Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217609

RESUMEN

Insects comprise over half of the described species, and the acquisition of metamorphosis must have contributed to their diversity and prosperity. The order Odonata (dragonflies and damselflies) is among the most-ancestral insects with drastic morphological changes upon metamorphosis, in which understanding of the molecular mechanisms will provide insight into the evolution of incomplete and complete metamorphosis in insects. In order to identify metamorphosis-related genes in Odonata, we performed comprehensive RNA-sequencing of the blue-tailed damselfly Ischnura senegalensis at different developmental stages. Comparative RNA-sequencing analyses between nymphs and adults identified eight nymph-specific and seven adult-specific transcripts. RNA interference (RNAi) of these candidate genes demonstrated that three transcription factors, Krüppel homolog 1 (Kr-h1), broad, and E93 play important roles in metamorphosis of both I. senegalensis and a phylogenetically distant dragonfly, Pseudothemis zonataE93 is essential for adult morphogenesis, and RNAi of Kr-h1 induced precocious metamorphosis in epidermis via up-regulation of E93 Precocious metamorphosis was also induced by RNAi of the juvenile hormone receptor Methoprene-tolerant (Met), confirming that the regulation of metamorphosis by the MEKRE93 (Met-Kr-h1-E93) pathway is conserved across diverse insects including the basal insect lineage Odonata. Notably, RNAi of broad produced unique grayish pigmentation on the nymphal abdominal epidermis. Survey of downstream genes for Kr-h1, broad, and E93 uncovered that unlike other insects, broad regulates a substantial number of nymph-specific and adult-specific genes independently of Kr-h1 and E93 These findings highlight the importance of functional changes and rewiring of the transcription factors Kr-h1, broad, and E93 in the evolution of insect metamorphosis.


Asunto(s)
Evolución Biológica , Metamorfosis Biológica/genética , Odonata/crecimiento & desarrollo , Alas de Animales , Animales , Femenino , Perfilación de la Expresión Génica , Genes de Insecto , Masculino , Odonata/genética , Interferencia de ARN
2.
Ecol Lett ; 27(1): e14350, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062899

RESUMEN

Understanding species distributions and predicting future range shifts requires considering all relevant abiotic factors and biotic interactions. Resource competition has received the most attention, but reproductive interference is another widespread biotic interaction that could influence species ranges. Rubyspot damselflies (Hetaerina spp.) exhibit a biogeographic pattern consistent with the hypothesis that reproductive interference has limited range expansion. Here, we use ecological niche models to evaluate whether this pattern could have instead been caused by niche differentiation. We found evidence for climatic niche differentiation, but the species that encounters the least reproductive interference has one of the narrowest and most peripheral niches. These findings strengthen the case that reproductive interference has limited range expansion and also provide a counterexample to the idea that release from negative species interactions triggers niche expansion. We propose that release from reproductive interference enables species to expand in range while specializing on the habitats most suitable for breeding.


Asunto(s)
Modelos Teóricos , Odonata , Animales , Reproducción , Ecosistema
3.
Am Nat ; 203(3): 335-346, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358816

RESUMEN

AbstractInterference competition can drive species apart in habitat use through competitive displacement in ecological time and agonistic character displacement (ACD) over evolutionary time. As predicted by ACD theory, sympatric species of rubyspot damselflies (Hetaerina spp.) that respond more aggressively to each other in staged encounters differ more in microhabitat use. However, the same pattern could arise from competitive displacement if dominant species actively exclude subordinate species from preferred microhabitats. The degree to which habitat partitioning is caused by competitive displacement can be assessed with removal experiments. We carried out removal experiments with three species pairs of rubyspot damselflies. With competitive displacement, removing dominant species should allow subordinate species to shift into the dominant species' microhabitat. Instead, we found that species-specific microhabitat use persisted after the experimental removals. Thus, the previously documented association between heterospecific aggression and microhabitat partitioning in this genus is most likely a product of divergence in habitat preferences caused by interference competition in the evolutionary past.


Asunto(s)
Evolución Biológica , Odonata , Animales , Agresión , Simpatría
4.
Naturwissenschaften ; 111(4): 32, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856769

RESUMEN

Insects, despite possessing relatively small brains, exhibit noteworthy adaptive behaviors, making them intriguing subjects for understanding learning mechanisms. This study explores the learning capabilities of dragonfly larvae (Anisoptera: Aeshnidae) in conditioning experiments, shedding light on the cognitive processes that underpin their remarkable abilities. As apex predators, dragonflies play a crucial role in ecosystems, necessitating a diverse range of learning behaviors for survival and reproductive success. We addressed whether dragonfly larvae can differentiate between different colored stimuli and associate color with prey. Our experimental design demonstrated that dragonfly larvae are able to recognize conditioning stimuli. The findings contribute valuable insights into the cognitive abilities of dragonflies, suggesting that these insects can learn and discriminate colors of stimuli. Overall, this research broadens our understanding of insect learning and cognition, contributing to the broader field of animal behavior and memory.


Asunto(s)
Larva , Aprendizaje , Odonata , Animales , Odonata/fisiología , Larva/fisiología , Aprendizaje/fisiología , Color , Conducta Animal/fisiología
5.
J Hered ; 115(1): 103-111, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-37988159

RESUMEN

Smoky rubyspot damselflies (Hetaerina titia Drury, 1773) are one of the most commonly encountered odonates along streams and rivers on both slopes of Central America and the Atlantic drainages in the United States and southern Canada. Owing to their highly variable wing pigmentation, they have become a model system for studying sexual selection and interspecific behavioral interference. Here, we sequence and assemble the genome of a female smoky rubyspot. Of the primary assembly (i.e. the principle pseudohaplotype), 98.8% is made up of 12 chromosomal pseudomolecules (2N = 22A + X). There are 75 scaffolds in total, an N50 of 120 Mb, a contig-N50 of 0.64 Mb, and a high arthropod BUSCO score [C: 97.6% (S: 97.3%, D: 0.3%), F: 0.8%, M: 1.6%]. We then compare our assembly to that of the blue-tailed damselfly genome (Ischnura elegans), the most complete damselfly assembly to date, and a recently published assembly for an American rubyspot damselfly (Hetaerina americana). Collectively, these resources make Hetaerina a genome-enabled genus for further studies of the ecological and evolutionary forces shaping biological diversity.


Asunto(s)
Odonata , Animales , Femenino , Odonata/genética , Humo , Evolución Biológica , Pigmentación , Cromosomas/genética
6.
Mol Ecol ; 32(21): 5785-5797, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37787976

RESUMEN

Using recently published chromosome-length genome assemblies of two damselfly species, Ischnura elegans and Platycnemis pennipes, and two dragonfly species, Pantala flavescens and Tanypteryx hageni, we demonstrate that the autosomes of Odonata have undergone few fission, fusion, or inversion events, despite 250 million years of separation. In the four genomes discussed here, our results show that all autosomes have a clear ortholog in the ancestral karyotype. Despite this clear chromosomal orthology, we demonstrate that different factors, including concentration of repeat dynamics, GC content, relative position on the chromosome, and the relative proportion of coding sequence all influence the density of syntenic blocks across chromosomes. However, these factors do not interact to influence synteny the same way in any two pairs of species, nor is any one factor retained in all four species. Furthermore, it was previously unknown whether the micro-chromosomes in Odonata are descended from one ancestral chromosome. Despite structural rearrangements, our evidence suggests that the micro-chromosomes in the sampled Odonata do indeed descend from an ancestral chromosome, and that the micro-chromosome in P. flavescens was lost through fusion with autosomes.


Asunto(s)
Odonata , Animales , Odonata/genética , Genoma , Cariotipo , Cariotipificación , Sintenía
7.
Mol Phylogenet Evol ; 186: 107831, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37257796

RESUMEN

South Pacific islands provide an ideal study system to explore patterns of speciation, specifically examining the role of dispersal versus vicariance. Dispersal is often the suggested mechanism of diversification in the South Pacific, specifically among remote island chains. Here, we provide a phylogeny of several related genera of Coenagrionidae (Odonata: Zygoptera) from the South Pacific, based on five molecular loci, in order to examine patterns of speciation in the region. We used the endemic damselfly genera Nesobasis, Nikoulabasis, and Vanuatubasis found across both Fiji and Vanuatu. Knowledge of the geologic history of the region was used to inform our understanding of the evolution of these genera. Both archipelagos used to be part of the Vitiaz arc which spanned from the Solomon Islands to Tonga and began to break apart 10-12 Ma. Results of our divergence-time estimations and biogeographic reconstructions support that the breakup of this arc acted as a significant vicariance event in the evolution of these taxa. Specifically, it led to the extant generic diversity seen in these damselflies. We find that within the archipelago of Vanuatu, that Espiritu Santo served as an important source for dispersal to other islands with Malekula acting as a stepping stone to Efate.


Asunto(s)
Odonata , Animales , Filogenia , Odonata/genética , Geología , Fiji , Melanesia
8.
J Anim Ecol ; 92(8): 1589-1600, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37272224

RESUMEN

Dragonfly/damselfly naiads have the potential to control mosquitoes, and indirectly the diseases they carry, due to their extensive predation on mosquito larvae. Experimental studies have measured the effectiveness of individual dragonfly/damselfly naiads in controlling mosquitoes by introducing them to mosquito larvae and counting the number of larvae eaten in a given time period (i.e. predation success). Without a quantitative synthesis, however, such individual measures are unable to provide a generalized estimation about the effectiveness of dragonflies/damselflies as biological mosquito control agents. To achieve this, we assembled a database containing 485 effect sizes across 31 studies on predation successes of 47 species of commonly found dragonfly/damselfly naiads on nine species of mosquito larvae belonging to Aedes, Anopheles and Culex. These studies covered 14 countries across Asia, Africa and South and North America, where mosquitoes are the vectors of Chikungunya, Dengue, Japanese encephalitis, Lymphatic filariasis, Malaria, Rift Valley fever, West Nile fever, Yellow fever and Zika. Using this database, we conducted a meta-analysis to estimate the average predation success per day by a single individual dragonfly/damselfly naiad on these mosquito larvae as a generalized measure of the effectiveness of dragonflies/damselflies for mosquito control. We also built an interaction network for predator-dragonflies/damselflies and prey-mosquitoes and the diseases they vector to understand the functioning of this important predator-prey network. Our results showed that mosquito larvae were significantly reduced through predation by dragonfly/damselfly naiads. Within experimental containers, a single individual dragonfly/damselfly naiad can eat on average 40 (95% confidence intervals [CIs] = 20, 60) mosquito larvae per day, equivalent to a reduction of the mosquito larval population by 45% (95% CIs = 30%, 59%) per day. The average predation success did not significantly vary among Aedes, Anopheles and Culex mosquitoes or among the four (I-IV) mosquito larval stages. These results provide strong evidence that dragonflies/damselflies can be effective biological control agents of mosquitoes, and environmental planning to promote them could lower the risk of spreading mosquito-borne diseases in an environmentally friendly and cost-effective manner.


Asunto(s)
Aedes , Anopheles , Odonata , Infección por el Virus Zika , Virus Zika , Animales , Mosquitos Vectores , Larva , Conducta Predatoria
9.
Conserv Biol ; 37(6): e14139, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37394972

RESUMEN

Despite being central to the implementation of conservation policies, the usefulness of the International Union for Conservation of Nature (IUCN) Red List of Threatened Species is hampered by the 14% of species classified as data-deficient (DD) because information to evaluate these species' extinction risk was lacking when they were last assessed or because assessors did not appropriately account for uncertainty. Robust methods are needed to identify which DD species are more likely to be reclassified in one of the data-sufficient IUCN Red List categories. We devised a reproducible method to help red-list assessors prioritize reassessment of DD species and tested it with 6887 DD species of mammals, reptiles, amphibians, fishes, and Odonata (dragonflies and damselflies). For each DD species in these groups, we calculated its probability of being classified in a data-sufficient category if reassessed today from covariates measuring available knowledge (e.g., number of occurrence records or published articles available), knowledge proxies (e.g., remoteness of the range), and species characteristics (e.g., nocturnality); calculated change in such probability since last assessment from the increase in available knowledge (e.g., new occurrence records); and determined whether the species might qualify as threatened based on recent rate of habitat loss determined from global land-cover maps. We identified 1907 species with a probability of being reassessed in a data-sufficient category of >0.5; 624 species for which this probability increased by >0.25 since last assessment; and 77 species that could be reassessed as near threatened or threatened based on habitat loss. Combining these 3 elements, our results provided a list of species likely to be data-sufficient such that the comprehensiveness and representativeness of the IUCN Red List can be improved.


Priorización de la reevaluación de las especies con datos deficientes en la Lista Roja de la UICN Resumen No obstante que es fundamental para la implementación de políticas de conservación, la utilidad de la Lista Roja de Especies Amenazadas de la Unión Internacional para la Conservación de la Naturaleza (UICN) está limitada por el 14% de especies clasificadas con datos deficientes (DD) debido a que la información para evaluar el riesgo de extinción de estas especies no existía cuando fueron evaluadas la última vez o porque los evaluadores no consideraron la incertidumbre apropiadamente. Se requieren métodos robustos para identificar las especies DD con mayor probabilidad de ser reclasificadas en alguna de las categorías en la Lista Roja UICN con datos suficientes. Diseñamos un método reproducible para ayudar a que los evaluadores de la lista roja prioricen la reevaluación de especies DD y lo probamos con 6,887 especies DD de mamíferos, reptiles, anfibios, peces y Odonata (libélulas y caballitos del diablo). Para cada una de las especies DD en estos grupos, calculamos la probabilidad de ser clasificadas en una categoría con datos suficientes si fuera reevaluada hoy a partir de covariables que miden el conocimiento disponible (e.g., número de registros de ocurrencia o artículos publicados disponibles), sustitutos de conocimiento (e.g., extensión del rango de distribución) y características de la especie ((e.g., nocturnidad); calculamos el cambio en tal probabilidad desde la última reevaluación a partir del incremento en el conocimiento disponible (e.g., registros de ocurrencia nuevos); y determinamos si las especies podrían calificar como amenazadas con base en pérdidas de hábitat recientes a partir de mapas globales de cobertura de suelo recientes. Identificamos 1,907 especies con una probabilidad >0.5 de ser reclasificados en una categoría con datos suficientes; 624 especies cuya probabilidad aumentó en >0.25 desde la última evaluación, y 77 especies que podrían ser reclasificadas como casi en peligro con base en la pérdida de hábitat. Combinando estos 3 elementos, nuestros resultados proporcionaron una lista de especies probablemente con datos suficientes de tal modo que la exhaustividad y la representatividad de la Lista Roja de la UICN pueden ser mejoradas.


Asunto(s)
Conservación de los Recursos Naturales , Odonata , Animales , Especies en Peligro de Extinción , Extinción Biológica , Ecosistema , Mamíferos , Peces , Biodiversidad
10.
J Hered ; 114(4): 385-394, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37195415

RESUMEN

Damselflies and dragonflies (Order: Odonata) play important roles in both aquatic and terrestrial food webs and can serve as sentinels of ecosystem health and predictors of population trends in other taxa. The habitat requirements and limited dispersal of lotic damselflies make them especially sensitive to habitat loss and fragmentation. As such, landscape genomic studies of these taxa can help focus conservation efforts on watersheds with high levels of genetic diversity, local adaptation, and even cryptic endemism. Here, as part of the California Conservation Genomics Project (CCGP), we report the first reference genome for the American rubyspot damselfly, Hetaerina americana, a species associated with springs, streams and rivers throughout California. Following the CCGP assembly pipeline, we produced two de novo genome assemblies. The primary assembly includes 1,630,044,487 base pairs, with a contig N50 of 5.4 Mb, a scaffold N50 of 86.2 Mb, and a BUSCO completeness score of 97.6%. This is the seventh Odonata genome to be made publicly available and the first for the subfamily Hetaerininae. This reference genome fills an important phylogenetic gap in our understanding of Odonata genome evolution, and provides a genomic resource for a host of interesting ecological, evolutionary, and conservation questions for which the rubyspot damselfly genus Hetaerina is an important model system.


Asunto(s)
Odonata , Animales , Odonata/genética , Ecosistema , Filogenia , Genómica , Aclimatación
11.
Bull Entomol Res ; 113(1): 29-36, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35718943

RESUMEN

Biological control is one of the methods available for control of Aedes aegypti populations. We used experimental microcosms to evaluate the effects of actual predation and predation risk by dragonfly larvae (Odonata) on larval development, adult longevity, and adult size of Ae. aegypti. We used six treatments: control, removal, variable density cues (Cues VD), fixed density cues (Cues FD), variable density predator (Predator VD), and fixed density predator (Predator FD) (n = 5 each). Predator treatments received one dragonfly larva. Cue treatments were composed of crushed Ae. aegypti larvae released into the microcosm. For the FD treatments, we maintained a larval density of 200 individuals. The average mortality of Ae. aegypti larvae in the Predator VD treatment was used as the standard mortality for the other treatments. Mosquitoes from the Predator VD and Cues VD treatments developed faster, and adults were larger and had greater longevity compared to all other treatments, likely due to the higher food availability from larval density reduction. High larval density negatively affected larval developmental time, adult size, and longevity. Males were less sensitive to density-dependent effects. Results from this study suggest that the presence of predators may lead to the emergence of adult mosquitoes with greater fitness, causing an overall positive effect on Ae. aegypti population growth rates.


Asunto(s)
Aedes , Odonata , Masculino , Animales , Conducta Predatoria , Larva , Señales (Psicología)
12.
Proc Biol Sci ; 289(1972): 20212414, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35414235

RESUMEN

The integration of life-history, behavioural and physiological traits into a 'pace-of-life syndrome' is a powerful concept in understanding trait variation in nature. Yet, mechanisms maintaining variation in 'pace-of-life' are not well understood. We tested whether decreased thermal performance is an energetic cost of a faster pace-of-life. We characterized the pace-of-life of larvae of the damselfly Ischnura elegans from high-latitude and low-latitude regions when reared at 20°C or 24°C in a common-garden experiment, and estimated thermal performance curves for a set of behavioural, physiological and performance traits. Our results confirm a faster pace-of-life (i.e. faster growth and metabolic rate, more active and bold behaviour) in the low-latitude and in warm-reared larvae, and reveal increased maximum performance, Rmax, but not thermal optimum Topt, in low-latitude larvae. Besides a clear pace-of-life syndrome integration at the individual level, larvae also aligned along a 'cold-hot' axis. Importantly, a faster pace-of-life correlated negatively with a high thermal performance (i.e. higher Topt for swimming speed, metabolic rate, activity and boldness), which was consistent across latitudes and rearing temperatures. This trade-off, potentially driven by the energetically costly maintenance of a fast pace-of-life, may be an alternative mechanism contributing to the maintenance of variation in pace-of-life within populations.


Asunto(s)
Odonata , Animales , Frío , Larva , Odonata/fisiología , Fenotipo , Temperatura
13.
Ecol Appl ; 32(2): e2494, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34783410

RESUMEN

Critical gaps in understanding how species respond to environmental change limit our capacity to address conservation risks in a timely way. Here, we examine the direct and interactive effects of key global change drivers, including climate change, land use change, and pesticide use, on persistence of 104 odonate species between two time periods (1980-2002 and 2008-2018) within 100 × 100 km quadrats across the USA using phylogenetic mixed models. Non-target effects of pesticides interacted with higher maximum temperatures to contribute to odonate declines. Closely related species responded similarly to global change drivers, indicating a potential role of inherited traits in species' persistence or decline. Species shifting their range to higher latitudes were more robust to negative impacts of global change drivers generally. Inherited traits related to dispersal abilities and establishment in new places may govern both species' acclimation to global change and their abilities to expand their range limits, respectively. This work is among the first to assess effects of climate change, land use change, and land use intensification together on Odonata, a significant step that improves understanding of multispecies effects of global change on invertebrates, and further identifies conditions contributing to global insect loss.


Asunto(s)
Odonata , Plaguicidas , Animales , Cambio Climático , Ecosistema , Plaguicidas/toxicidad , Filogenia
14.
Parasitol Res ; 121(1): 205-216, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34981215

RESUMEN

Schistosomiasis is one of the most important parasitic diseases in tropical and subtropical areas. Its prevalence is associated with the distribution of freshwater snails, which are their intermediate hosts. Thus, control of freshwater snails is the solution to reduce the transmission of this disease. This will be achieved by understanding the relationship between the snails and their habitats including natural enemies and associated aquatic plants as well as the factors affecting their distribution. In this study, Maximum Entropy model (MaxEnt) was used for mapping and predicting the possible geographic distribution of Bulinus truncatus snail (the intermediate host of Schistosoma haematobium), Odonata nymph (predatory aquatic insect), and Ceratophyllum demersum (the associated aquatic plant) in Egypt based on topographic and climatic factors. The models of the investigated species were evaluated using the area under receiver operating characteristic curve. The results showed that the potential risk areas were along the banks of the Nile River and its irrigation canals. In addition, the MaxEnt models revealed some similarities in the distribution pattern of the vector, the predator, and the aquatic plant. It is obvious that the predictive distribution range of B. truncatus was affected by altitude, precipitation seasonality, isothermality, and mean temperature of warmest quarter. The presence of B. truncatus decreases with the increase of altitude and precipitation seasonality values. It could be concluded that the MaxEnt model could help introducing a predictive risk map for Schistosoma haematobium prevalence and performing better management strategies for schistosomiasis.


Asunto(s)
Bulinus , Odonata , Animales , Ecosistema , Insectos , Ninfa , Schistosoma haematobium
15.
J Therm Biol ; 103: 103164, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35027186

RESUMEN

Disturbance (e.g. loss of plant cover) increases ambient temperature which can be lethal for ectotherm insects especially in hot places. We compared the thorax temperatures of 26 odonate species as a function of body size, habitat quality ("conserved" and cooler vs "perturbed" and warmer) and suborder (Anisoptera vs Zygoptera), as well as critical thermal maximum (CTmax) and as a function of habitat quality in Argia pulla (Zygoptera) and Orthemis ferruginea (Anisoptera). We expected thorax temperatures to differ between suborders based on their differences in body size and habitat quality status, and that populations in perturbed sites would have higher critical thermal maxima compared to those in conserved sites. This study was done in a tropical region with high ambient temperatures. Anisopterans had a higher body temperature than zygopterans, with no difference between habitats. Thoracic and air temperature were positively related, yet body temperatures were higher than the ambient temperature. A. pulla had higher CTmax in the perturbed sites, while O. ferruginea showed the opposite trend. Microenvironmental changes increase the ambient temperature, perhaps filtering insect species. The apparent resilience of odonates to disturbance should be examined more closely (using more species), especially in small species like the zygopterans which appear to be more strongly affected by ambient temperature.


Asunto(s)
Biodiversidad , Ecosistema , Odonata/clasificación , Animales , Tamaño Corporal , México , Especificidad de la Especie , Temperatura
16.
Environ Monit Assess ; 194(9): 614, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35895142

RESUMEN

Aquatic ecosystems are affected by different land uses that modify gradients of environmental conditions. These impacts act directly on the community structure, especially the most sensitive ones, such as aquatic insects. Thus, dragonflies have been used as good models to assess these changes, since their suborders Anisoptera and Zygoptera have different ecophysiological and behavioral requirements. This study aimed to evaluate the following hypotheses: (1) dragonfly species composition differs along the environmental gradients of streams; therefore, we expect a higher proportion of species of the suborder Anisoptera in environments with a higher degree of disturbance, since these environmental conditions select heliothermic species with exophytic oviposition; (2) the reduction of habitat integrity and canopy cover will lead to a lower richness of the Zygoptera suborder, due to the restrictions of its thermoregulation and oviposition behavior in relation to Anisoptera, since the higher light input would favor heliothermic and exophytic species; (3) alterations in habitat integrity create ecological thresholds and points of change in the abundance and frequency of Odonata species, generating gradients in the environmental integrity conditions. Specimens were collected from 24 streams (first to third order), in a gradient of land uses. Canopy cover and stream width were predictors of taxonomic richness and abundance of the suborders Anisoptera and Zygoptera, with greater coverage and smaller width, positively affecting Zygoptera and negatively Anisoptera. The turning points were determined by a habitat integrity index, where below 0.38 there is an increase in generalist taxa and a decline in sensitive taxa. On the other hand, above 0.79, there was a sensitive taxa increase in detriment of generalists. Four individual taxa indicators were selected, two of which associated with a negative response (Perithemis tenera and Acanthagrion aepiolum) and two with positive responses (Epipleoneura metallica and Zenithoptera lanei) for habitat integrity. Our results are important to guide management strategies, recovery, and protection policies for areas of permanent protection, aiming to conserving biodiversity and natural resources essential to life quality maintenance.


Asunto(s)
Odonata , Animales , Biodiversidad , Dipterocarpaceae , Ecosistema , Monitoreo del Ambiente , Odonata/fisiología , Ríos
17.
Naturwissenschaften ; 108(6): 49, 2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34601627

RESUMEN

Sexual selection via male competition is a strong evolutionary force that can drive rapid changes in competitive traits and subsequently lead to population divergence and speciation. Territorial males of many odonates are known to use their colorful wings as visual signals and to perform agonistic displays toward intruders. Psolodesmus mandarinus dorothea and Psolodesmus mandarinus mandarinus are two parapatrically distributed sister damselflies that share similar ecological characteristics but differ markedly in wing coloration. The wings of P. m. dorothea are mostly clear, whereas those of P. m. mandarinus have a large area of black pigmentation and a central white patch. We investigated whether territorial males of the two damselflies at breeding sites display distinct agonistic behaviors associated with their respective wing colors. Behavioral interactions between territorial and intruder males and their wing kinematics were filmed and analyzed for P. m. dorothea in Lienhuachih of central Taiwan, and P. m. mandarinus in Tianxiyuan and Fusan of northern Taiwan. We observed that the P. m. mandarinus males exhibited a novel set of perched wing displays, which was not only absent in its sister P. m. dorothea but also previously unknown in Odonata. At breeding sites, perched rival males of P. m. mandarinus with pigmented wings exhibited escalating agonistic wing-flapping and wing-hitting displays toward each other. In contrast, territorial males of P. m. dorothea with clear wings engaged only in aerial chase or face-to-face hovering when intruder males approached from the air. These results indicate that the two sister P. mandarinus damselflies diverged behaviorally in territorial contests and support the hypothesis of coadaptation on the basis of wing colors and types of wing movement in Odonata. Our findings further suggest that divergent agonistic wing displays may play a pivotal role in the speciation mechanism of P. mandarinus damselflies. The sequential analyses of behavioral characteristics and progression suggest that P. m. mandarinus damselflies likely use mutual assessment of rivals in territorial contests.


Asunto(s)
Odonata , Conducta Agonística , Animales , Masculino , Pigmentación , Alas de Animales
18.
Proc Natl Acad Sci U S A ; 115(23): 6016-6021, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784774

RESUMEN

Trait-based community ecology promises an understanding of the factors that determine species abundances and distributions across habitats. However, ecologists are often faced with large suites of potentially important traits, making generalizations across ecosystems and species difficult or even impossible. Here, we hypothesize that key traits structuring ecological communities may be causally dependent on common physiological mechanisms and that elucidating these mechanisms can help us understand the distributions of traits and species across habitats. We test this hypothesis by investigating putatively causal relationships between physiological and behavioral traits at the species and community levels in larvae of 17 species of dragonfly that co-occur at the landscape scale but segregate among lakes. We use tools borrowed from phenotypic selection analyses to show that physiological traits underlie activity rate, which has opposing effects on foraging and predator avoidance behaviors. The effect of activity on these behaviors ultimately shapes species distributions and community composition in habitats with either large-bodied fish or invertebrates as top predators. Remarkably, despite the inherent complexity of ecological communities, the expression of just two biomolecules accounts for a high proportion of the variation in behavioral traits and hence, dragonfly community composition between habitats. We suggest that causal relationships among traits can drive species distributions and community assembly.


Asunto(s)
Conducta Animal/fisiología , Biota/fisiología , Odonata/fisiología , Animales , Arginina Quinasa/análisis , Arginina Quinasa/fisiología , Biodiversidad , Ecosistema , Cadena Alimentaria , Hidroliasas/análisis , Hidroliasas/fisiología , Larva/fisiología , Fenotipo , Conducta Predatoria/fisiología
19.
Proc Natl Acad Sci U S A ; 115(40): 9905-9910, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224459

RESUMEN

Insect wings are typically supported by thickened struts called veins. These veins form diverse geometric patterns across insects. For many insect species, even the left and right wings from the same individual have veins with unique topological arrangements, and little is known about how these patterns form. We present a large-scale quantitative study of the fingerprint-like "secondary veins." We compile a dataset of wings from 232 species and 17 families from the order Odonata (dragonflies and damselflies), a group with particularly elaborate vein patterns. We characterize the geometric arrangements of veins and develop a simple model of secondary vein patterning. We show that our model is capable of recapitulating the vein geometries of species from other, distantly related winged insect clades.


Asunto(s)
Vuelo Animal/fisiología , Modelos Biológicos , Odonata/anatomía & histología , Odonata/fisiología , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Animales
20.
BMC Evol Biol ; 20(1): 74, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32580705

RESUMEN

BACKGROUND: The New World Tropics has experienced a dynamic landscape across evolutionary history and harbors a high diversity of flora and fauna. While there are some studies addressing diversification in Neotropical vertebrates and plants, there is still a lack of knowledge in arthropods. Here we examine temporal and spatial diversification patterns in the damselfly family Polythoridae, which comprises seven genera with a total of 58 species distributed across much of Central and South America. RESULTS: Our time-calibrated phylogeny for 48 species suggests that this family radiated during the late Eocene (~ 33 Ma), diversifying during the Miocene. As with other neotropical groups, the Most Recent Common Ancestor (MRCA) of most of the Polythoridae genera has a primary origin in the Northern Andes though the MRCA of at least one genus may have appeared in the Amazon Basin. Our molecular clock suggests correlations with some major geographical events, and our biogeographical modeling (with BioGeoBEARS and RASP) found a significant influence of the formation of the Pebas and Acre systems on the early diversification of these damselflies, though evidence for the influence of the rise of the different Andean ranges was mixed. Diversification rates have been uniform in all genera except one-Polythore-where a significant increase in the late Pliocene (~ 3 mya) may have been influenced by recent Andean uplift. CONCLUSION: The biogeographical models implemented here suggest that the Pebas and Acre Systems were significant geological events associated with the diversification of this damselfly family; while diversification in the tree shows some correlation with mountain building events, it is possible that other abiotic and biotic changes during our study period have influenced diversification as well. The high diversification rate observed in Polythore could be explained by the late uplift of the Northern Andes. However, it is possible that other intrinsic factors like sexual and natural selection acting on color patterns could be involved in the diversification of this genus.


Asunto(s)
Evolución Biológica , Geografía , Odonata , Animales , Filogenia , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA