Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 36: 221-246, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29328786

RESUMEN

Researchers are intensifying efforts to understand the mechanisms by which changes in metabolic states influence differentiation programs. An emerging objective is to define how fluctuations in metabolites influence the epigenetic states that contribute to differentiation programs. This is because metabolites such as S-adenosylmethionine, acetyl-CoA, α-ketoglutarate, 2-hydroxyglutarate, and butyrate are donors, substrates, cofactors, and antagonists for the activities of epigenetic-modifying complexes and for epigenetic modifications. We discuss this topic from the perspective of specialized CD4+ T cells as well as effector and memory T cell differentiation programs. We also highlight findings from embryonic stem cells that give mechanistic insight into how nutrients processed through pathways such as glycolysis, glutaminolysis, and one-carbon metabolism regulate metabolite levels to influence epigenetic events and discuss similar mechanistic principles in T cells. Finally, we highlight how dysregulated environments, such as the tumor microenvironment, might alter programming events.


Asunto(s)
Diferenciación Celular/genética , Diferenciación Celular/inmunología , Metabolismo Energético , Epigénesis Genética , Animales , Biomarcadores , Regulación del Desarrollo de la Expresión Génica , Humanos , Neoplasias/etiología , Neoplasias/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
2.
Mol Cell ; 84(14): 2682-2697.e6, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38996576

RESUMEN

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.


Asunto(s)
Microscopía por Crioelectrón , Glicina Hidroximetiltransferasa , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/química , Humanos , ARN/metabolismo , ARN/genética , Serina/metabolismo , Regulación Alostérica , Unión Proteica , Filogenia , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Glicina/metabolismo , Glicina/química , Sitios de Unión
3.
Immunity ; 55(1): 65-81.e9, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34767747

RESUMEN

Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.


Asunto(s)
Inflamación/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Purinas/biosíntesis , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular , Citocinas/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Activación de Linfocitos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Ratones , Ratones Transgénicos , Mutación/genética , Transducción de Señal
4.
Immunity ; 54(8): 1728-1744.e7, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34343498

RESUMEN

Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.


Asunto(s)
Antioxidantes/farmacología , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/inmunología , Selenio/farmacología , Selenoproteína W/metabolismo , Células TH1/citología , Diferenciación Celular/inmunología , Polaridad Celular , Colon/inmunología , Colon/patología , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ribonucleoproteínas/metabolismo , Células TH1/inmunología , Ubiquitina-Proteína Ligasas/metabolismo
5.
Mol Cell ; 81(11): 2290-2302.e7, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33831358

RESUMEN

Cancer cells adapt their metabolism to support elevated energetic and anabolic demands of proliferation. Folate-dependent one-carbon metabolism is a critical metabolic process underpinning cellular proliferation supplying carbons for the synthesis of nucleotides incorporated into DNA and RNA. Recent research has focused on the nutrients that supply one-carbons to the folate cycle, particularly serine. Tryptophan is a theoretical source of one-carbon units through metabolism by IDO1, an enzyme intensively investigated in the context of tumor immune evasion. Using in vitro and in vivo pancreatic cancer models, we show that IDO1 expression is highly context dependent, influenced by attachment-independent growth and the canonical activator IFNγ. In IDO1-expressing cancer cells, tryptophan is a bona fide one-carbon donor for purine nucleotide synthesis in vitro and in vivo. Furthermore, we show that cancer cells release tryptophan-derived formate, which can be used by pancreatic stellate cells to support purine nucleotide synthesis.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Neoplasias Pancreáticas/genética , Células Estrelladas Pancreáticas/metabolismo , Escape del Tumor/efectos de los fármacos , Aloinjertos , Animales , Antineoplásicos/farmacología , Carbono/inmunología , Carbono/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/mortalidad , Línea Celular Tumoral , Formiatos/inmunología , Formiatos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Oximas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/inmunología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Serina/inmunología , Serina/metabolismo , Serina/farmacología , Transducción de Señal , Sulfonamidas/farmacología , Triptófano/inmunología , Triptófano/metabolismo , Triptófano/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología
6.
Mol Cell ; 75(6): 1147-1160.e5, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31420217

RESUMEN

Activated macrophages adapt their metabolic pathways to drive the pro-inflammatory phenotype, but little is known about the biochemical underpinnings of this process. Here, we find that lipopolysaccharide (LPS) activates the pentose phosphate pathway, the serine synthesis pathway, and one-carbon metabolism, the synergism of which drives epigenetic reprogramming for interleukin-1ß (IL-1ß) expression. Glucose-derived ribose and one-carbon units fed by both glucose and serine metabolism are synergistically integrated into the methionine cycle through de novo ATP synthesis and fuel the generation of S-adenosylmethionine (SAM) during LPS-induced inflammation. Impairment of these metabolic pathways that feed SAM generation lead to anti-inflammatory outcomes, implicating SAM as an essential metabolite for inflammatory macrophages. Mechanistically, SAM generation maintains a relatively high SAM:S-adenosylhomocysteine ratio to support histone H3 lysine 36 trimethylation for IL-1ß production. We therefore identify a synergistic effect of glucose and amino acid metabolism on orchestrating SAM availability that is intimately linked to the chromatin state for inflammation.


Asunto(s)
Histonas/metabolismo , Macrófagos Peritoneales/metabolismo , S-Adenosilmetionina/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Animales , Femenino , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos Peritoneales/patología , Masculino , Metilación/efectos de los fármacos , Ratones
7.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36896963

RESUMEN

Cell fate and growth require one-carbon units for the biosynthesis of nucleotides, methylation reactions and redox homeostasis, provided by one-carbon metabolism. Consistently, defects in one-carbon metabolism lead to severe developmental defects, such as neural tube defects. However, the role of this pathway during brain development and in neural stem cell regulation is poorly understood. To better understand the role of one carbon metabolism we focused on the enzyme Serine hydroxymethyl transferase (Shmt), a key factor in the one-carbon cycle, during Drosophila brain development. We show that, although loss of Shmt does not cause obvious defects in the central brain, it leads to severe phenotypes in the optic lobe. The shmt mutants have smaller optic lobe neuroepithelia, partly justified by increased apoptosis. In addition, shmt mutant neuroepithelia have morphological defects, failing to form a lamina furrow, which likely explains the observed absence of lamina neurons. These findings show that one-carbon metabolism is crucial for the normal development of neuroepithelia, and consequently for the generation of neural progenitor cells and neurons. These results propose a mechanistic role for one-carbon during brain development.


Asunto(s)
Drosophila , Células-Madre Neurales , Animales , Drosophila/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Carbono , Metiltransferasas/metabolismo , Serina/metabolismo , Lóbulo Óptico de Animales no Mamíferos
8.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37665322

RESUMEN

One-carbon/folate (1C) metabolism supplies methyl groups required for DNA and histone methylation, and is involved in the maintenance of self-renewal in stem cells. Dihydrofolate reductase (DHFR), a key enzyme in 1C metabolism, is highly expressed in human and mouse neural progenitors at the early stages of neocortical development. Here, we have investigated the role of DHFR in the developing neocortex and report that reducing its activity in human neural organoids and mouse embryonic neocortex accelerates indirect neurogenesis, thereby affecting neuronal composition of the neocortex. Furthermore, we show that decreasing DHFR activity in neural progenitors leads to a reduction in one-carbon/folate metabolites and correlates with modifications of H3K4me3 levels. Our findings reveal an unanticipated role for DHFR in controlling specific steps of neocortex development and indicate that variations in 1C metabolic cues impact cell fate transitions.


Asunto(s)
Neocórtex , Neurogénesis , Tetrahidrofolato Deshidrogenasa , Animales , Humanos , Ratones , Carbono , Ácido Fólico , Neurogénesis/genética , Tetrahidrofolato Deshidrogenasa/genética
9.
Mol Cell ; 69(4): 610-621.e5, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452640

RESUMEN

Upon glucose restriction, eukaryotic cells upregulate oxidative metabolism to maintain homeostasis. Using genetic screens, we find that the mitochondrial serine hydroxymethyltransferase (SHMT2) is required for robust mitochondrial oxygen consumption and low glucose proliferation. SHMT2 catalyzes the first step in mitochondrial one-carbon metabolism, which, particularly in proliferating cells, produces tetrahydrofolate (THF)-conjugated one-carbon units used in cytoplasmic reactions despite the presence of a parallel cytoplasmic pathway. Impairing cytoplasmic one-carbon metabolism or blocking efflux of one-carbon units from mitochondria does not phenocopy SHMT2 loss, indicating that a mitochondrial THF cofactor is responsible for the observed phenotype. The enzyme MTFMT utilizes one such cofactor, 10-formyl THF, producing formylmethionyl-tRNAs, specialized initiator tRNAs necessary for proper translation of mitochondrially encoded proteins. Accordingly, SHMT2 null cells specifically fail to maintain formylmethionyl-tRNA pools and mitochondrially encoded proteins, phenotypes similar to those observed in MTFMT-deficient patients. These findings provide a rationale for maintaining a compartmentalized one-carbon pathway in mitochondria.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Glicina Hidroximetiltransferasa/metabolismo , Mitocondrias/genética , Iniciación de la Cadena Peptídica Traduccional , ARN de Transferencia de Metionina/química , Serina/química , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Sistemas CRISPR-Cas , Proliferación Celular , Citosol/metabolismo , Femenino , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Glicina Hidroximetiltransferasa/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Serina/genética , Serina/metabolismo , Tetrahidrofolatos/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Proc Natl Acad Sci U S A ; 120(26): e2302531120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339208

RESUMEN

Cobalamin-dependent methionine synthase (MetH) catalyzes the synthesis of methionine from homocysteine and 5-methyltetrahydrofolate (CH3-H4folate) using the unique chemistry of its cofactor. In doing so, MetH links the cycling of S-adenosylmethionine with the folate cycle in one-carbon metabolism. Extensive biochemical and structural studies on Escherichia coli MetH have shown that this flexible, multidomain enzyme adopts two major conformations to prevent a futile cycle of methionine production and consumption. However, as MetH is highly dynamic as well as both a photosensitive and oxygen-sensitive metalloenzyme, it poses special challenges for structural studies, and existing structures have necessarily come from a "divide and conquer" approach. In this study, we investigate E. coli MetH and a thermophilic homolog from Thermus filiformis using small-angle X-ray scattering (SAXS), single-particle cryoelectron microscopy (cryo-EM), and extensive analysis of the AlphaFold2 database to present a structural description of the full-length MetH in its entirety. Using SAXS, we describe a common resting-state conformation shared by both active and inactive oxidation states of MetH and the roles of CH3-H4folate and flavodoxin in initiating turnover and reactivation. By combining SAXS with a 3.6-Å cryo-EM structure of the T. filiformis MetH, we show that the resting-state conformation consists of a stable arrangement of the catalytic domains that is linked to a highly mobile reactivation domain. Finally, by combining AlphaFold2-guided sequence analysis and our experimental findings, we propose a general model for functional switching in MetH.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa , Escherichia coli , Microscopía por Crioelectrón , Escherichia coli/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Dispersión del Ángulo Pequeño , Rayos X , Difracción de Rayos X , Metionina/metabolismo , Ácido Fólico/metabolismo , Vitamina B 12/metabolismo
11.
J Biol Chem ; 300(8): 107503, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944127

RESUMEN

One of the seven natural CO2 fixation pathways, the anaerobic Wood-Ljungdahl pathway (WLP) is unique in generating CO as a metabolic intermediate, operating through organometallic intermediates, and in conserving (versus utilizing) net ATP. The key enzyme in the WLP is acetyl-CoA synthase (ACS), which uses an active site [2Ni-4Fe-4S] cluster (A-cluster), a CO tunnel, and an organometallic (Ni-CO, Ni-methyl, and Ni-acetyl) reaction sequence to generate acetyl-CoA. Here, we reveal that an alcove, which interfaces the tunnel and the A-cluster, is essential for CO2 fixation and autotrophic growth by the WLP. In vitro spectroscopy, kinetics, binding, and in vivo growth experiments reveal that a Phe229A substitution at one wall of the alcove decreases CO affinity thirty-fold and abolishes autotrophic growth; however, a F229W substitution enhances CO binding 80-fold. Our results indicate that the structure of the alcove is exquisitely tuned to concentrate CO near the A-cluster; protect ACS from CO loss during catalysis, provide a haven for inhibitory CO, and stabilize the tetrahedral coordination at the Nip site where CO binds. The directing, concentrating, and protective effects of the alcove explain the inability of F209A to grow autotrophically. The alcove also could help explain current controversies over whether ACS binds CO and methyl through a random or ordered mechanism. Our work redefines what we historically refer to as the metallocenter "active site". The alcove is so crucial for enzymatic function that we propose it is part of the active site. The community should now look for such alcoves in all "gas handling" metalloenzymes.

12.
Plant J ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39010784

RESUMEN

The metabolism of tetrahydrofolate (H4PteGlun)-bound one-carbon (C1) units (C1 metabolism) is multifaceted and required for plant growth, but it is unclear what of many possible synthesis pathways provide C1 units in specific organelles and tissues. One possible source of C1 units is via formate-tetrahydrofolate ligase, which catalyzes the reversible ATP-driven production of 10-formyltetrahydrofolate (10-formyl-H4PteGlun) from formate and tetrahydrofolate (H4PteGlun). Here, we report biochemical and functional characterization of the enzyme from Arabidopsis thaliana (AtFTHFL). We show that the recombinant AtFTHFL has lower Km and kcat values with pentaglutamyl tetrahydrofolate (H4PteGlu5) as compared to monoglutamyl tetrahydrofolate (H4PteGlu1), resulting in virtually identical catalytic efficiencies for the two substrates. Stable transformation of Arabidopsis plants with the EGFP-tagged AtFTHFL, followed with fluorescence microscopy, demonstrated cytosolic signal. Two independent T-DNA insertion lines with impaired AtFTHFL function had shorter roots compared to the wild type plants, demonstrating the importance of this enzyme for root growth. Overexpressing AtFTHFL led to the accumulation of H4PteGlun + 5,10-methylene-H4PteGlun and serine, accompanied with the depletion of formate and glycolate, in roots of the transgenic Arabidopsis plants. This metabolic adjustment supports the hypothesis that AtFTHFL feeds the cytosolic C1 network in roots with C1 units originating from glycolate, and that these units are then used mainly for biosynthesis of serine, and not as much for the biosynthesis of 5-methyl-H4PteGlun, methionine, and S-adenosylmethionine. This finding has implications for any future attempts to engineer one-carbon unit-requiring products through manipulation of the one-carbon metabolic network in non-photosynthetic organs.

13.
Mol Microbiol ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38410838

RESUMEN

Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10 -formyl-tetrahydrofolate (N10 -fTHF), respectively. Both methionine and N10 -fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.

14.
FASEB J ; 38(13): e23795, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38984928

RESUMEN

Cystathionine beta-synthase-deficient homocystinuria (HCU) is a life-threatening disorder of sulfur metabolism. HCU can be treated by using betaine to lower tissue and plasma levels of homocysteine (Hcy). Here, we show that mice with severely elevated Hcy and potentially deficient in the folate species tetrahydrofolate (THF) exhibit a very limited response to betaine indicating that THF plays a critical role in treatment efficacy. Analysis of a mouse model of HCU revealed a 10-fold increase in hepatic levels of 5-methyl -THF and a 30-fold accumulation of formiminoglutamic acid, consistent with a paucity of THF. Neither of these metabolite accumulations were reversed or ameliorated by betaine treatment. Hepatic expression of the THF-generating enzyme dihydrofolate reductase (DHFR) was significantly repressed in HCU mice and expression was not increased by betaine treatment but appears to be sensitive to cellular redox status. Expression of the DHFR reaction partner thymidylate synthase was also repressed and metabolomic analysis detected widespread alteration of hepatic histidine and glutamine metabolism. Many individuals with HCU exhibit endothelial dysfunction. DHFR plays a key role in nitric oxide (NO) generation due to its role in regenerating oxidized tetrahydrobiopterin, and we observed a significant decrease in plasma NOx (NO2 + NO3) levels in HCU mice. Additional impairment of NO generation may also come from the HCU-mediated induction of the 20-hydroxyeicosatetraenoic acid generating cytochrome CYP4A. Collectively, our data shows that HCU induces dysfunctional one-carbon metabolism with the potential to both impair betaine treatment and contribute to multiple aspects of pathogenesis in this disease.


Asunto(s)
Homocistinuria , Hígado , Oxidación-Reducción , Tetrahidrofolato Deshidrogenasa , Tetrahidrofolatos , Animales , Homocistinuria/metabolismo , Homocistinuria/tratamiento farmacológico , Homocistinuria/genética , Ratones , Tetrahidrofolatos/metabolismo , Hígado/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Betaína/metabolismo , Betaína/farmacología , Homocisteína/metabolismo , Ratones Endogámicos C57BL , Cistationina betasintasa/metabolismo , Cistationina betasintasa/genética , Carbono/metabolismo , Masculino , Ácido Fólico/metabolismo , Femenino
15.
J Biol Chem ; 299(9): 105090, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507016

RESUMEN

Folate-mediated one-carbon metabolism (FOCM) is crucial in sustaining rapid proliferation and survival of cancer cells. The folate cycle depends on a series of key cellular enzymes, including aldehyde dehydrogenase 1 family member L2 (ALDH1L2) that is usually overexpressed in cancer cells, but the regulatory mechanism of ALDH1L2 remains undefined. In this study, we observed the significant overexpression of ALDH1L2 in colorectal cancer (CRC) tissues, which is associated with poor prognosis. Mechanistically, we identified that the acetylation of ALDH1L2 at the K70 site is an important regulatory mechanism inhibiting the enzymatic activity of ALDH1L2 and disturbing cellular redox balance. Moreover, we revealed that sirtuins 3 (SIRT3) directly binds and deacetylates ALDH1L2 to increase its activity. Interestingly, the chemotherapeutic agent 5-fluorouracil (5-Fu) inhibits the expression of SIRT3 and increases the acetylation levels of ALDH1L2 in colorectal cancer cells. 5-Fu-induced ALDH1L2 acetylation sufficiently inhibits its enzymatic activity and the production of NADPH and GSH, thereby leading to oxidative stress-induced apoptosis and suppressing tumor growth in mice. Furthermore, the K70Q mutant of ALDH1L2 sensitizes cancer cells to 5-Fu both in vitro and in vivo through perturbing cellular redox and serine metabolism. Our findings reveal an unknown 5-Fu-SIRT3-ALDH1L2 axis regulating redox homeostasis, and suggest that targeting ALDH1L2 is a promising therapeutic strategy to sensitize tumor cells to chemotherapeutic agents.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Fluorouracilo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Animales , Ratones , Acetilación , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Ácido Fólico/metabolismo , Oxidación-Reducción , Sirtuina 3/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación hacia Arriba , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Mutación
16.
BMC Genomics ; 25(1): 432, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693486

RESUMEN

BACKGROUND: The folate cycle of one-carbon (C1) metabolism, which plays a central role in the biosynthesis of nucleotides and amino acids, demonstrates the significance of metabolic adaptation. We investigated the evolutionary history of the methylenetetrahydrofolate dehydrogenase (mTHF) gene family, one of the main drivers of the folate cycle, across life. RESULTS: Through comparative genomic and phylogenetic analyses, we found that several lineages of Archaea lacked domains vital for folate cycle function such as the mTHF catalytic and NAD(P)-binding domains of FolD. Within eukaryotes, the mTHF gene family diversified rapidly. For example, several duplications have been observed in lineages including the Amoebozoa, Opisthokonta, and Viridiplantae. In a common ancestor of Opisthokonta, FolD and FTHFS underwent fusion giving rise to the gene MTHFD1, possessing the domains of both genes. CONCLUSIONS: Our evolutionary reconstruction of the mTHF gene family associated with a primary metabolic pathway reveals dynamic evolution, including gene birth-and-death, gene fusion, and potential horizontal gene transfer events and/or amino acid convergence.


Asunto(s)
Evolución Molecular , Metilenotetrahidrofolato Deshidrogenasa (NADP) , Familia de Multigenes , Filogenia , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Archaea/genética , Archaea/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Redes y Vías Metabólicas/genética , Transferencia de Gen Horizontal
17.
BMC Genomics ; 25(1): 650, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951796

RESUMEN

BACKGROUND: Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown. RESULTS: For this purpose, we developed a fathead minnow (Pimephales promelas) clonal cell line in which the unique viperin gene has been knocked out by CRISPR/Cas9 genome-editing. In order to decipher the contribution of fish Viperin to the antiviral response and its regulatory role beyond the scope of the innate immune response, we performed a comparative RNA-seq analysis of viperin-/- and wildtype cell lines upon stimulation with recombinant fathead minnow type I interferon. CONCLUSIONS: Our results revealed that Viperin does not exert positive feedback on the canonical type I IFN but acts as a negative regulator of the inflammatory response by downregulating specific pro-inflammatory genes and upregulating repressors of the NF-κB pathway. It also appeared to play a role in regulating metabolic processes, including one carbon metabolism, bone formation, extracellular matrix organization and cell adhesion.


Asunto(s)
Cyprinidae , Inflamación , Animales , Cyprinidae/metabolismo , Cyprinidae/genética , Inflamación/metabolismo , Inflamación/genética , Inmunidad Innata , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Línea Celular , Sistemas CRISPR-Cas , Interferón Tipo I/metabolismo , Edición Génica , Regulación de la Expresión Génica
18.
Int J Cancer ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109892

RESUMEN

Incidence of esophageal and gastric cancer has been linked to low B-vitamin status. We conducted matched nested case-control studies of incident esophageal squamous cell carcinoma (ESCC; 340 case-control pairs) and gastric cancer (GC; 352 case-control pairs) within the Golestan Cohort Study. The primary exposure was plasma biomarkers: riboflavin and flavin mononucleotide (FMN) (vitamin B2), pyridoxal phosphate (PLP) (B6), cobalamin (B12), para-aminobenzoylglutamate (pABG) (folate), and total homocysteine (tHcy); and indicators for deficiency: 3-hydroxykyurenine-ratio (HK-r for vitamin B6) and methylmalonic acid (MMA for B12). We estimated odds ratios (ORs) and 95% confidence intervals (CIs) using conditional logistic regression adjusting for matching factors and potential confounders. High proportions of participants had low B-vitamin and high tHcy levels. None of the measured vitamin B levels was associated with the risk of ESCC and GC, but elevated level of MMA was marginally associated with ESCC (OR = 1.42, 95% CI = 0.99-2.04) and associated with GC (OR = 1.53, 95% CI = 1.05-2.22). Risk of GC was higher for the highest versus lowest quartile of HK-r (OR = 1.95, 95%CI = 1.19-3.21) and for elevated versus non-elevated HK-r level (OR = 1.59, 95% CI = 1.13-2.25). Risk of ESCC (OR = 2.81, 95% CI = 1.54-5.13) and gastric cancer (OR = 2.09, 95%CI = 1.17-3.73) was higher for the highest versus lowest quartile of tHcy. In conclusion, insufficient vitamin B12 was associated with higher risk of ESCC and GC, and insufficient vitamin B6 status was associated with higher risk of GC in this population with prevalent low plasma B-vitamin status. Higher level of tHcy, a global indicator of OCM function, was associated with higher risk of ESCC and GC.

19.
Cancer Sci ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979884

RESUMEN

The relationship among polycystic ovary syndrome (PCOS), endometrial cancer (EC), and glycometabolism remains unclear. We explored shared genes between PCOS and EC, using bioinformatics to unveil their pathogenic connection and influence on EC prognosis. Gene Expression Omnibus datasets GSE226146 (PCOS) and GSE196033 (EC) were used. A protein-protein interaction (PPI) network was constructed to identify the central genes. Candidate markers were screened using dataset GSE54250. Differences in marker expression were confirmed in mouse PCOS and human EC tissues using RT-PCR and immunohistochemistry. The effect of PGD on EC proliferation and migration was explored using Ki-67 and Transwell assays. PGD's impact on the glycometabolic pathway within carbon metabolism was assessed by quantifying glucose content and lactic acid production. R software identified 31 common genes in GSE226146 and GSE196033. Gene Ontology functional classification revealed enrichment in the "purine nucleoside triphosphate metabolism process," with key Kyoto Encyclopedia of Genes and Genomes pathways related to "carbon metabolism." The PPI network identified 15 hub genes. HK2, NDUFS8, PHGDH, PGD, and SMAD3 were confirmed as candidate markers. The RT-PCR analysis validated distinct HK2 and PGD expression patterns in mouse PCOS ovarian tissue and human EC tissue, as well as in normal and EC cells. Transfection experiments with Ishikawa cells further confirmed PGD's influence on cell proliferation and migration. Suppression of PGD expression impeded glycometabolism within the carbon metabolism of EC cells, suggesting PGD as a significant PCOS risk factor impacting EC proliferation and migration through modulation of single carbon metabolism. These findings highlight PGD's pivotal role in EC onset and prognosis.

20.
Cancer Sci ; 115(7): 2473-2485, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679799

RESUMEN

Inflammatory bowel disease (IBD) is one of the intractable diseases. Nutritional components associated with IBD have been identified, and it is known that excessive methionine intake exacerbates inflammation, and that tryptophan metabolism is involved in inflammation. Analysis of the gut microbiota has also progressed, where Lactobacillus regulate immune cells in the intestine and suppress inflammation. However, whether the methionine and tryptophan metabolic pathways affect the growth of intestinal Lactobacillus is unknown. Here we show how transient methionine, tryptophan, and niacin deficiency affects the host and gut microbiota in mouse models of colitis (induced by dextran sodium sulfate) fed a methionine-deficient diet (1K), tryptophan and niacin-deficient diet (2K), or methionine, tryptophan, and niacin-deficient diet (3K). These diets induced body weight decrease and 16S rRNA analysis of mouse feces revealed the alterations in the gut microbiota, leading to a dramatic increase in the proportion of Lactobacillus in mice. Intestinal RNA sequencing data confirmed that the expression of several serine proteases and fat-metabolizing enzymes were elevated in mice fed with methionine, tryptophan, and niacin (MTN) deficient diet. In addition, one-carbon metabolism and peroxisome proliferator-activated receptor (PPAR) pathway activation were also induced with MTN deficiency. Furthermore, changes in the expression of various immune-related cytokines were observed. These results indicate that methionine, tryptophan, and niacin metabolisms are important for the composition of intestinal bacteria and host immunity. Taken together, MTN deficiencies may serve as a Great Reset of gut microbiota and host gene expression to return to good health.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Metionina , Niacina , Triptófano , Animales , Metionina/deficiencia , Metionina/metabolismo , Niacina/metabolismo , Niacina/deficiencia , Ratones , Triptófano/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Proteolisis , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Colitis/metabolismo , Colitis/microbiología , Colitis/inducido químicamente , Colitis/inmunología , Lactobacillus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA