Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 172(5): 966-978.e12, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474922

RESUMEN

Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.


Asunto(s)
Microscopía por Crioelectrón , Ebolavirus/fisiología , Ebolavirus/ultraestructura , Nucleocápside/ultraestructura , Nucleoproteínas/ultraestructura , Ensamble de Virus , Modelos Biológicos , Proteínas Mutantes/química , Mutación/genética , Nucleoproteínas/química , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Viral/biosíntesis , ARN Viral/química , ARN Viral/metabolismo
2.
Immunity ; 54(6): 1290-1303.e7, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34022127

RESUMEN

Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, we isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORF8), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 over time, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , COVID-19/inmunología , Interacciones Huésped-Patógeno/inmunología , Epítopos Inmunodominantes/inmunología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/genética , Linfocitos B/metabolismo , Biología Computacional/métodos , Reacciones Cruzadas/inmunología , Mapeo Epitopo , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Humanos , Epítopos Inmunodominantes/genética , Memoria Inmunológica , Masculino , Pruebas de Neutralización , Análisis de la Célula Individual/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Transcriptoma
3.
Mol Cell ; 81(5): 1058-1073.e7, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421363

RESUMEN

Homologous recombination (HR) is an essential DNA double-strand break (DSB) repair mechanism, which is frequently inactivated in cancer. During HR, RAD51 forms nucleoprotein filaments on RPA-coated, resected DNA and catalyzes strand invasion into homologous duplex DNA. How RAD51 displaces RPA and assembles into long HR-proficient filaments remains uncertain. Here, we employed single-molecule imaging to investigate the mechanism of nematode RAD-51 filament growth in the presence of BRC-2 (BRCA2) and RAD-51 paralogs, RFS-1/RIP-1. BRC-2 nucleates RAD-51 on RPA-coated DNA, whereas RFS-1/RIP-1 acts as a "chaperone" to promote 3' to 5' filament growth via highly dynamic engagement with 5' filament ends. Inhibiting ATPase or mutation in the RFS-1 Walker box leads to RFS-1/RIP-1 retention on RAD-51 filaments and hinders growth. The rfs-1 Walker box mutants display sensitivity to DNA damage and accumulate RAD-51 complexes non-functional for HR in vivo. Our work reveals the mechanism of RAD-51 nucleation and filament growth in the presence of recombination mediators.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Portadoras/genética , ADN de Helmintos/genética , Proteínas de Unión al ADN/genética , Recombinasa Rad51/genética , Reparación del ADN por Recombinación , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , ADN de Helmintos/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Unión Proteica , Recombinasa Rad51/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Transducción de Señal , Imagen Individual de Molécula
4.
Mol Cell ; 69(1): 136-145.e6, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290611

RESUMEN

Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase through a B56-binding LxxIxE motif and that this motif is essential for VP30 dephosphorylation and viral transcription. The LxxIxE motif and the binding site of VP30 in NP are in close proximity, and both binding sites are required for the dephosphorylation of VP30. We generate a specific inhibitor of PP2A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention.


Asunto(s)
Ebolavirus/metabolismo , Proteína Fosfatasa 2/metabolismo , Factores de Transcripción/genética , Transcripción Genética/genética , Proteínas Virales/genética , Replicación Viral/genética , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Ebolavirus/genética , Células HEK293 , Células HeLa , Humanos , Nucleoproteínas , Fosforilación , Dominios y Motivos de Interacción de Proteínas/genética , Proteína Fosfatasa 2/antagonistas & inhibidores , ARN Viral/metabolismo , Células Vero
5.
EMBO J ; 40(17): e108588, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34323299

RESUMEN

The humoral immune response to SARS-CoV-2 results in antibodies against spike (S) and nucleoprotein (N). However, whilst there are widely available neutralization assays for S antibodies, there is no assay for N-antibody activity. Here, we present a simple in vitro method called EDNA (electroporated-antibody-dependent neutralization assay) that provides a quantitative measure of N-antibody activity in unpurified serum from SARS-CoV-2 convalescents. We show that N antibodies neutralize SARS-CoV-2 intracellularly and cell-autonomously but require the cytosolic Fc receptor TRIM21. Using EDNA, we show that low N-antibody titres can be neutralizing, whilst some convalescents possess serum with high titres but weak activity. N-antibody and N-specific T-cell activity correlates within individuals, suggesting N antibodies may protect against SARS-CoV-2 by promoting antigen presentation. This work highlights the potential benefits of N-based vaccines and provides an in vitro assay to allow the antibodies they induce to be tested.


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , COVID-19/sangre , SARS-CoV-2/aislamiento & purificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/virología , Humanos , Nucleoproteínas/sangre , Nucleoproteínas/inmunología , SARS-CoV-2/patogenicidad
6.
EMBO J ; 40(5): e106228, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258165

RESUMEN

Nucleoprotein (N) is an immunodominant antigen in many enveloped virus infections. While the diagnostic value of anti-N antibodies is clear, their role in immunity is not. This is because while they are non-neutralising, they somehow clear infection by coronavirus, influenza and LCMV in vivo. Here, we show that anti-N immune protection is mediated by the cytosolic Fc receptor and E3 ubiquitin ligase TRIM21. Exploiting LCMV as a model system, we demonstrate that TRIM21 uses anti-N antibodies to target N for cytosolic degradation and generate cytotoxic T cells (CTLs) against N peptide. These CTLs rapidly eliminate N-peptide-displaying cells and drive efficient viral clearance. These results reveal a new mechanism of immune synergy between antibodies and T cells and highlights N as an important vaccine target.


Asunto(s)
Anticuerpos Antivirales/inmunología , Inmunidad Celular , Virus de la Coriomeningitis Linfocítica/inmunología , Proteínas de la Nucleocápside/inmunología , Ribonucleoproteínas/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/genética , Ratones , Ratones Noqueados , Proteínas de la Nucleocápside/genética , Ribonucleoproteínas/genética , Vacunas Virales/genética , Vacunas Virales/inmunología
7.
J Virol ; 98(3): e0170323, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38353535

RESUMEN

The increased detection of H3 C-IVA (1990.4.a) clade influenza A viruses (IAVs) in US swine in 2019 was associated with a reassortment event to acquire an H1N1pdm09 lineage nucleoprotein (pdmNP) gene, replacing a TRIG lineage NP (trigNP). We hypothesized that acquiring the pdmNP conferred a selective advantage over prior circulating H3 viruses with a trigNP. To investigate the role of NP reassortment in transmission, we identified two contemporary 1990.4.a representative strains (NC/19 and MN/18) with different evolutionary origins of the NP gene. A reverse genetics system was used to generate wild-type (wt) strains and swap the pdm and TRIG lineage NP genes, generating four viruses: wtNC/19-pdmNP, NC/19-trigNP, wtMN/18-trigNP, and MN/18-pdmNP. The pathogenicity and transmission of the four viruses were compared in pigs. All four viruses infected 10 primary pigs and transmitted to five indirect contact pigs per group. Pigs infected via contact with MN/18-pdmNP shed virus 2 days earlier than pigs infected with wtMN/18-trigNP. The inverse did not occur for wtNC/19-pdmNP and NC/19-trigNP. This suggests that pdmNP reassortment resulted in a combination of genes that improved transmission efficiency when paired with the 1990.4.a hemagglutinin (HA). This is likely a multigenic trait, as replacing the trigNP gene did not diminish the transmission of a wild-type IAV in swine. This study demonstrates how reassortment and evolutionary change of internal genes can result in more transmissible viruses that influence HA clade detection frequency. Thus, rapidly identifying novel reassortants paired with dominant hemagglutinin/neuraminidase may improve the prediction of strains to include in vaccines.IMPORTANCEInfluenza A viruses (IAVs) are composed of eight non-continuous gene segments that can reassort during coinfection of a host, creating new combinations. Some gene combinations may convey a selective advantage and be paired together preferentially. A reassortment event was detected in swine in the United States that involved the exchange of two lineages of nucleoprotein (NP) genes (trigNP to pdmNP) that became a predominant genotype detected in surveillance. Using a transmission study, we demonstrated that exchanging the trigNP for a pdmNP caused the virus to shed from the nose at higher levels and transmit to other pigs more rapidly. Replacing a pdmNP with a trigNP did not hinder transmission, suggesting that transmission efficiency depends on interactions between multiple genes. This demonstrates how reassortment alters IAV transmission and that reassortment events can provide an explanation for why genetically related viruses with different internal gene combinations experience rapid fluxes in detection frequency.


Asunto(s)
Virus de la Influenza A , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Hemaglutininas , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Porcinos , Estados Unidos , Proteínas de la Nucleocápside/metabolismo
8.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294249

RESUMEN

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Asunto(s)
Caspasas , Citoplasma , Fiebre Hemorrágica Americana , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus Junin , Nucleoproteínas , Biosíntesis de Proteínas , Humanos , Apoptosis , Inhibidores de Caspasas/metabolismo , Caspasas/metabolismo , Citoplasma/metabolismo , Citoplasma/virología , Activación Enzimática , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Interferones/genética , Interferones/inmunología , Virus Junin/genética , Virus Junin/metabolismo , Virus Junin/patogenicidad , Nucleoproteínas/biosíntesis , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/biosíntesis , ARN Viral/genética , Replicación Viral
9.
J Biol Chem ; 299(5): 104668, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37011862

RESUMEN

Inhibition of heat shock protein 90 (Hsp90), a prominent molecular chaperone, effectively limits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection but little is known about any interaction between Hsp90 and SARS-CoV-2 proteins. Here, we systematically analyzed the effects of the chaperone isoforms Hsp90α and Hsp90ß on individual SARS-CoV-2 viral proteins. Five SARS-CoV-2 proteins, namely nucleocapsid (N), membrane (M), and accessory proteins Orf3, Orf7a, and Orf7b were found to be novel clients of Hsp90ß in particular. Pharmacological inhibition of Hsp90 with 17-DMAG results in N protein proteasome-dependent degradation. Hsp90 depletion-induced N protein degradation is independent of CHIP, a ubiquitin E3 ligase previously identified for Hsp90 client proteins, but alleviated by FBXO10, an E3 ligase identified by subsequent siRNA screening. We also provide evidence that Hsp90 depletion may suppress SARS-CoV-2 assembly partially through induced M or N degradation. Additionally, we found that GSDMD-mediated pyroptotic cell death triggered by SARS-CoV-2 was mitigated by inhibition of Hsp90. These findings collectively highlight a beneficial role for targeting of Hsp90 during SARS-CoV-2 infection, directly inhibiting virion production and reducing inflammatory injury by preventing the pyroptosis that contributes to severe SARS-CoV-2 disease.


Asunto(s)
COVID-19 , Proteínas HSP90 de Choque Térmico , Piroptosis , SARS-CoV-2 , Virión , Humanos , COVID-19/patología , COVID-19/fisiopatología , COVID-19/virología , Proteínas HSP90 de Choque Térmico/metabolismo , SARS-CoV-2/química , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Ubiquitina-Proteína Ligasas/metabolismo , Virión/química , Virión/crecimiento & desarrollo , Virión/metabolismo , Proteínas Virales/metabolismo
10.
J Virol ; 97(11): e0164622, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37916834

RESUMEN

IMPORTANCE: Currently, many groups are focusing on isolating both neutralizing and non-neutralizing antibodies to the mutation-prone hemagglutinin as a tool to treat or prevent influenza virus infection. Less is known about the level of protection induced by non-neutralizing antibodies that target conserved internal influenza virus proteins. Such non-neutralizing antibodies could provide an alternative pathway to induce broad cross-reactive protection against multiple influenza virus serotypes and subtypes by partially overcoming influenza virus escape mediated by antigenic drift and shift. Accordingly, more information about the level of protection and potential mechanism(s) of action of non-neutralizing antibodies targeting internal influenza virus proteins could be useful for the design of broadly protective and universal influenza virus vaccines.


Asunto(s)
Anticuerpos Monoclonales , Virus de la Influenza A , Proteínas de la Nucleocápside , Proteínas de la Matriz Viral , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Gripe Humana , Proteínas de la Matriz Viral/inmunología , Proteínas de la Nucleocápside/inmunología
11.
J Virol ; 97(4): e0181422, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36939341

RESUMEN

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and potentially fatal hemorrhagic fever in humans. Autophagy is a self-degradative process that can restrict viral replication at multiple infection steps. In this study, we evaluated the effects of RVFV-triggered autophagy on viral replication and immune responses. Our results showed that RVFV infection triggered autophagosome formation and induced complete autophagy. Impairing autophagy flux by depleting autophagy-related gene 5 (ATG5), ATG7, or sequestosome 1 (SQSTM1) or treatment with autophagy inhibitors markedly reduced viral RNA synthesis and progeny virus production. Mechanistically, our findings demonstrated that the RVFV nucleoprotein (NP) C-terminal domain interacts with the autophagy receptor SQSTM1 and promotes the SQSTM1-microtubule-associated protein 1 light chain 3 B (LC3B) interaction and autophagy. Deletion of the NP C-terminal domain impaired the interaction between NP and SQSTM1 and its ability to trigger autophagy. Notably, RVFV-triggered autophagy promoted viral infection in macrophages but not in other tested cell types, including Huh7 hepatocytes and human umbilical vein endothelial cells, suggesting cell type specificity of this mechanism. It was further revealed that RVFV NP-triggered autophagy dampens antiviral innate immune responses in infected macrophages to promote viral replication. These results provide novel insights into the mechanisms of RVFV-triggered autophagy and indicate the potential of targeting the autophagy pathway to develop antivirals against RVFV. IMPORTANCE We showed that RVFV infection induced the complete autophagy process. Depletion of the core autophagy genes ATG5, ATG7, or SQSTM1 or pharmacologic inhibition of autophagy in macrophages strongly suppressed RVFV replication. We further revealed that the RVFV NP C-terminal domain interacted with SQSTM1 and enhanced the SQSTM1/LC3B interaction to promote autophagy. RVFV NP-triggered autophagy strongly inhibited virus-induced expression of interferon-stimulated genes in infected macrophages but not in other tested cell types. Our study provides novel insights into the mechanisms of RVFV-triggered autophagy and highlights the potential of targeting autophagy flux to develop antivirals against this virus.


Asunto(s)
Autofagia , Inmunidad Innata , Nucleoproteínas , Virus de la Fiebre del Valle del Rift , Inmunidad Innata/inmunología , Virus de la Fiebre del Valle del Rift/inmunología , Nucleoproteínas/inmunología , Nucleoproteínas/metabolismo , Autofagia/inmunología , Replicación Viral , Línea Celular , Fiebre del Valle del Rift/inmunología , Humanos , Animales , Macrófagos/virología
12.
J Virol ; 97(11): e0122623, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37861337

RESUMEN

IMPORTANCE: Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Factor 1 de Elongación Peptídica , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Peces , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/veterinaria , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas de Peces/metabolismo , Enfermedades de los Peces/metabolismo
13.
Protein Expr Purif ; 221: 106506, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38772430

RESUMEN

Influenza poses a substantial health risk, with infants and the elderly being particularly susceptible to its grave impacts. The primary challenge lies in its rapid genetic evolution, leading to the emergence of new Influenza A strains annually. These changes involve punctual mutations predominantly affecting the two main glycoproteins: Hemagglutinin (HA) and Neuraminidase (NA). Our existing vaccines target these proteins, providing short-term protection, but fall short when unexpected pandemics strike. Delving deeper into Influenza's genetic makeup, we spotlight the nucleoprotein (NP) - a key player in the transcription, replication, and packaging of RNA. An intriguing characteristic of the NP is that it is highly conserved across all Influenza A variants, potentially paving the way for a more versatile and broadly protective vaccine. We designed and synthesized a novel NP-Hoc fusion protein combining Influenza A nucleoprotein and T4 phage Hoc, cloned using Gibson assembly in E. coli, and purified via ion affinity chromatography. Simultaneously, we explore the T4 coat protein Hoc, typically regarded as inconsequential in controlled viral replication. Yet, it possesses a unique ability: it can link with another protein, showcasing it on the T4 phage coat. Fusing these concepts, our study designs, expresses, and purifies a novel fusion protein named NP-Hoc. We propose this protein as the basis for a new generation of vaccines, engineered to guard broadly against Influenza A. The excitement lies not just in the immediate application, but the promise this holds for future pandemic resilience, with NP-Hoc marking a significant leap in adaptive, broad-spectrum influenza prevention.


Asunto(s)
Bacteriófago T4 , Escherichia coli , Proteínas Recombinantes de Fusión , Bacteriófago T4/genética , Bacteriófago T4/química , Bacteriófago T4/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/biosíntesis , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/química , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/aislamiento & purificación
14.
Mol Ther ; 31(2): 374-386, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36303436

RESUMEN

Emerging and re-emerging viruses, such as Zaire Ebola virus (EBOV), pose a global threat and require immediate countermeasures, including the rapid development of effective vaccines that are easy to manufacture. Synthetic self-amplifying RNAs (saRNAs) attend to these needs, being safe and strong immune stimulators that can be inexpensively produced in large quantities, using cell-free systems and good manufacturing practice. Here, the first goal was to develop and optimize an anti-EBOV saRNA-based vaccine in terms of its antigen composition and route of administration. Vaccinating mice with saRNAs expressing the EBOV glycoprotein (GP) alone or in combination with the nucleoprotein (NP) elicited antigen-specific immune responses. GP-specific antibodies showed neutralizing activity against EBOV. Strong CD4+ T cell response against NP and GP and CD8+ T cell response against NP were detected by ELISpot assays. Intramuscular vaccination with saRNAs conferred better immune response than intradermal. Finally, mice vaccinated in a prime-boost regimen with saRNAs encoding both GP and NP or with GP alone survived an EBOV infection. In addition, a single dose of GP and NP saRNAs was also protective against fatal EBOV infection. Overall, saRNAs expressing viral antigens represent a promising vaccine platform.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Ratones , Fiebre Hemorrágica Ebola/prevención & control , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Ebolavirus/genética , Glicoproteínas/genética , Vacunas contra el Virus del Ébola/genética
15.
J Infect Chemother ; 30(7): 646-650, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38309499

RESUMEN

BACKGROUND: COVID-19 has become widespread in Japanese children. However, the impact of varying immunization coverage on the seroprevalence of SARS-CoV-2 in children is unknown. METHODS: We examined the SARS-CoV-2 antibody in children aged 0 to 18 who were hospitalized at a university hospital from June 2020 through May 2023. The SARS-CoV-2 anti-nucleoprotein (N) antibody and anti-RBD spike (S) protein antibody was measured. RESULTS: A total of 586 cases were enrolled. The median age was 4 years old (interquartile range 1-9), and 362 (61.8 %) were male. The seroprevalence of anti-S antibodies gradually increased from October 2021 and reached 60 percent by early 2023. The anti-N antibody increased starting in January 2022 and reached 50 percent in May 2023. There was a discrepancy in the seroprevalence of anti-S and N antibodies in children 0 years of age or 12 years and older until the fall of 2022. This discrepancy was minimal for children 1-4 years of age and relatively small in the 5-11-year-old group. DISCUSSION: The data suggests that approximately half of the children in our cohort had been infected with SARS-CoV-2 by May 2023. The discrepancy in seropositivity between the anti-S and N antibodies corresponded to the reported vaccine uptake of each target age group, which suggested protective effects of immunization. However, this effect appeared to diminish after early 2023. CONCLUSION: Age dependent discrepancy between SARS-CoV-2 anti-N and anti-S antibody in children reflected differences in vaccine coverage.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Factores de Edad , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/epidemiología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Japón/epidemiología , Fosfoproteínas/inmunología , SARS-CoV-2/inmunología , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Cobertura de Vacunación/estadística & datos numéricos
16.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791202

RESUMEN

Knowledge of the composition of proteins that interact with plasma DNA will provide a better understanding of the homeostasis of circulating nucleic acids and the various modes of interaction with target cells, which may be useful in the development of gene targeted therapy approaches. The goal of the present study is to shed light on the composition and architecture of histone-containing nucleoprotein complexes (NPCs) from the blood plasma of healthy females (HFs) and breast cancer patients (BCPs) and to explore the relationship of proteins with crucial steps of tumor progression: epithelial-mesenchymal transition (EMT), cell proliferation, invasion, cell migration, stimulation of angiogenesis, and immune response. MALDI-TOF mass spectrometric analysis of NPCs isolated from blood samples using affine chromatography was performed. Bioinformatics analysis showed that the shares of DNA-binding proteins in the compositions of NPCs in normal and cancer patients are comparable and amount to 40% and 33%, respectively; in total, we identified 38 types of DNA-binding motifs. Functional enrichment analysis using FunRich 3.13 showed that, in BCP blood, the share of DNA-binding proteins involved in nucleic acid metabolism increased, while the proportion of proteins involved in intercellular communication and signal transduction decreased. The representation of NPC passenger proteins in breast cancer also changes: the proportion of proteins involved in transport increases and the share of proteins involved in energy biological pathways decreases. Moreover, in the HF blood, proteins involved in the processes of apoptosis were more represented in the composition of NPCs and in the BCP blood-in the processes of active secretion. For the first time, bioinformatics approaches were used to visualize the architecture of circulating NPCs in the blood and to show that breast cancer has an increased representation of passenger proteins involved in EMT, cell proliferation, invasion, cell migration, and immune response. Using breast cancer protein data from the Human Protein Atlas (HPA) and DEPC, we found that 86% of NPC proteins in the blood of BCPs were not previously annotated in these databases. The obtained data may indirectly indicate directed protein sorting in NPCs, which, along with extracellular vesicles, can not only be diagnostically significant molecules for liquid biopsy, but can also carry out the directed transfer of genetic material from donor cells to recipient cells.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al ADN , Humanos , Femenino , Neoplasias de la Mama/sangre , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/metabolismo , Transición Epitelial-Mesenquimal , Carcinogénesis/metabolismo , Proliferación Celular , ADN/metabolismo , ADN/sangre , Biología Computacional/métodos , Nucleoproteínas/metabolismo , Nucleoproteínas/sangre , Movimiento Celular
17.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062780

RESUMEN

The relationship between pangolin-CoV and SARS-CoV-2 has been a subject of debate. Further evidence of a special relationship between the two viruses can be found by the fact that all known COVID-19 viruses have an abnormally hard outer shell (low M disorder, i.e., low content of intrinsically disordered residues in the membrane (M) protein) that so far has been found in CoVs associated with burrowing animals, such as rabbits and pangolins, in which transmission involves virus remaining in buried feces for a long time. While a hard outer shell is necessary for viral survival, a harder inner shell could also help. For this reason, the N disorder range of pangolin-CoVs, not bat-CoVs, more closely matches that of SARS-CoV-2, especially when Omicron is included. The low N disorder (i.e., low content of intrinsically disordered residues in the nucleocapsid (N) protein), first observed in pangolin-CoV-2017 and later in Omicron, is associated with attenuation according to the Shell-Disorder Model. Our experimental study revealed that pangolin-CoV-2017 and SARS-CoV-2 Omicron (XBB.1.16 subvariant) show similar attenuations with respect to viral growth and plaque formation. Subtle differences have been observed that are consistent with disorder-centric computational analysis.


Asunto(s)
COVID-19 , Pangolines , SARS-CoV-2 , SARS-CoV-2/patogenicidad , Animales , COVID-19/virología , COVID-19/transmisión , Pangolines/virología , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Biología Computacional/métodos , Fosfoproteínas
18.
Semin Cell Dev Biol ; 113: 3-13, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32631783

RESUMEN

Rad51 recombinase is the central player in homologous recombination, the faithful repair pathway for double-strand breaks and key event during meiosis. Rad51 forms nucleoprotein filaments on single-stranded DNA, exposed by a double-strand break. These filaments are responsible for homology search and strand invasion, which lead to homology-directed repair. Due to its central roles in DNA repair and genome stability, Rad51 is modulated by multiple factors and post-translational modifications. In this review, we summarize our current understanding of the dynamics of Rad51 filaments, the roles of other factors and their modes of action in modulating key stages of Rad51 filaments: formation, stability and disassembly.


Asunto(s)
Recombinasa Rad51/metabolismo , Humanos , Recombinación Genética
19.
J Biol Chem ; 298(9): 102337, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931116

RESUMEN

Respiratory syncytial virus has a negative-sense single-stranded RNA genome constitutively encapsidated by the viral nucleoprotein N, forming a helical nucleocapsid which is the template for viral transcription and replication by the viral polymerase L. Recruitment of L onto the nucleocapsid depends on the viral phosphoprotein P, which is an essential L cofactor. A prerequisite for genome and antigenome encapsidation is the presence of the monomeric, RNA-free, neosynthesized N protein, named N0. Stabilization of N0 depends on the binding of the N-terminal residues of P to its surface, which prevents N oligomerization. However, the mechanism involved in the transition from N0-P to nucleocapsid assembly, and thus in the specificity of viral genome encapsidation, is still unknown. Furthermore, the specific role of N oligomerization and RNA in the morphogenesis of viral factories, where viral transcription and replication occur, have not been elucidated although the interaction between P and N complexed to RNA has been shown to be responsible for this process. Here, using a chimeric protein comprising N and the first 40 N-terminal residues of P, we succeeded in purifying a recombinant N0-like protein competent for RNA encapsidation in vitro. Our results showed the importance of RNA length for stable encapsidation and revealed that the nature of the 5' end of RNA does not explain the specificity of encapsidation. Finally, we showed that RNA encapsidation is crucial for the in vitro reconstitution of pseudo-viral factories. Together, our findings provide insight into respiratory syncytial virus viral genome encapsidation specificity.


Asunto(s)
Nucleocápside , Nucleoproteínas , ARN Viral , Virus Sincitial Respiratorio Humano , Empaquetamiento del Genoma Viral , Proteínas Estructurales Virales , Humanos , Nucleocápside/química , Nucleocápside/fisiología , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/química , Virus Sincitial Respiratorio Humano/química , Virus Sincitial Respiratorio Humano/fisiología , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/metabolismo
20.
J Biol Chem ; 298(12): 102709, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36402446

RESUMEN

Circulation of influenza A virus (IAV), especially within poultry and pigs, continues to threaten public health. A simple and universal detecting method is important for monitoring IAV infection in different species. Recently, nanobodies, which show advantages of easy gene editing and low cost of production, are a promising novel diagnostic tool for the monitoring and control of global IAVs. In the present study, five nanobodies against the nucleoprotein of H9N2 IAV were screened from the immunized Bactrian camel by phage display and modified with horseradish peroxidase (HRP) tags. Out of which, we determined that H9N2-NP-Nb5-HRP can crossreact with different subtypes of IAVs, and this reaction is also blocked by positive sera for antibodies against different IAV subtypes. Epitope mapping showed that the nanobody-HRP fusion recognized a conserved conformational epitope in all subtypes of IAVs. Subsequently, we developed a nanobody-based competitive ELISA (cELISA) for detecting anti-IAV antibodies in different species. The optimized amount of coating antigen and dilutions of the fusion and testing sera were 100 ng/well, 1:4000, and 1:10, respectively. The time for operating the cELISA was approximately 35 min. The cELISA showed high sensitivity, specificity, reproducibility, and stability. In addition, we found that the cELISA and hemagglutination inhibition test showed a consistency of 100% and 87.91% for clinical and challenged chicken sera, respectively. Furthermore, the agreement rates were 90.4% and 85.7% between the cELISA and commercial IEDXX ELISA kit. Collectively, our developed nanobody-HRP fusion-based cELISA is an ideal method for monitoring IAV infection in different species.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Anticuerpos de Dominio Único , Animales , Humanos , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática/métodos , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , Reproducibilidad de los Resultados , Porcinos , Aves de Corral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA