Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 295(50): 17071-17082, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33023909

RESUMEN

Stromal interaction molecule 1 (STIM1) plays a pivotal role in store-operated Ca2+ entry (SOCE), an essential mechanism in cellular calcium signaling and in maintaining cellular calcium balance. Because O-GlcNAcylation plays pivotal roles in various cellular function, we examined the effect of fluctuation in STIM1 O-GlcNAcylation on SOCE activity. We found that both increase and decrease in STIM1 O-GlcNAcylation impaired SOCE activity. To determine the molecular basis, we established STIM1-knockout HEK293 (STIM1-KO-HEK) cells using the CRISPR/Cas9 system and transfected STIM1 WT (STIM1-KO-WT-HEK), S621A (STIM1-KO-S621A-HEK), or T626A (STIM1-KO-T626A-HEK) cells. Using these cells, we examined the possible O-GlcNAcylation sites of STIM1 to determine whether the sites were O-GlcNAcylated. Co-immunoprecipitation analysis revealed that Ser621 and Thr626 were O-GlcNAcylated and that Thr626 was O-GlcNAcylated in the steady state but Ser621 was not. The SOCE activity in STIM1-KO-S621A-HEK and STIM1-KO-T626A-HEK cells was lower than that in STIM1-KO-WT-HEK cells because of reduced phosphorylation at Ser621 Treatment with the O-GlcNAcase inhibitor Thiamet G or O-GlcNAc transferase (OGT) transfection, which increases O-GlcNAcylation, reduced SOCE activity, whereas treatment with the OGT inhibitor ST045849 or siOGT transfection, which decreases O-GlcNAcylation, also reduced SOCE activity. Decrease in SOCE activity due to increase and decrease in O-GlcNAcylation was attributable to reduced phosphorylation at Ser621 These data suggest that both decrease in O-GlcNAcylation at Thr626 and increase in O-GlcNAcylation at Ser621 in STIM1 lead to impairment of SOCE activity through decrease in Ser621 phosphorylation. Targeting STIM1 O-GlcNAcylation could provide a promising treatment option for the related diseases, such as neurodegenerative diseases.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Acilación , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Fosforilación , Serina , Molécula de Interacción Estromal 1/genética
2.
J Biol Chem ; 294(9): 3117-3124, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30587575

RESUMEN

O-GlcNAcylation is a post-translational modification of a protein serine or threonine residue catalyzed by O-GlcNAc transferase (OGT) in the nucleus and cytoplasm. O-GlcNAcylation plays important roles in the cellular signaling that affect the different biological functions of cells, depending upon cell type. However, whether or not O-GlcNAcylation regulates cell adhesion and migration remains unclear. Here, we used the doxycycline-inducible short hairpin RNA (shRNA) system to establish an OGT knockdown (KD) HeLa cell line and found that O-GlcNAcylation is a key regulator for cell adhesion, migration, and focal adhesion (FA) complex formation. The expression levels of OGT and O-GlcNAcylation were remarkably suppressed 24 h after induction of doxycycline. Knockdown of OGT significantly promoted cell adhesion, but it suppressed the cell migration on fibronectin. The immunostaining with paxillin, a marker for FA plaque, clearly showed that the number of FAs was increased in the KD cells compared with that in the control cells. The O-GlcNAcylation levels of paxillin, talin, and focal adhesion kinase were down-regulated in KD cells. Interestingly, the complex formation between integrin ß1, focal adhesion kinase, paxillin, and talin was greatly increased in KD cells. Consistently, levels of active integrin ß1 were significantly enhanced in KD cells, whereas they were decreased in cells overexpressing OGT. The data suggest a novel regulatory mechanism for O-GlcNAcylation during FA complex formation, which thereby affects integrin activation and integrin-mediated functions such as cell adhesion and migration.


Asunto(s)
Acetilglucosamina/metabolismo , Adhesión Celular , Movimiento Celular , Adhesiones Focales/metabolismo , Integrina beta1/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Quinasa 1 de Adhesión Focal/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , N-Acetilglucosaminiltransferasas/deficiencia , N-Acetilglucosaminiltransferasas/genética , Paxillin/metabolismo , Talina/metabolismo
3.
J Biol Chem ; 294(35): 13040-13050, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31300553

RESUMEN

An early hallmark of type 2 diabetes is a failure of proinsulin-to-insulin processing in pancreatic ß-cells, resulting in hyperproinsulinemia. Proinsulin processing is quite sensitive to nutrient flux, and ß-cell-specific deletion of the nutrient-sensing protein modifier OGlcNAc transferase (ßOGTKO) causes ß-cell failure and diabetes, including early development of hyperproinsulinemia. The mechanisms underlying this latter defect are unknown. Here, using several approaches, including site-directed mutagenesis, Click O-GlcNAc labeling, immunoblotting, and immunofluorescence and EM imaging, we provide the first evidence for a relationship between the O-GlcNAcylation of eukaryotic translation initiation factor 4γ1 (eIF4G1) and carboxypeptidase E (CPE)-dependent proinsulin processing in ßOGTKO mice. We first established that ßOGTKO hyperproinsulinemia is independent of age, sex, glucose levels, and endoplasmic reticulum-CCAAT enhancer-binding protein homologous protein (CHOP)-mediated stress status. Of note, OGT loss was associated with a reduction in ß-cell-resident CPE, and genetic reconstitution of CPE in ßOGTKO islets rescued the dysfunctional proinsulin-to-insulin ratio. We show that although CPE is not directly OGlcNAc modified in islets, overexpression of the suspected OGT target eIF4G1, previously shown to regulate CPE translation in ß-cells, increases islet CPE levels, and fully reverses ßOGTKO islet-induced hyperproinsulinemia. Furthermore, our results reveal that OGT O-GlcNAc-modifies eIF4G1 at Ser-61 and that this modification is critical for eIF4G1 protein stability. Together, these results indicate a direct link between nutrient-sensitive OGT and insulin processing, underscoring the importance of post-translational O-GlcNAc modification in general cell physiology.


Asunto(s)
Carboxipeptidasa H/metabolismo , Diabetes Mellitus/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Células Secretoras de Insulina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , N-Acetilglucosaminiltransferasas/deficiencia
4.
J Biol Chem ; 294(45): 16620-16633, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31527085

RESUMEN

O-GlcNAcylation is a ubiquitous protein glycosylation playing different roles on variant proteins. O-GlcNAc transferase (OGT) is the unique enzyme responsible for the sugar addition to nucleocytoplasmic proteins. Recently, multiple O-GlcNAc sites have been observed on short-form OGT (sOGT) and nucleocytoplasmic OGT (ncOGT), both of which locate in the nucleus and cytoplasm in cell. Moreover, O-GlcNAcylation of Ser389 in ncOGT (1036 amino acids) affects its nuclear translocation in HeLa cells. To date, the major O-GlcNAcylation sites and their roles in sOGT remain unknown. Here, we performed LC-MS/MS and mutational analyses to seek the major O-GlcNAcylation site on sOGT. We identified six O-GlcNAc sites in the tetratricopeptide repeat domain in sOGT, with Thr12 and Ser56 being two "key" sites. Thr12 is a dominant O-GlcNAcylation site, whereas the modification of Ser56 plays a role in regulating sOGT O-GlcNAcylation, partly through Thr12In vitro activity and pulldown assays demonstrated that O-GlcNAcylation does not affect sOGT activity but does affect sOGT-interacting proteins. In HEK293T cells, S56A bound to and hence glycosylated more proteins in contrast to T12A and WT sOGT. By proteomic and bioinformatics analyses, we found that T12A and S56A differed in substrate proteins (e.g. HNRNPU and PDCD6IP), which eventually affected cell cycle progression and/or cell proliferation. These findings demonstrate that O-GlcNAcylation modulates sOGT substrate selectivity and affects its role in the cell. The data also highlight the regulatory role of O-GlcNAcylation at Thr12 and Ser56.


Asunto(s)
N-Acetilglucosaminiltransferasas/metabolismo , Serina/metabolismo , Treonina/metabolismo , Secuencia de Aminoácidos , Puntos de Control del Ciclo Celular , Núcleo Celular/metabolismo , Proliferación Celular , Cromatografía Líquida de Alta Presión , Glicopéptidos/análisis , Glicopéptidos/química , Glicosilación , Células HEK293 , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato , Espectrometría de Masas en Tándem
5.
J Biol Chem ; 294(4): 1363-1379, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30523150

RESUMEN

The addition of a single ß-d-GlcNAc sugar (O-GlcNAc) by O-GlcNAc-transferase (OGT) and O-GlcNAc removal by O-GlcNAcase (OGA) maintain homeostatic O-GlcNAc levels on cellular proteins. Changes in protein O-GlcNAcylation regulate cellular differentiation and cell fate decisions, but how these changes affect erythropoiesis, an essential process in blood cell formation, remains unclear. Here, we investigated the role of O-GlcNAcylation in erythropoiesis by using G1E-ER4 cells, which carry the erythroid-specific transcription factor GATA-binding protein 1 (GATA-1) fused to the estrogen receptor (GATA-1-ER) and therefore undergo erythropoiesis after ß-estradiol (E2) addition. We observed that during G1E-ER4 differentiation, overall O-GlcNAc levels decrease, and physical interactions of GATA-1 with both OGT and OGA increase. RNA-Seq-based transcriptome analysis of G1E-ER4 cells differentiated in the presence of the OGA inhibitor Thiamet-G (TMG) revealed changes in expression of 433 GATA-1 target genes. ChIP results indicated that the TMG treatment decreases the occupancy of GATA-1, OGT, and OGA at the GATA-binding site of the lysosomal protein transmembrane 5 (Laptm5) gene promoter. TMG also reduced the expression of genes involved in differentiation of NB4 and HL60 human myeloid leukemia cells, suggesting that O-GlcNAcylation is involved in the regulation of hematopoietic differentiation. Sustained treatment of G1E-ER4 cells with TMG before differentiation reduced hemoglobin-positive cells and increased stem/progenitor cell surface markers. Our results show that alterations in O-GlcNAcylation disrupt transcriptional programs controlling erythropoietic lineage commitment, suggesting a role for O-GlcNAcylation in regulating hematopoietic cell fate.


Asunto(s)
Acetilglucosamina/metabolismo , Diferenciación Celular , Células Eritroides/citología , Hematopoyesis , Homeostasis , Células Mieloides/citología , N-Acetilglucosaminiltransferasas/metabolismo , Células Cultivadas , Células Eritroides/metabolismo , Factor de Transcripción GATA1/metabolismo , Humanos , Células Mieloides/fisiología
6.
J Biol Chem ; 294(7): 2211-2231, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626734

RESUMEN

In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked ß-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.


Asunto(s)
Envejecimiento/metabolismo , Diabetes Mellitus/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Nutrientes/metabolismo , Transducción de Señal , Transcripción Genética , Envejecimiento/patología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Enfermedad Crónica , Citoesqueleto/metabolismo , Citoesqueleto/patología , Diabetes Mellitus/patología , Glicosilación , Humanos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Fosforilación
7.
J Biol Chem ; 294(17): 6843-6856, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30858176

RESUMEN

Inhibitory GABAergic transmission is required for proper circuit function in the nervous system. However, our understanding of molecular mechanisms that preferentially influence GABAergic transmission, particularly presynaptic mechanisms, remains limited. We previously reported that the ubiquitin ligase EEL-1 preferentially regulates GABAergic presynaptic transmission. To further explore how EEL-1 functions, here we performed affinity purification proteomics using Caenorhabditis elegans and identified the O-GlcNAc transferase OGT-1 as an EEL-1 binding protein. This observation was intriguing, as we know little about how OGT-1 affects neuron function. Using C. elegans biochemistry, we confirmed that the OGT-1/EEL-1 complex forms in neurons in vivo and showed that the human orthologs, OGT and HUWE1, also bind in cell culture. We observed that, like EEL-1, OGT-1 is expressed in GABAergic motor neurons, localizes to GABAergic presynaptic terminals, and functions cell-autonomously to regulate GABA neuron function. Results with catalytically inactive point mutants indicated that OGT-1 glycosyltransferase activity is dispensable for GABA neuron function. Consistent with OGT-1 and EEL-1 forming a complex, genetic results using automated, behavioral pharmacology assays showed that ogt-1 and eel-1 act in parallel to regulate GABA neuron function. These findings demonstrate that OGT-1 and EEL-1 form a conserved signaling complex and function together to affect GABA neuron function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Neuronas GABAérgicas/fisiología , N-Acetilglucosaminiltransferasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aldicarb/farmacología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Cromatografía de Afinidad , Neuronas GABAérgicas/efectos de los fármacos , Terminales Presinápticos/metabolismo , Unión Proteica , Proteómica , Transducción de Señal , Transmisión Sináptica/efectos de los fármacos , Ubiquitina-Proteína Ligasas/aislamiento & purificación
8.
J Biol Chem ; 293(46): 17754-17768, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30224358

RESUMEN

O-Linked GlcNAc transferase (OGT) possesses dual glycosyltransferase-protease activities. OGT thereby stably glycosylates serines and threonines of numerous proteins and, via a transient glutamate glycosylation, cleaves a single known substrate-the so-called HCF-1PRO repeat of the transcriptional co-regulator host-cell factor 1 (HCF-1). Here, we probed the relationship between these distinct glycosylation and proteolytic activities. For proteolysis, the HCF-1PRO repeat possesses an important extended threonine-rich region that is tightly bound by the OGT tetratricopeptide-repeat (TPR) region. We report that linkage of this HCF-1PRO-repeat, threonine-rich region to heterologous substrate sequences also potentiates robust serine glycosylation with the otherwise poor Rp-αS-UDP-GlcNAc diastereomer phosphorothioate and UDP-5S-GlcNAc OGT co-substrates. Furthermore, it potentiated proteolysis of a non-HCF-1PRO-repeat cleavage sequence, provided it contained an appropriately positioned glutamate residue. Using serine- or glutamate-containing HCF-1PRO-repeat sequences, we show that proposed OGT-based or UDP-GlcNAc-based serine-acceptor residue activation mechanisms can be circumvented independently, but not when disrupted together. In contrast, disruption of both proposed activation mechanisms even in combination did not inhibit OGT-mediated proteolysis. These results reveal a multiplicity of OGT glycosylation strategies, some leading to proteolysis, which could be targets of alternative molecular regulatory strategies.


Asunto(s)
Endopeptidasas/metabolismo , Factor C1 de la Célula Huésped/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Endopeptidasas/genética , Glicosilación , Factor C1 de la Célula Huésped/genética , Humanos , Simulación de Dinámica Molecular , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Mutación , N-Acetilglucosaminiltransferasas/genética , Proteolisis , Estereoisomerismo , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/análogos & derivados , Uridina Difosfato N-Acetilglucosamina/metabolismo
9.
J Biol Chem ; 293(27): 10810-10824, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29769320

RESUMEN

It is estimated that ∼1% of the world's population has intellectual disability, with males affected more often than females. OGT is an X-linked gene encoding for the enzyme O-GlcNAc transferase (OGT), which carries out the reversible addition of N-acetylglucosamine (GlcNAc) to Ser/Thr residues of its intracellular substrates. Three missense mutations in the tetratricopeptide (TPR) repeats of OGT have recently been reported to cause X-linked intellectual disability (XLID). Here, we report the discovery of two additional novel missense mutations (c.775 G>A, p.A259T, and c.1016 A>G, p.E339G) in the TPR domain of OGT that segregate with XLID in affected families. Characterization of all five of these XLID missense variants of OGT demonstrates modest declines in thermodynamic stability and/or activities of the variants. We engineered each of the mutations into a male human embryonic stem cell line using CRISPR/Cas9. Investigation of the global O-GlcNAc profile as well as OGT and O-GlcNAc hydrolase levels by Western blotting showed no gross changes in steady-state levels in the engineered lines. However, analyses of the differential transcriptomes of the OGT variant-expressing stem cells revealed shared deregulation of genes involved in cell fate determination and liver X receptor/retinoid X receptor signaling, which has been implicated in neuronal development. Thus, here we reveal two additional mutations encoding residues in the TPR regions of OGT that appear causal for XLID and provide evidence that the relatively stable and active TPR variants may share a common, unelucidated mechanism of altering gene expression profiles in human embryonic stem cells.


Asunto(s)
Linaje de la Célula , Células Madre Embrionarias/metabolismo , Genes Ligados a X , Marcadores Genéticos , Discapacidad Intelectual/genética , Mutación Missense , N-Acetilglucosaminiltransferasas/genética , Diferenciación Celular , Niño , Cristalografía por Rayos X , Células Madre Embrionarias/patología , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Recién Nacido , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/patología , Masculino , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Linaje , Conformación Proteica , Transducción de Señal
10.
J Biol Chem ; 293(19): 7209-7221, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29588363

RESUMEN

Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc (O-GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila, null mutants of the Polycomb gene O-GlcNAc transferase (OGT; also known as super sex combs (sxc)) display homeotic phenotypes. To dissect the requirement for O-GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxcK872M , was recessive lethal, whereas a second mutant, the hypomorphic sxcH537A , was homozygous viable. We observed that reduced total protein O-GlcNAcylation in the sxcH537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxcH537A and a null allele of Drosophila host cell factor (dHcf), encoding an extensively O-GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxcH537A flies lacking a copy of skuld (skd), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxcH537A enabled us to identify pleiotropic effects of globally reduced protein O-GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development.


Asunto(s)
Acetilglucosamina/metabolismo , Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , N-Acetilglucosaminiltransferasas/genética , Acilación , Alelos , Animales , Sistemas CRISPR-Cas , Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/genética , Edición Génica , Genes de Insecto , Genes Letales , Homocigoto , Masculino , Mutación , N-Acetilglucosaminiltransferasas/metabolismo , Fenotipo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Alas de Animales/irrigación sanguínea
11.
J Biol Chem ; 293(36): 13989-14000, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30037904

RESUMEN

Many intracellular proteins are reversibly modified by O-linked GlcNAc (O-GlcNAc), a post-translational modification that dynamically regulates fundamental cellular processes in response to diverse environmental cues. Accumulating evidence indicates that both excess and deficiency of protein O-GlcNAcylation can have deleterious effects on the cell, suggesting that maintenance of O-GlcNAc homeostasis is essential for proper cellular function. However, the mechanisms through which O-GlcNAc homeostasis is maintained in the physiologic state and altered in the disease state have not yet been investigated. Here, we demonstrate the existence of a homeostatic mechanism involving mutual regulation of the O-GlcNAc-cycling enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) at the transcriptional level. Specifically, we found that OGA promotes Ogt transcription through cooperation with the histone acetyltransferase p300 and transcription factor CCAAT/enhancer-binding protein ß (C/EBPß). To examine the role of mutual regulation of OGT and OGA in the disease state, we analyzed gene expression data from human cancer data sets, which revealed that OGT and OGA expression levels are highly correlated in numerous human cancers, particularly in pancreatic adenocarcinoma. Using a KrasG12D -driven primary mouse pancreatic ductal adenocarcinoma (PDAC) cell line, we found that inhibition of extracellular signal-regulated kinase (ERK) signaling decreases OGA glycosidase activity and reduces OGT mRNA and protein levels, suggesting that ERK signaling may alter O-GlcNAc homeostasis in PDAC by modulating OGA-mediated Ogt transcription. Our study elucidates a transcriptional mechanism that regulates cellular O-GlcNAc homeostasis, which may lay a foundation for exploring O-GlcNAc signaling as a therapeutic target for human disease.


Asunto(s)
Acetilglucosamina/metabolismo , Regulación Neoplásica de la Expresión Génica , Homeostasis , Neoplasias Pancreáticas/metabolismo , Animales , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Glicósido Hidrolasas , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , N-Acetilglucosaminiltransferasas , Neoplasias Pancreáticas/genética , Procesamiento Proteico-Postraduccional , Transducción de Señal
12.
J Biol Chem ; 292(5): 1724-1736, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27927986

RESUMEN

We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucosamina/farmacología , Glucosa/farmacología , Lipopolisacáridos/farmacología , Macrófagos/enzimología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Animales , Ciclooxigenasa 2/biosíntesis , Dactinomicina/farmacología , Interleucina-6/metabolismo , Macrófagos/patología , Ratones , Células RAW 264.7 , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo
13.
J Biol Chem ; 292(24): 10014-10025, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28450392

RESUMEN

The human males absent on the first (MOF)-containing histone acetyltransferase nonspecific lethal (NSL) complex comprises nine subunits including the O-linked N-acetylglucosamine (O-GlcNAc) transferase, isoform 1 (OGT1). However, whether the O-GlcNAc transferase activity of OGT1 controls histone acetyltransferase activity of the NSL complex and whether OGT1 physically interacts with the other NSL complex subunits remain unclear. Here, we demonstrate that OGT1 regulates the activity of the NSL complex by mainly acetylating histone H4 Lys-16, Lys-5, and Lys-8 via O-GlcNAcylation and stabilization of the NSL complex subunit NSL3. Knocking down or overexpressing OGT1 in human cells remarkably affected the global acetylation of histone H4 residues Lys-16, Lys-5, and Lys-8. Because OGT1 is a subunit of the NSL complex, we also investigated the function of OGT1 in this complex. Co-transfection/co-immunoprecipitation experiments combined with in vitro O-GlcNAc transferase assays confirmed that OGT1 specifically binds to and O-GlcNAcylates NSL3. In addition, wheat germ agglutinin affinity purification verified the occurrence of O-GlcNAc modification on NSL3 in cells. Moreover, O-GlcNAcylation of NSL3 by wild-type OGT1 (OGT1-WT) stabilized NSL3. This stabilization was lost after co-transfection of NSL3 with an OGT1 mutant, OGT1C964A, that lacks O-GlcNAc transferase activity. Furthermore, stabilization of NSL3 by OGT1-WT significantly increased the global acetylation levels of H4 Lys-5, Lys-8, and Lys-16 in cells. These results suggest that OGT1 regulates the activity of the NSL complex by stabilizing NSL3.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Sustitución de Aminoácidos , Animales , Células HEK293 , Células HeLa , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Mutación Puntual , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Especificidad por Sustrato
14.
J Biol Chem ; 292(48): 19548-19555, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29021254

RESUMEN

Checkpoint kinase 1 (Chk1) is a kinase instrumental for orchestrating DNA replication, DNA damage checkpoints, the spindle assembly checkpoint, and cytokinesis. Despite Chk1's pivotal role in multiple cellular processes, many of its substrates remain elusive. Here, we identified O-linked ß-N-acetylglucosamine (O-GlcNAc)-transferase (OGT) as one of Chk1's substrates. We found that Chk1 interacts with and phosphorylates OGT at Ser-20, which not only stabilizes OGT, but also is required for cytokinesis. Phospho-specific antibodies of OGT-pSer-20 exhibited specific signals at the midbody of the cell, consistent with midbody localization of OGT as reported previously. Moreover, phospho-deficient OGT (S20A) cells attenuated cellular O-GlcNAcylation levels and also reduced phosphorylation of Ser-71 in the cytoskeletal protein vimentin, a modification critical for severing vimentin filament during cytokinesis. Consequently, elongated vimentin bridges were observed in cells depleted of OGT via an siOGT-based approach. Lastly, expression of plasmids resistant to siOGT efficiently rescued the vimentin bridge phenotype, but the OGT-S20A rescue plasmids did not. Our results suggest a Chk1-OGT-vimentin pathway that regulates the intermediate filament network during cytokinesis.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Citocinesis , Filamentos Intermedios/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Células HEK293 , Células HeLa , Humanos , N-Acetilglucosaminiltransferasas/química , Fosforilación , Serina/metabolismo , Vimentina/metabolismo
15.
J Biol Chem ; 292(30): 12621-12631, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28584052

RESUMEN

N-Acetylglucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential and dynamic post-translational modification. The O-GlcNAc modification is present on numerous nuclear and cytosolic proteins and has been implicated in essential cellular functions such as signaling and gene expression. Accordingly, altered levels of protein O-GlcNAcylation have been associated with developmental defects and neurodegeneration. However, mutations in the OGT gene have not yet been functionally confirmed in humans. Here, we report on two hemizygous mutations in OGT in individuals with X-linked intellectual disability (XLID) and dysmorphic features: one missense mutation (p.Arg284Pro) and one mutation leading to a splicing defect (c.463-6T>G). Both mutations reside in the tetratricopeptide repeats of OGT that are essential for substrate recognition. We observed slightly reduced levels of OGT protein and reduced levels of its opposing enzyme O-GlcNAcase in both patient-derived fibroblasts, but global O-GlcNAc levels appeared to be unaffected. Our data suggest that mutant cells attempt to maintain global O-GlcNAcylation by down-regulating O-GlcNAcase expression. We also found that the c.463-6T>G mutation leads to aberrant mRNA splicing, but no stable truncated protein was detected in the corresponding patient-derived fibroblasts. Recombinant OGT bearing the p.Arg284Pro mutation was prone to unfolding and exhibited reduced glycosylation activity against a complex array of glycosylation substrates and proteolytic processing of the transcription factor host cell factor 1, which is also encoded by an XLID-associated gene. We conclude that defects in O-GlcNAc homeostasis and host cell factor 1 proteolysis may play roles in mediation of XLID in individuals with OGT mutations.


Asunto(s)
Discapacidad Intelectual/genética , Mutación , N-Acetilglucosaminiltransferasas/genética , Células Cultivadas , Niño , Preescolar , Clonación Molecular , ADN/genética , ADN/metabolismo , Humanos , Discapacidad Intelectual/metabolismo , Masculino , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
J Biol Chem ; 291(27): 14056-14061, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27129214

RESUMEN

Although the O-linked N-acetylglucosamine (O-GlcNAc) modification of the RNA polymerase II C-terminal domain was described 20 years ago, the function of this RNA polymerase II (pol II) species is not known. We show here that an O-GlcNAcylated pol II species (pol IIγ) exists on promoters in vitro Inhibition of O-GlcNAc-transferase activity and O-GlcNAcylation prevents pol II entry into the promoter, and O-GlcNAc removal from pol II is an ATP-dependent step during initiation. These data indicate that O-GlcNAc-transferase activity is essential for RNA pol II promoter recruitment and that pol II goes through a cycling of O-GlcNAcylation at the promoter. Mass spectrometry shows that serine residues 2 and 5 of the pol II C-terminal domain are O-GlcNAcylated, suggesting an overlap with the transcription factor IIH (TFIIH)-dependent serine 5 phosphorylation events during initiation and P-TEFb (positive transcriptional elongation factor b) events during elongation. These data provide unexpected and important insights into the role of a previously ill-defined species of RNA polymerase II in regulating transcription.


Asunto(s)
N-Acetilglucosaminiltransferasas/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Humanos , Técnicas In Vitro
17.
J Biol Chem ; 291(36): 18897-914, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27402830

RESUMEN

O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked ß-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma.


Asunto(s)
Acetilglucosamina/metabolismo , Núcleo Celular/metabolismo , Homeostasis , Neoplasias Ováricas/metabolismo , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/metabolismo , Acetilglucosamina/genética , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/patología , Femenino , Silenciador del Gen , Humanos , Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Estabilidad Proteica/efectos de los fármacos , Piranos/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Tiazoles/farmacología , Proteína p53 Supresora de Tumor/genética , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
18.
J Biol Chem ; 291(23): 12136-44, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27080259

RESUMEN

The anaphase promoting complex/cyclosome (APC/C) orchestrates various aspects of the eukaryotic cell cycle. One of its co-activators, Cdh1, is subject to myriad post-translational modifications, such as phosphorylation and ubiquitination. Herein we identify the O-linked N-acetylglucosamine (O-GlcNAc) modification that occurs on Cdh1. Cdh1 is O-GlcNAcylated in cultured cells and mouse brain extracts. Mass spectrometry identifies an O-GlcNAcylated peptide that neighbors a known phosphorylation site. Cell synchronization and mutation studies reveal that O-GlcNAcylation of Cdh1 may antagonize its phosphorylation. Our results thus reveal a pivotal role of O-GlcNAcylation in regulating APC/C activity.


Asunto(s)
Acetilglucosamina/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdh1/metabolismo , Procesamiento Proteico-Postraduccional , Acilación , Ciclosoma-Complejo Promotor de la Anafase/genética , Animales , Sitios de Unión/genética , Proteínas Cdh1/genética , Glicosilación , Células HeLa , Humanos , Immunoblotting , Ratones , Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Fosforilación , Unión Proteica , Espectrometría de Masas en Tándem
19.
J Biol Chem ; 291(25): 12917-29, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27129262

RESUMEN

Deregulated cellular metabolism is a hallmark of tumors. Cancer cells increase glucose and glutamine flux to provide energy needs and macromolecular synthesis demands. Several studies have been focused on the importance of glycolysis and pentose phosphate pathway. However, a neglected but very important branch of glucose metabolism is the hexosamine biosynthesis pathway (HBP). The HBP is a branch of the glucose metabolic pathway that consumes ∼2-5% of the total glucose, generating UDP-GlcNAc as the end product. UDP-GlcNAc is the donor substrate used in multiple glycosylation reactions. Thus, HBP links the altered metabolism with aberrant glycosylation providing a mechanism for cancer cells to sense and respond to microenvironment changes. Here, we investigate the changes of glucose metabolism during epithelial mesenchymal transition (EMT) and the role of O-GlcNAcylation in this process. We show that A549 cells increase glucose uptake during EMT, but instead of increasing the glycolysis and pentose phosphate pathway, the glucose is shunted through the HBP. The activation of HBP induces an aberrant cell surface glycosylation and O-GlcNAcylation. The cell surface glycans display an increase of sialylation α2-6, poly-LacNAc, and fucosylation, all known epitopes found in different tumor models. In addition, modulation of O-GlcNAc levels was demonstrated to be important during the EMT process. Taken together, our results indicate that EMT is an applicable model to study metabolic and glycophenotype changes during carcinogenesis, suggesting that cell glycosylation senses metabolic changes and modulates cell plasticity.


Asunto(s)
Transición Epitelial-Mesenquimal , Procesamiento Proteico-Postraduccional , Adenosina Trifosfato/metabolismo , Vías Biosintéticas , Línea Celular Tumoral , Inducción Enzimática , Glucosa/metabolismo , Glucógeno/metabolismo , Glicosilación , Hexosaminas/biosíntesis , Humanos , Ácido Láctico/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Ácido Pirúvico/metabolismo , Factor de Crecimiento Transformador beta/fisiología
20.
J Biol Chem ; 290(52): 31013-24, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26527687

RESUMEN

Protein O-GlcNAcylation, which is controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), has emerged as an important posttranslational modification that may factor in multiple diseases. Until recently, it was assumed that OGT/OGA protein expression was relatively constant. Several groups, including ours, have shown that OGT and/or OGA expression changes in several pathologic contexts, yet the cis and trans elements that regulate the expression of these enzymes remain essentially unexplored. Here, we used a reporter-based assay to analyze minimal promoters and leveraged in silico modeling to nominate several candidate transcription factor binding sites in both Ogt (i.e. the gene for OGT protein) and Mgea5 (i.e. the gene for OGA protein). We noted multiple E2F binding site consensus sequences in both promoters. We performed chromatin immunoprecipitation in both human and mouse cells and found that E2F1 bound to candidate E2F binding sites in both promoters. In HEK293 cells, we overexpressed E2F1, which significantly reduced OGT and MGEA5 expression. Conversely, E2F1-deficient mouse fibroblasts had increased Ogt and Mgea5 expression. Of the known binding partners for E2F1, we queried whether retinoblastoma 1 (Rb1) might be involved. Rb1-deficient mouse embryonic fibroblasts showed increased levels of Ogt and Mgea5 expression, yet overexpression of E2F1 in the Rb1-deficient cells did not alter Ogt and Mgea5 expression, suggesting that Rb1 is required for E2F1-mediated suppression. In conclusion, this work identifies and validates some of the promoter elements for mouse Ogt and Mgea5 genes. Specifically, E2F1 negatively regulates both Ogt and Mgea5 expression in an Rb1 protein-dependent manner.


Asunto(s)
Antígenos de Neoplasias/biosíntesis , Factor de Transcripción E2F1/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Histona Acetiltransferasas/biosíntesis , Hialuronoglucosaminidasa/biosíntesis , N-Acetilglucosaminiltransferasas/biosíntesis , Elementos de Respuesta/fisiología , Células 3T3-L1 , Animales , Antígenos de Neoplasias/genética , Factor de Transcripción E2F1/genética , Células HEK293 , Histona Acetiltransferasas/genética , Humanos , Hialuronoglucosaminidasa/genética , Ratones , Ratones Mutantes , N-Acetilglucosaminiltransferasas/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA