptors do not seem to be directly involved in the pharmacological mechanism responsible for the suppression of theta rhythm in anaesthetized rats. Obtained results provide evidence for the suppressant effect of exogenous NE on HPC type 2 theta rhythm and show the crucial role of α1, α2 and ß1 noradrenergic receptors in the modulation of HPC mechanisms of oscillations and synchrony. This finding is in contrast to the effects of endogenous NE produced by electrical stimulation of the locus coeruleus (LC) and procaine injection into the LC (Broncel et al., 2020).


Asunto(s)
Hipocampo , Ritmo Teta , Animales , Locus Coeruleus , Norepinefrina , Procaína , Ratas
8.
Psychopharmacology (Berl) ; 236(12): 3579-3592, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31321458

RESUMEN

RATIONALE: Norepinephrine (NE) is involved in the control of sustained attention. Studies of sustained attention in humans include measures of reaction time (RT) and RT variability (RTV). The present study tested the role of NE using components of the RT distribution in rats in a manner thought to be similar to human studies of RTV. OBJECTIVES: This study tested the effects of increased synaptic NE (atomoxetine (ATX)) and α-2 receptor binding (guanfacine) on attentional lapses in rats. METHODS: Male Sprague-Dawley rats (n = 20) were trained and tested in a two-choice RT task (2CRTT). Atomoxetine dose (saline, 0.1, 0.5, 1.0 mg/kg, i.p.), guanfacine dose (saline, 0.01, 0.1, 0.3 mg/kg, i.p.), and distractors were manipulated in three experiments. RT was divided into initiation time (IT) and movement time (MT). Analyses of distribution mode (peak) and deviation from the mode (skew) were then performed. RESULTS: ATX and guanfacine had no effect on IT mode, reduced IT devmode, and increased MT mode. When distractors were introduced, ATX again improved devmode, but a lack of interaction between ATX and distractor indicated that ATX did not prevent distractor-induced impairments. CONCLUSIONS: IT devmode is a measure of distribution skew thought to reflect lapses of attention. The effects of ATX on IT devmode suggest that increased synaptic NE reduces attentional lapses. These findings are consistent with human reports of reduced RTV after ATX administration. The same pattern of results with guanfacine suggests that the effects of increased NE are due in part to binding at α-2 noradrenergic receptors.


Asunto(s)
Inhibidores de Captación Adrenérgica/farmacología , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Clorhidrato de Atomoxetina/farmacología , Atención/efectos de los fármacos , Guanfacina/farmacología , Tiempo de Reacción/efectos de los fármacos , Animales , Atención/fisiología , Relación Dosis-Respuesta a Droga , Masculino , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología
9.
Brain Res ; 1725: 146468, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31541642

RESUMEN

Dorsal raphe nucleus (DRN) neurons are reciprocally connected to the locus coeruleus (LC) and send neural pathways to the medial hypothalamus (MH). The aim of this work was to investigate whether the blockade of α1-, α2- or ß-noradrenergic receptors in the DRN or the inactivation of noradrenergic neurons in the LC modify defensive behaviours organised by MH neurons. For this purpose, Wistar male rats received microinjections of WB4101, RX821002, propranolol (α1-, α2- and ß-noradrenergic receptor antagonists, respectively) or physiological saline in the DRN, followed 10 min later by MH GABAA receptor blockade. Other groups of animals received DSP-4 (a noradrenergic neurotoxin), physiological saline or only a needle insertion (sham group) into the LC, and 5 days later, bicuculline or physiological saline was administered in the MH. In all these cases, after MH treatment, the frequency and duration of defensive responses were recorded over 15 min. An anterograde neural tract tracer was also deposited in the DRN. DRN neurons send pathways to lateral and dorsomedial hypothalamus. Blockade of α1- and ß-noradrenergic receptors in the DRN decreased escape reactions elicited by bicuculline microinjections in the MH. In addition, a significant increase in anxiety-like behaviours was observed after the blockade of α2-noradrenergic receptors in the DRN. LC pretreatment with DSP-4 decreased both anxiety- and panic attack-like behaviours evoked by GABAA receptor blockade in the MH. In summary, the present findings suggest that the norepinephrine-mediated system modulates defensive reactions organised by MH neurons at least in part via noradrenergic receptors recruitment on DRN neurons.


Asunto(s)
Núcleo Dorsal del Rafe/fisiología , Hipotálamo Medio/fisiología , Neuronas/fisiología , Pánico/fisiología , Receptores Adrenérgicos alfa/fisiología , Receptores Adrenérgicos beta/fisiología , Antagonistas Adrenérgicos alfa/administración & dosificación , Animales , Ansiedad/fisiopatología , Núcleo Dorsal del Rafe/efectos de los fármacos , Hipotálamo Medio/efectos de los fármacos , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Pánico/efectos de los fármacos , Ratas Wistar
10.
Respir Physiol Neurobiol ; 258: 25-31, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30292742

RESUMEN

Among vertebrate ectotherms, air breathing frequency is generally constrained across warmer temperatures, but decreases during cooling. The brainstem mechanisms that give rise to this ventilatory strategy are unclear. Neuromodulation has recently been shown to stabilize motor circuit output across temperatures. Therefore, we tested the hypothesis that an important neuromodulatory system in respiratory control network, norepinephrine, produces this pattern of respiratory motor activity across temperatures. To this end, we used in vitro brainstem-spinal cord preparations from adult bullfrogs, Lithobates catesbeianus, to assess the role of noradrenergic signaling in shaping the frequency response of the respiratory network during temperature changes. We identified that noradrenergic signaling through the α1 adrenergic receptor constrains motor output from the respiratory network across warm temperatures. In contrast, the α2 adrenergic receptor actively inhibits respiratory motor output during cooling. These results indicate that noradrenergic tuning, rather than passive thermal responses, produces temperature responses of the respiratory circuits.


Asunto(s)
Tronco Encefálico/fisiología , Norepinefrina/farmacología , Respiración , Temperatura , Potenciales de Acción/efectos de los fármacos , Antagonistas Adrenérgicos alfa/farmacología , Análisis de Varianza , Animales , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Femenino , Idazoxan/análogos & derivados , Idazoxan/farmacología , Técnicas In Vitro , Neuronas Motoras/efectos de los fármacos , Prazosina/farmacología , Rana catesbeiana , Respiración/efectos de los fármacos , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología
11.
Exp Neurol ; 307: 45-51, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29856967

RESUMEN

An increase in cortical excitability may be one of the factors mediating stress-induced vulnerability to neuropsychiatric disorders. Since stress increases extracellular glutamate and predisposes to migraine with aura attacks, we aimed to study the effect of stress on cortical spreading depression (CSD), the biological substrate of migraine aura and a measure of cortical excitability. CSD was induced by increasing concentrations of KCl applied over the dura with 5-minute intervals and recorded from parieto-occipital cortex to assess the CSD-induction threshold in acutely-stressed, chronically-stressed and naive mice. To study the mechanisms of acute stress-induced decrease in CSD threshold, we systemically administered clonidine, yohimbine, propranolol, CRH1 receptor antagonist NBI27914, mifepristone and spironolactone at doses shown to be effective on stress as well as a central noradrenergic neurotoxin (DSP-4) before acute stress. CSD threshold was significantly lowered by acute and chronic stress as well as central noradrenergic denervation. Clonidine and mifepristone further decreased the CSD threshold below the acute stress-induced levels, whereas yohimbine reversed the acute stress-induced decrease in CSD threshold compared to the saline-injected and stressed control groups. Propranolol, NBI27914 and spironolactone did not modify the effect of acute stress on CSD threshold. Stress increases cortical excitability as illustrated by a decrease in CSD-induction threshold. This action of acute stress is mediated by α2-adrenergic and glucocorticoid receptors. The decrease in CSD threshold may account for the stress-induced susceptibility to migraine. CSD may be used as a tool to study the link between stress-related disorders and cortical excitability.


Asunto(s)
Corteza Cerebral/metabolismo , Depresión de Propagación Cortical/fisiología , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Compuestos de Anilina/farmacología , Animales , Corteza Cerebral/efectos de los fármacos , Depresión de Propagación Cortical/efectos de los fármacos , Masculino , Ratones , Pirimidinas/farmacología , Receptores de Glucocorticoides/análisis , Estrés Psicológico/psicología
12.
Behav Brain Res ; 312: 385-93, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27363927

RESUMEN

Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and ß-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of ß-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior.


Asunto(s)
Ansiedad/fisiopatología , Encéfalo/metabolismo , Receptores Adrenérgicos/metabolismo , Caracteres Sexuales , Natación , Animales , Conducta Animal , Conducta Exploratoria , Femenino , Proteínas de Peces/metabolismo , Masculino , Pez Cebra
13.
Neuroscience ; 336: 133-145, 2016 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-27600945

RESUMEN

It has been proposed that the post-ictal state is associated with the expression of hypoalgesia. It is clear that the projections among the periaqueductal gray matter (PAG), dorsal raphe nucleus (DRN) and locus coeruleus (LC) play a role in pain management. These mesencephalic structures have direct reciprocal opioid and monoaminergic projections to the LC that can possibly modulate post-ictal hypoalgesia. The goal of this study was to examine if LC-opioid and serotonergic/noradrenergic mechanisms signal the post-ictal hypoalgesic responses to tonic-clonic seizures produced by intraperitoneal administration of pentylenetetrazole (PTZ at 64mg/kg), causing an ionophore γ-aminobutyric acid (GABA)-mediated Cl- influx antagonism. The rodents' nociceptive threshold was measured by the tail-flick test. Intra-LC cobalt chloride (1.0nM/0.2µL) microinjections produced intermittent local synaptic inhibition and were able to reduce post-ictal hypoalgesia. Central administration of naltrexone (a non-selective antagonist for opioid receptors), naloxonazine (a selective antagonist for µ1-opioid-receptors), methysergide (a non-selective antagonist for serotonergic receptors) or ketanserin (an antagonist for both α1-noradrenergic and 5-Hydroxytryptamine(HT)2A/2C receptors) at 5.0µg/0.2µL, R-96544 (a 5-HT2A receptor selective antagonist) at 10nM/0.2µL, or RS-102221 (a 5-HT2C receptor selective antagonist) at 0.15µg/0.2µL into the LC also decreased post-ictal hypoalgesia. The data presented here suggest that the post-ictal antinociception mechanism involves the µ1-opiod, 5-HT2A- and 5-HT2C-serotonergic, and α1-noradrenergic receptors in the LC.


Asunto(s)
Locus Coeruleus/fisiopatología , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Receptores Opioides mu/metabolismo , Convulsiones/fisiopatología , Animales , Masculino , Umbral del Dolor/fisiología , Pentilenotetrazol/farmacología , Ratas Wistar , Convulsiones/inducido químicamente
14.
Brain Res Bull ; 105: 61-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24742526

RESUMEN

We review recent work on extinction learning with emphasis on its modulation. Extinction is the learned inhibition of responding to previously acquired tasks. Like other forms of learning, it can be modulated by a variety of neurotransmitter systems and behavioral procedures. This bears on its use in the treatment of fear memories, particularly in posttraumatic stress disorder (PTSD), for which it is the treatment of choice, often under the name of exposure therapy. There have not been many laboratories interested in the modulation of extinction, but the available data, although not very abundant, are quite conclusive. Most studies on the nature of extinction and on its modulation have been carried out on fear motivated behaviors, possibly because of their applicability to the therapy of PTSD. A role for d-serine and the glycine site of NMDA receptors has been ascertained in two forms of extinction in the ventromedial prefrontal cortex, basolateral amygdala and dorsal hippocampus. The serine analog, d-cycloserine, has received clinical trials as an enhancer of extinction. The brain histaminergic system acting via H2 receptors, and the endocannabinoid system using CB1 receptors in the ventromedial prefrontal cortex, hippocampus and basolateral amygdala enhance extinction. Dopaminergic D1 and ß-noradrenergic receptors also modulate extinction by actions on these three structures. Isolated findings suggest roles for on serotonin-1A, dopaminergic-D2 and a- and ß-noradrenergic receptors in extinction modulation. Importantly, behavioral tagging and capture mechanisms in the hippocampus have been shown to play a major modulatory role in extinction. In addition, extinction of at least one aversive task (inhibitory avoidance) can be made state dependent on peripheral epinephrine.


Asunto(s)
Miedo , Hormonas Esteroides Gonadales/metabolismo , Aprendizaje/fisiología , Receptores de Superficie Celular/fisiología , Animales , Encéfalo , Humanos , Receptores de N-Metil-D-Aspartato/fisiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-20300468

RESUMEN

Although it is known that noradrenaline (NA) powerfully controls spinal motor networks, few data are available regarding the noradrenergic (NAergic) modulation of intrinsic and synaptic properties of neurons in motor networks. Our work explores the cellular basis of NAergic modulation in the rat motor spinal cord. We first show that lumbar motoneurons express the three classes of adrenergic receptors at birth. Using patch-clamp recordings in the newborn rat spinal cord preparation, we characterized the effects of NA and of specific agonists of the three classes of adrenoreceptors on motoneuron membrane properties. NA increases the motoneuron excitability partly via the inhibition of a K(IR) like current. Methoxamine (alpha(1)), clonidine (alpha(2)) and isoproterenol (beta) differentially modulate the motoneuron membrane potential but also increase motoneuron excitability, these effects being respectively inhibited by the antagonists prazosin (alpha(1)), yohimbine (alpha(2)) and propranolol (beta). We show that the glutamatergic synaptic drive arising from the T13-L2 network is enhanced in motoneurons by NA, methoxamine and isoproterenol. On the other hand, NA, isoproterenol and clonidine inhibit both the frequency and amplitude of miniature glutamatergic EPSCs while methoxamine increases their frequency. The T13-L2 synaptic drive is thereby differentially modulated from the other glutamatergic synapses converging onto motoneurons and enhanced by presynaptic alpha(1) and beta receptor activation. Our data thus show that the NAergic system exerts a powerful and complex neuromodulation of lumbar motor networks in the neonatal rat spinal cord.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA