Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2209184120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626553

RESUMEN

Monocytes play a key role in innate immunity by eliminating pathogens, releasing high levels of cytokines, and differentiating into several cell types, including macrophages and dendritic cells. Similar to other phagocytes, monocytes produce superoxide anions through the NADPH oxidase complex, which is composed of two membrane proteins (p22phox and gp91phox/NOX2) and four cytosolic proteins (p47phox, p67phox, p40phox and Rac1). The pathways involved in NADPH oxidase activation in monocytes are less known than those in neutrophils. Here, we show that p22phox is associated with Rho-associated coiled-coil kinase 2 (ROCK2) in human monocytes but not neutrophils. This interaction occurs between the cytosolic region of p22phox (amino acids 132 to 195) and the coiled-coil region of ROCK2 (amino acids 400 to 967). Interestingly, ROCK2 does not phosphorylate p22phox, p40phox, p67phox, or gp91phox in vitro but phosphorylates p47phox on Ser304, Ser315, Ser320 and Ser328. Furthermore, KD025, a selective inhibitor of ROCK2, inhibited reactive oxygen species (ROS) production and p47phox phosphorylation in monocytes. Specific inhibition of ROCK2 expression in THP1-monocytic cell line by siRNA inhibited ROS production. These data show that ROCK2 interacts with p22phox and phosphorylates p47phox, and suggest that p22phox could be a shuttle for ROCK2 to allow p47phox phosphorylation and NADPH oxidase activation in human monocytes.


Asunto(s)
Monocitos , NADPH Oxidasas , Quinasas Asociadas a rho , Humanos , Aminoácidos , Monocitos/metabolismo , NADPH Oxidasas/metabolismo , Fosfoproteínas/metabolismo , Especies Reactivas de Oxígeno , Quinasas Asociadas a rho/metabolismo
2.
Genes Cells ; 29(1): 63-72, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985134

RESUMEN

The hydrogen peroxide (H2 O2 )-producing NADPH oxidase Nox4, forming a heterodimer with p22phox , is expressed in a variety of cells including those in the heart to mediate adaptive responses to cellular stresses such as hypoxia. Since Nox4 is constitutively active, H2 O2 production is controlled by its protein abundance. Hypoxia-induced Nox4 expression is observed in various types of cells and generally thought to be regulated at the transcriptional level. Here we show that hypoxia upregulates the Nox4 protein level and Nox4-catalyzed H2 O2 production without increasing the Nox4 mRNA in rat H9c2 cardiomyocytes. In these cells, the Nox4 protein is stabilized under hypoxic conditions in a manner dependent on the presence of p22phox . Cell treatment with the proteasome inhibitor MG132 results in a marked decrease of the Nox4 protein under both normoxic and hypoxic conditions, indicating that the proteasome pathway does not play a major role in Nox4 degradation. The decrease is partially restored by the autophagy inhibitor 3-methyladenine. Furthermore, the Nox4 protein level is upregulated by the lysosome inhibitors bafilomycin A1 and chloroquine. Thus, in cardiomyocytes, Nox4 appears to be degraded via an autophagy-related pathway, and its suppression by hypoxia likely stabilizes Nox4, leading to upregulation of Nox4-catalyzed H2 O2 production.


Asunto(s)
Miocitos Cardíacos , Oxidorreductasas , Ratas , Animales , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Miocitos Cardíacos/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Hipoxia , Autofagia , Especies Reactivas de Oxígeno/metabolismo
3.
Infect Immun ; 92(3): e0001924, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38353543

RESUMEN

Virus-like particles (VLPs) are protein-based nanoparticles frequently used as carriers in conjugate vaccine platforms. VLPs have been used to display foreign antigens for vaccination and to deliver immunotherapy against diseases. Hemolysin-coregulated proteins 1 (Hcp1) is a protein component of the Burkholderia type 6 secretion system, which participates in intracellular invasion and dissemination. This protein has been reported as a protective antigen and is used in multiple vaccine candidates with various platforms against melioidosis, a severe infectious disease caused by the intracellular pathogen Burkholderia pseudomallei. In this study, we used P22 VLPs as a surface platform for decoration with Hcp1 using chemical conjugation. C57BL/6 mice were intranasally immunized with three doses of either PBS, VLPs, or conjugated Hcp1-VLPs. Immunization with Hcp1-VLPs formulation induced Hcp1-specific IgG, IgG1, IgG2c, and IgA antibody responses. Furthermore, the serum from Hcp1-VLPs immunized mice enhanced the bacterial uptake and opsonophagocytosis by macrophages in the presence of complement. This study demonstrated an alternative strategy to develop a VLPs-based vaccine platform against Burkholderia species.


Asunto(s)
Burkholderia pseudomallei , Burkholderia , Animales , Ratones , Proteínas Hemolisinas , Ratones Endogámicos C57BL , Inmunoglobulina G , Ratones Endogámicos BALB C
4.
Am J Med Genet A ; : e63814, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011850

RESUMEN

We report a 17-year-old male with supravalvular stenosis, initial failure to thrive and delayed early development, short stature, acromelia, dysmorphic facial features, hypertelorism, macrocephaly, syringomyelia, hypertension, and anxiety disorder. Fluorescent in situ hybridization (FISH), chromosomal microarray analysis (CMA), and exome sequencing (ES) were nondiagnostic. Combined optical genome mapping (OGM) and genome sequencing (GS) showed a complex rearrangement including an X chromosome with a 22.5 kb deletion in band Xq28 replaced by a 61.4 kb insertion of duplicated chromosome 7p22.3 material. The deletion removes the distal 3' untranslated region (UTR) of FUNDC2, the entire CMC4 and MTCP1, and the first five exons of BRCC3. Transcriptome analysis revealed absent expression of CMC4 and MTCP1 and BRCC3 with normal transcript level of FUNDC2. The inserted duplication includes only one known gene: UNCX. Similar overlapping Xq28 deletions have been reported to be associated with Moyamoya disease (MMD), short stature, hypergonadotropic hypogonadism (HH), and facial dysmorphism. Although he has short stature, our patient does not have signs of Moyamoya arteriopathy or hypogonadism. The structurally abnormal X chromosome was present in his mother, but not in his unaffected brother, maternal uncle, or maternal grandparents. We propose that the combination of his absent Xq28 and duplicated 7p22.3 genomic material is responsible for his phenotype. This case highlights the potential of combined OGM and GS for detecting complex structural variants compared with standard of care genetic testing such as CMA and ES.

5.
Arch Virol ; 168(4): 129, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004683

RESUMEN

A rabbit rotavirus Z3171 isolate from diarrheic rabbits was identified and sequenced. The genotype constellation of Z3171 is G3-P[22]-I2-R3-C3-M3-A9-N2-T1-E3-H3, which is different from the constellation observed in previously characterized LRV strains. However, the genome of Z3171 differed substantially from those of the rabbit rotavirus strains N5 and Rab1404 in terms of both gene content and gene sequence. Our study suggests that either a reassortment event occurred between human and rabbit rotavirus strains or there are undetected genotypes circulating in the rabbit population. This is the first report of detection of a G3P[22] RVA strain in rabbits in China.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Animales , Conejos , Humanos , Rotavirus/genética , Infecciones por Rotavirus/veterinaria , Genoma Viral , Filogenia , Genómica , Genotipo , China
6.
Microbiol Immunol ; 67(4): 194-200, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36606663

RESUMEN

Defective superoxide production by NADPH oxidase 2 (Nox2) in phagocyte cells results in the development of chronic granulomatous disease (CGD), a hereditary disease characterized by recurrent and life-threatening infections. The partner protein p22phox is a membrane-spanning protein which forms a stable heterodimer with Nox2 in the endoplasmic reticulum. This interaction ensures the stability of each protein and their accurate trafficking to the cell membrane. The present paper describes the characterization of p22phox missense mutations that were identified in a patient with CGD who presented with undetectable levels of p22phox . Using a reconstitution system, it was found that p22phox expression decreased when R90Q, A117E, S118R, A124S, A124V, A125T, or E129K mutations were introduced, suggesting that these mutations destabilize the protein. In contrast, introducing an L105R mutation did not affect protein expression, but did inhibit p22phox binding to Nox2. Thus, the missense mutations discussed here contribute to the development of CGD by either disrupting protein stability or by impairing the interaction between p22phox and Nox2.


Asunto(s)
NADPH Oxidasas , Cricetulus , Animales , Línea Celular , Humanos , NADPH Oxidasas/química , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Mutación Missense , NADPH Oxidasa 2/metabolismo
7.
Acta Haematol ; 146(5): 397-400, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37562364

RESUMEN

The translocation t(8;9) produces the fusion gene PCM1-JAK2, resulting in the continuous activation of the JAK2 tyrosine kinase. Myelodysplastic/myeloproliferative neoplasms are the most common disease with t(8;9)/PCM1-JAK2. Individuals with this abnormality have similar features, and JAK2 kinase inhibitor (ruxolitinib) is an effective treatment of the condition. The long-term remission results of ruxolitinib are varied. It is important to determine the response to ruxolitinib. Here, we describe a patient who has been diagnosed with eosinophilia-associated myeloproliferative neoplasm with t(8;9)(p21;p24). This patient has achieved sustained response for >1 year since the administration of ruxolitinib.


Asunto(s)
Eosinofilia , Trastornos Mieloproliferativos , Neoplasias , Humanos , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Janus Quinasa 2/genética , Nitrilos , Translocación Genética , Eosinofilia/tratamiento farmacológico , Eosinofilia/genética
8.
J Clin Immunol ; 42(5): 986-999, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35344128

RESUMEN

PURPOSE: This is a functional characterization of a novel CYBA variant associated with normal DHR flow cytometry. Chronic granulomatous disease (CGD) is an inborn error of immunity characterized by recurrent bacterial and fungal infections and dysregulated inflammatory responses due to defective phagocytic cell function leading to the formation of granulomas. CGD patients have pathogenic variants in any of the five components of the phagocytic NADPH oxidase, which transfers electrons through the phagosomal membrane and produces superoxide upon bacterial uptake. Here, we report a pediatric female patient with a novel homozygous missense variant (c.293C > T, p.(Ser98Leu)) in CYBA, encoding the p22phox protein, associated with autosomal recessive CGD. METHODS AND RESULTS: The patient presented with severe recurrent pneumonia. Specific pathogens identified included Burkholderia and Serratia species suggesting neutrophil functional abnormalities; however, the dihydrorhodamine-1,2,3 (DHR) flow cytometric and cytochrome c reduction assays for neutrophil respiratory burst fell within the low side of the normal range. Western blot and flow cytometric analysis of individual NADPH oxidase components revealed reduced levels of p22phox and gp91phoxphox proteins. The pathological consequence of the p.Ser98Leu variant was further evaluated in heterologous expression systems, which confirmed reduced p22phox protein stability and oxidase activity. CONCLUSIONS: Although this patient did not exhibit all the classic features of CGD, such as granulomas and skin infections, she had recurrent pneumonias with oxidant-sensitive pathognomonic organisms, resulting in appropriate targeted CGD testing. This case emphasizes the need to contextually interpret laboratory data, especially using clinical findings to direct additional assessments including genetic analysis.


Asunto(s)
Enfermedad Granulomatosa Crónica , Niño , Femenino , Citometría de Flujo , Enfermedad Granulomatosa Crónica/complicaciones , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/genética , Humanos , Mutación/genética , NADPH Oxidasa 2/genética , NADPH Oxidasas/genética , Fagocitos
9.
NMR Biomed ; 35(5): e4650, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34841602

RESUMEN

Dissolution dynamic nuclear polarisation (dDNP) of 13 C-labelled pyruvate in magnetic resonance spectroscopy/imaging (MRS/MRSI) has the potential for monitoring tumour progression and treatment response. Pyruvate delivery, its metabolism to lactate and efflux were investigated in rat P22 sarcomas following simultaneous intravenous administration of hyperpolarised 13 C-labelled pyruvate (13 C1 -pyruvate) and urea (13 C-urea), a nonmetabolised marker. A general mathematical model of pyruvate-lactate exchange, incorporating an arterial input function (AIF), enabled the losses of pyruvate and lactate from tumour to be estimated, in addition to the clearance rate of pyruvate signal from blood into tumour, Kip , and the forward and reverse fractional rate constants for pyruvate-lactate signal exchange, kpl and klp . An analogous model was developed for urea, enabling estimation of urea tumour losses and the blood clearance parameter, Kiu . A spectral fitting procedure to blood time-course data proved superior to assuming a gamma-variate form for the AIFs. Mean arterial blood pressure marginally correlated with clearance rates. Kiu equalled Kip , indicating equivalent permeability of the tumour vasculature to urea and pyruvate. Fractional loss rate constants due to effluxes of pyruvate, lactate and urea from tumour tissue into blood (kpo , klo and kuo , respectively) indicated that T1 s and the average flip angle, θ, obtained from arterial blood were poor surrogates for these parameters in tumour tissue. A precursor-product model, using the tumour pyruvate signal time-course as the input for the corresponding lactate signal time-course, was modified to account for the observed delay between them. The corresponding fractional rate constant, kavail , most likely reflected heterogeneous tumour microcirculation. Loss parameters, estimated from this model with different TRs, provided a lower limit on the estimates of tumour T1 for lactate and urea. The results do not support use of hyperpolarised urea for providing information on the tumour microcirculation over and above what can be obtained from pyruvate alone. The results also highlight the need for rigorous processes controlling signal quantitation, if absolute estimations of biological parameters are required.


Asunto(s)
Neoplasias , Ácido Pirúvico , Animales , Isótopos de Carbono , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Ácido Pirúvico/metabolismo , Ratas , Solubilidad , Urea
10.
Pharmacol Res ; 176: 106084, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35051590

RESUMEN

Renal tubulointerstitial fibrosis (RIF), characterized by epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs), is the main cause of diabetic renal fibrosis. Oxidative stress plays a pivotal role in the development of diabetic RIF. Connexin32 (Cx32), prominently expressed in renal TECs, has emerged as an important player in the regulation of oxidative stress. However, the role of Cx32 in diabetic RIF has not been explored yet. Here, we showed that adenovirus-mediated Cx32 overexpression suppressed EMT to ameliorate RIF and renal function in STZ-induced diabetic mice, while knockout (KO) of Cx32 exacerbated RIF in diabetic mice. Moreover, overexpression of Cx32 inhibited EMT and the production of extra cellular matrix (ECM) in high glucose (HG) induced NRK-52E cells, whereas knockdown of Cx32 showed the opposite effects. Furthermore, we showed that NOX4, the main source of ROS in renal tubular, was down-regulated by Cx32. Mechanistically, Cx32 down-regulated the expression of PKC alpha in a carboxyl-terminal-dependent manner, thereby inhibiting the phosphorylation at Thr147 of p22phox triggered by PKC alpha, which ultimately repressed the formation of the p22phox-NOX4 complex to reduce the protein level of NOX4. Thus, we establish Cx32 as a novel target and confirm the protection mechanism in RIF.


Asunto(s)
Conexinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Transición Epitelial-Mesenquimal , Animales , Línea Celular , Conexinas/genética , Células HEK293 , Humanos , Túbulos Renales/metabolismo , Masculino , Ratones Endogámicos C57BL , NADPH Oxidasa 4/metabolismo , Ratas , Proteína beta1 de Unión Comunicante
11.
Proc Natl Acad Sci U S A ; 116(17): 8397-8402, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30962377

RESUMEN

Actin filaments (F-actin) are key components of sarcomeres, the basic contractile units of skeletal muscle myofibrils. A crucial step during myofibril differentiation is the sequential exchange of α-actin isoforms from smooth muscle (α-SMA) and cardiac (α-CAA) to skeletal muscle α-actin (α-SKA) that, in mice, occurs during early postnatal life. This "α-actin switch" requires the coordinated activity of actin regulators because it is vital that sarcomere structure and function are maintained during differentiation. The molecular machinery that controls the α-actin switch, however, remains enigmatic. Cyclase-associated proteins (CAP) are a family of actin regulators with largely unknown physiological functions. We here report a function for CAP2 in regulating the α-actin exchange during myofibril differentiation. This α-actin switch was delayed in systemic CAP2 mutant mice, and myofibrils remained in an undifferentiated stage at the onset of the often excessive voluntary movements in postnatal mice. The delay in the α-actin switch coincided with the onset of motor function deficits and histopathological changes including a high frequency of type IIB ring fibers. Our data suggest that subtle disturbances of postnatal F-actin remodeling are sufficient for predisposing muscle fibers to form ring fibers. Cofilin2, a putative CAP2 interaction partner, has been recently implicated in myofibril actin cytoskeleton differentiation, and the myopathies in cofilin2 and CAP2 mutant mice showed striking similarities. We therefore propose a model in which CAP2 and cofilin2 cooperate in actin regulation during myofibril differentiation.


Asunto(s)
Citoesqueleto de Actina/fisiología , Proteínas Portadoras , Diferenciación Celular , Músculo Esquelético , Miofibrillas/fisiología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163175

RESUMEN

Many phage genes lack sequence similarity to any other open reading frame (ORF) in current databases. These enigmatic ORFan genes can have a tremendous impact on phage propagation and host interactions but often remain experimentally unexplored. We previously revealed a novel interaction between phage P22 and its Salmonella Typhimurium host, instigated by the ORFan gene pid (for phage P22 encoded instigator of dgo expression) and resulting in derepression of the host dgoRKAT operon. The pid gene is highly expressed in phage carrier cells that harbor a polarly located P22 episome that segregates asymmetrically among daughter cells. Here, we discovered that the pid locus is fitted with a weak promoter, has an exceptionally long 5' untranslated region that is instructive for a secondary pid mRNA species, and has a 3' Rho-independent termination loop that is responsible for stability of the pid transcript.


Asunto(s)
Bacteriófago P22/genética , Regulación Viral de la Expresión Génica/genética , Bacteriófagos/genética , Expresión Génica/genética , Sistemas de Lectura Abierta/genética , Operón , Regiones Promotoras Genéticas/genética , Fagos de Salmonella/genética , Salmonella typhimurium/genética , Salmonella typhimurium/virología
13.
J Cell Mol Med ; 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34037306

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease which lacks effective medical treatment due to ill-defined molecular mechanisms underlying the pathology. Inflammation is a key factor that induces and aggravates OA. Therefore, the current study aims to explore roles of the dysregulated long non-coding RNAs in the pro-inflammatory cytokine IL-1ß-mediated catabolic effects in cartilage tissue and chondrocytes. We identified RP11-364P22.2 as dysregulated in OA patient-derived cartilage tissues and highly responsive to IL-1ß stimulus. RNA pull-down coupled with mass spectrometry demonstrated that RP11-364P22.2 physically binds to activating transcription factor 3 (ATF3) and thus increases the protein stability and facilitates its nuclear translocation. Loss- and gain-of-function assays indicated that the interaction between RP11-364P22.2 and ATF3 is indispensable for the detrimental effects of IL-1ß including growth inhibition, apoptosis induction as well as degradation of the key chondrocyte structural proteins of type II collage and Aggrecan and synthesis of the extracellular matrix-degrading enzyme MMP13 in chondrocytes. In vivo, depletion of the RP11-364P22.2 effector ATF3 drastically prevented OA development in the rats with surgical destabilization of the medial meniscus (DMM). These results highlight the important roles of lncRNAs in the pathogenesis of OA and indicate the RP11-364P22.2/ATF3 regulatory axis as a potential therapeutic target of inflammation-induced OA.

14.
Neurobiol Dis ; 156: 105396, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34015492

RESUMEN

Cerebrovascular remodeling is the most common cause of hypertension and stroke. Ubiquitin E3 ligase RING finger protein 34 (RNF34) is suggested to be associated with the development of multiple neurological diseases. However, the importance of RNF34 in cerebrovascular remodeling and hypertension is poorly understood. Herein, we used mice with a global RNF34 knockout as well as RNF34 floxed mice to delete RNF34 in endothelial cells and smooth muscle cells (SMCs). Our results showed that global RNF34 knockout mice substantially promoted angiotensin II (AngII)-induced middle cerebral artery (MCA) remodeling, hypertension, and neurological dysfunction. Endothelial cell RNF34 did not regulate the development of hypertension. Rather, SMC RNF34 expression is a critical regulator of hypertension and MCA remodeling. Loss of RNF34 enhanced AngII-induced mouse brain vascular SMCs (MBVSMCs) proliferation, migration and invasion. Furthermore, MCA and MBVSMCs from SMC RNF34-deficient mice showed increased superoxide anion and reactive oxygen species (ROS) generation as well as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, but exhibited no marked effect on mitochondria-derived ROS. Knockout of RNF34 promoted p22phox expression, leading to increased binding of p22phox/p47phox and p22phox/NOX2, and eventually NADPH oxidase complex formation. Immunoprecipitation assay identified that RNF34 interacted with p22phox. RNF34 deletion increased p22phox protein stability by inhibiting ubiquitin-mediated degradation. Blockade of NADPH oxidase activity or knockdown of p22phox significantly abolished the effects of RNF34 deletion on cerebrovascular remodeling and hypertension. Collectively, our study demonstrates that SMC RNF34 deficiency promotes cerebrovascular SMC hyperplasia and remodeling by increased NADPH-derived ROS generation via reducing p22phox ubiquitin-dependent degradation.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Circulación Cerebrovascular/fisiología , Hipertensión/metabolismo , NADP/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Remodelación Vascular/fisiología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Células HEK293 , Humanos , Hipertensión/patología , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Ratones Transgénicos , Estrés Oxidativo/fisiología
15.
Am J Hum Genet ; 103(5): 752-768, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388402

RESUMEN

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.


Asunto(s)
Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Megalencefalia/genética , Factores de Transcripción NFI/genética , Adolescente , Adulto , Animales , Corteza Cerebral/patología , Niño , Preescolar , Codón sin Sentido/genética , Estudios de Cohortes , Cuerpo Calloso/patología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
16.
Appl Environ Microbiol ; 87(21): e0112421, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34406832

RESUMEN

Tailed bacteriophages constitute the bulk of the intestinal viromes of vertebrate animals. However, the relationships between lytic and lysogenic lifestyles of phages in these ecosystems are not always clear and may vary between the species or even between the individuals. The human intestinal (fecal) viromes are dominated mostly by temperate phages, while in horse feces virulent phages are more prevalent. To our knowledge, all the previously reported isolates of horse fecal coliphages are virulent. Temperate coliphage Hf4s was isolated from horse feces, from the indigenous equine Escherichia coli 4s strain. It is a podovirus related to the Lederbergvirus genus (including the well-characterized Salmonella bacteriophage P22). Hf4s recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by the same bacteriophage and also abolishes the adsorption of some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. IMPORTANCE The relationships between virulent and temperate bacteriophages and their impact on high-density symbiotic microbial ecosystems of animals are not always clear and may vary between species or even between individuals. The horse intestinal virome is dominated by virulent phages, and Hf4s is the first temperate equine intestinal coliphage characterized. It recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. These findings raise questions on the significance of bacteriophage-bacteriophage interactions within the ecology of microbial viruses in mammal intestinal ecosystems.


Asunto(s)
Colifagos , Caballos/virología , Podoviridae , Animales , Colifagos/genética , Escherichia coli/virología , Genómica , Antígenos O , Podoviridae/genética , Sobreinfección
17.
Ann Hepatol ; 25: 100339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33675999

RESUMEN

INTRODUCTION AND OBJECTIVES: It is well-known that signaling mediated by the hepatocyte growth factor (HGF) and its receptor c-Met in the liver is involved in the control of cellular redox status and oxidative stress, particularly through its ability to induce hepatoprotective gene expression by activating survival pathways in hepatocytes. It has been reported that HGF can regulate the expression of some members of the NADPH oxidase family in liver cells, particularly the catalytic subunits and p22phox. In the present work we were focused to characterize the mechanism of regulation of p22phox by HGF and its receptor c-Met in primary mouse hepatocytes as a key determinant for cellular redox regulation. MATERIALS AND METHODS: Primary mouse hepatocytes were treated with HGF (50 ng/mL) at different times. cyba expression (gene encoding p22phox) or protein content were addressed by real time RT-PCR, Western blot or immunofluorescence. Protein interactions were explored by immunoprecipitation and FRET analysis. RESULTS: Our results provided mechanistic information supporting the transcriptional repression of cyba induced by HGF in a mechanism dependent of NF-κB activity. We identified a post-translational regulation mechanism directed by p22phox degradation by proteasome 26S, and a second mechanism mediated by p22phox sequestration by c-Met in plasma membrane. CONCLUSION: Our data clearly show that HGF/c-Met exerts regulation of the NADPH oxidase by a wide-range of molecular mechanisms. NADPH oxidase-derived reactive oxygen species regulated by HGF/c-Met represents one of the main mechanisms of signal transduction elicited by this growth factor.


Asunto(s)
Grupo Citocromo b/fisiología , Factor de Crecimiento de Hepatocito/fisiología , Hepatocitos/metabolismo , NADPH Oxidasas/fisiología , Proteínas Proto-Oncogénicas c-met/fisiología , Transducción de Señal/fisiología , Animales , Técnicas de Cultivo de Célula , Hepatocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Biosíntesis de Proteínas , Transcripción Genética
18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(3): 322-327, 2021 Mar 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-33927081

RESUMEN

Chronic myeloid leukemia with a significant increase of monocytes is rare and difficult to identify from chronic myelo-monocytic leukemia in clinic. A 31-year-old male patient with systemic pain was initially diagnosed as chronic myelo-monocytic leukemia, who was finally diagnosed as chronic myeloid leukemia by fusion gene and chromosome examination. In addition to the typical Ph chromosome, a rare chromosome translocation t(2; 7)(p13; p22) was observed. The detection of monocyte subsets by multi-parameter flow cytometry is a diagnostic marker to distinguish the above 2 diseases. The relationship between fusion genes and mononucleosis is not clear. Tyrosine kinase inhibitors or allogeneic hematopoietic stem cell transplantation can be used in the treatment for this disease.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Monocitos , Adulto , Humanos , Cariotipo , Cariotipificación , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Masculino , Translocación Genética
19.
J Clin Immunol ; 40(1): 191-202, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31813112

RESUMEN

PURPOSE: Chronic granulomatous disease (CGD) is an innate immune deficiency, primarily affecting the phagocytic compartment, and presenting with a diverse phenotypic spectrum ranging from severe childhood infections to monogenic inflammatory bowel disease. Dihydrorhodamine (DHR) flow cytometry is the standard diagnostic test for CGD, and correlates with NADPH oxidase activity. While there may be genotype correlation with the DHR flow pattern in some patients, in several others, there is no correlation. In such patients, assessment by flow cytometric evaluation of NADPH oxidase-specific (NOX) proteins provides a convenient and rapid means of genetic triage, though immunoblotting has long been used for this purpose. METHODS AND RESULTS: We describe the clinical utility of the NOX flow cytometry assay through assessment of X-linked and autosomal recessive CGD patients and their first-degree relatives. The assessment of specific NOX proteins was correlated with overall NADPH oxidase function (DHR flow), clinical phenotype and genotype. NOX-specific protein assessment is a valuable adjunct to DHR assessment and genotyping to classify and characterize CGD patients. CONCLUSIONS: The atypical clinical presentation of some CGD patients can make genotype-phenotype correlation with DHR flow data challenging. Genetic testing, while useful for confirmation of diagnosis, can take several weeks, and in some patients does not provide a conclusive answer. However, NADPH-oxidase-specific protein flow assessment offers a rapid alternative to identification of the underlying genetic defect in cellular subsets, and can be utilized as a reflex test to an abnormal DHR flow. Further, it can provide insight into correlation between oxidative burst relative to protein expression in granulocytes and monocytes.


Asunto(s)
Enfermedad Granulomatosa Crónica/genética , NADPH Oxidasas/genética , Adolescente , Niño , Preescolar , Femenino , Citometría de Flujo/métodos , Genotipo , Granulocitos/metabolismo , Humanos , Síndromes de Inmunodeficiencia/genética , Lactante , Masculino , Fenotipo , Estallido Respiratorio/genética , Triaje/métodos , Adulto Joven
20.
Proc Natl Acad Sci U S A ; 114(12): 3103-3108, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28270620

RESUMEN

Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo-EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structural features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.


Asunto(s)
Microscopía por Crioelectrón , Sustancias Macromoleculares/química , Modelos Moleculares , Conformación Molecular , Bacteriófago P22 , Sitios de Unión , Proteínas de la Cápside/química , Microscopía por Crioelectrón/métodos , Unión Proteica , Conformación Proteica , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA