Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Divers ; 28(4): 2135-2152, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38374474

RESUMEN

The poly (ADP-ribose) polymerase-1 (PARP-1) enzyme is an important target in the treatment of breast cancer. Currently, treatment options include the drugs Olaparib, Niraparib, Rucaparib, and Talazoparib; however, these drugs can cause severe side effects including hematological toxicity and cardiotoxicity. Although in silico models for the prediction of PARP-1 activity have been developed, the drawbacks of these models include low specificity, a narrow applicability domain, and a lack of interpretability. To address these issues, a comprehensive machine learning (ML)-based quantitative structure-activity relationship (QSAR) approach for the informed prediction of PARP-1 activity is presented. Classification models built using the Synthetic Minority Oversampling Technique (SMOTE) for data balancing gave robust and predictive models based on the K-nearest neighbor algorithm (accuracy 0.86, sensitivity 0.88, specificity 0.80). Regression models were built on structurally congeneric datasets, with the models for the phthalazinone class and fused cyclic compounds giving the best performance. In accordance with the Organization for Economic Cooperation and Development (OECD) guidelines, a mechanistic interpretation is proposed using the Shapley Additive Explanations (SHAP) to identify the important topological features to differentiate between PARP-1 actives and inactives. Moreover, an analysis of the PARP-1 dataset revealed the prevalence of activity cliffs, which possibly negatively impacts the model's predictive performance. Finally, a set of chemical transformation rules were extracted using the matched molecular pair analysis (MMPA) which provided mechanistic insights and can guide medicinal chemists in the design of novel PARP-1 inhibitors.


Asunto(s)
Aprendizaje Automático , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Relación Estructura-Actividad Cuantitativa , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Humanos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Modelos Moleculares , Ftalazinas/química , Ftalazinas/farmacología , Algoritmos
2.
Bioorg Chem ; 139: 106759, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37544273

RESUMEN

Poly ADP ribose polymerase-1 (PARP-1), one of the most important members of the PARP protein family, plays a crucial role in DNA damage repair, gene transcription, and apoptosis of cancer cells. In this work, benzofuran[3,2-d]pyrimidine-4(3H)-one was used as a framework to design and synthesize a series of novel PARP-1 inhibitors by introducing thiosemicarbazone or its derivatives into the scafford. Among all the target compounds, 19b and 19c were found to exhibit more potent inhibitory activity and higher selectivity against PARP-1 than Olaparib, especially the latter had an IC50 value of 0.026 µM against PARP-1 enzyme and a PARP-2/PARP-1 selectivity of 85.19-fold over Olapanib. Apart from strong cytotoxicity against the tested cancer cell lines, 19c was most sensitive to SK-OV-3 cells, with an IC50 value of 4.98 µM superior to Olaparib. Anti-cancer mechanism studies revealed that 19c could inhibit DNA single-strand breakage repair and aggravate DNA double-strand breakage by inhibiting PARP-1 activity, and promote the apoptosis of cancer cells through the mitochondrial apoptosis pathway.


Asunto(s)
Benzofuranos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Tiosemicarbazonas , Benzofuranos/farmacología , Línea Celular Tumoral , ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Pirimidinas/farmacología , Tiosemicarbazonas/farmacología
3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069121

RESUMEN

The spectrum of neurodegenerative diseases known today is quite extensive. The complexities of their research and treatment lie not only in their diversity. Even many years of struggle and narrowly focused research on common pathologies such as Alzheimer's, Parkinson's, and other brain diseases have not brought cures for these illnesses. What can be said about orphan diseases? In particular, Huntington's disease (HD), despite affecting a smaller part of the human population, still attracts many researchers. This disorder is known to result from a mutation in the HTT gene, but having this information still does not simplify the task of drug development and studying the mechanisms of disease progression. Nonetheless, the data accumulated over the years and their analysis provide a good basis for further research. Here, we review studies devoted to understanding the mechanisms of HD. We analyze genes and molecular pathways involved in HD pathogenesis to describe the action of repurposed drugs and try to find new therapeutic targets.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Reposicionamiento de Medicamentos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Desarrollo de Medicamentos , Proteína Huntingtina/genética , Mutación
4.
Bioorg Chem ; 129: 106108, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36063781

RESUMEN

Diabetic nephropathy is one of the most dreadful diabetic complications (DCs). The polyol pathway and unified mechanism are two important pathways implicated in the progression of DCs. In this regard, targeting the key enzymes i.e., aldose reductase (ALR2) and poly (ADP-ribose) polymerase-1 (PARP-1), of these pathways can be a relevant strategy. Thus, in this study, the pharmacophoric requirements necessary for the dual inhibition of these two enzymes i.e., ALR2 and PARP-1 were identified and consequently, some hydantoin based molecules were designed. The designed molecules were subjected to structure-based molecular modelling analysis including molecular docking analysis and molecular dynamic simulations. The promising molecules were duly synthesized and examined for their ALR2 and PARP-1 dual inhibitory activities and selectivity over aldehyde reductase (ALR1) using in vitro enzymatic assays. Based on the results of in silico analysis and in vitro assays, the best three molecules were evaluated in vivo for their nephroprotective effect and antioxidant potential in the high-fat diet-streptozotocin induced diabetic rat model. The results showed that the compounds FM6B, FM7B and FM9B were having low micromolar inhibitory potential against ALR2 (IC50; 1.02, 1.14 and 1.08 µM, respectively) and PARP-1 (IC50; 0.95, 0.81 and 1.42 µM, respectively) with selectivity over ALR1 (selectivity index; 43.63, 37.03 and 45.14, respectively).


Asunto(s)
Complicaciones de la Diabetes , Hidantoínas , Animales , Ratas , Aldehído Reductasa , Simulación del Acoplamiento Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Hidantoínas/farmacología , Hidantoínas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores Enzimáticos , Simulación de Dinámica Molecular , Complicaciones de la Diabetes/tratamiento farmacológico , Relación Estructura-Actividad
5.
J Enzyme Inhib Med Chem ; 37(1): 952-972, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35317687

RESUMEN

The poly (ADP-ribose) polymerase (PARP) inhibitors play a crucial role in cancer therapy. However, most approved PARP inhibitors cannot cross the blood-brain barrier, thus limiting their application in the central nervous system. Here, 55 benzodiazepines were designed and synthesised to screen brain penetrating PARP-1 inhibitors. All target compounds were evaluated for their PARP-1 inhibition activity, and compounds with better activity were selected for further assays in vitro. Among them, compounds H34, H42, H48, and H52 displayed acceptable inhibition effects on breast cancer cells. Also, computational prediction together with the permeability assays in vitro and in vivo proved that the benzodiazepine PARP-1 inhibitors we synthesised were brain permeable. Compound H52 exhibited a B/P ratio of 40 times higher than that of Rucaparib and would be selected to develop its potential use in neurodegenerative diseases. Our study provided potential lead compounds and design strategies for the development of brain penetrating PARP-1 inhibitors.HIGHLIGHTSStructural fusion was used to screen brain penetrating PARP-1 inhibitors.55 benzodiazepines were evaluated for their PARP-1 inhibition activity.Four compounds displayed acceptable inhibition effects on breast cancer cells.The benzodiazepine PARP-1 inhibitors were proved to be brain permeable.


Asunto(s)
Benzodiazepinas/farmacología , Diseño de Fármacos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Benzodiazepinas/síntesis química , Benzodiazepinas/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Relación Estructura-Actividad
6.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 91-98, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35130631

RESUMEN

Idarubicin (IDA), an anthracycline antineoplastic drug, is commonly used in the treatment of acute myeloid leukemia (AML) with reasonable response rates and clinical benefits. However, some patients still relapse, or do not respond, and suffer high fatality rates. Recent studies have shown that overexpression of PARP-1 may represent an important risk factor in AML patients. The aim of the present study was to determine the underlying molecular mechanisms by which the PARP-1 inhibitor Olaparib enhances the chemosensitivity of the leukemia cell line K562 and THP1 to IDA. Our data demonstrated that PARP-1 is upregulated in AML patients as well as in K562 and THP1 cells, and that the suppression of PARP-1 activity by Olaparib enhances the inhibitory effect of IDA. A mechanistic study revealed that Olaparib decreases the expressions of p-ATM, p-IκBα, XIAP and p65, and upregulates Bax, cleaved-Caspase-3 and γ-H2AX. Olaparib can enhance the induction of DNA damage by IDA, probably mediated by the inhibition of the ATM-related DNA damage response. Moreover, we also found that the nuclear translocation of p65 and the nuclear export of NEMO are inhibited when IDA and Olaparib are combined. Our results suggest that Olaparib attenuates the activity of the NF-κB pathway and decreases the DNA damage response induced by IDA. Therefore, we conclude that Olaparib is a potentially valuable chemosensitizer for leukemia patients.


Asunto(s)
Leucemia Mieloide Aguda , FN-kappa B , Línea Celular Tumoral , Daño del ADN , Humanos , Idarrubicina/farmacología , Idarrubicina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , FN-kappa B/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
7.
Molecules ; 27(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956876

RESUMEN

Herein, 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline was used as a bio-isosteric scaffold to the phthalazinone motif of the standard drug Olaparib to design and synthesize new derivatives of potential PARP-1 inhibitory activity using the 6-sulfonohydrazide analog 3 as the key intermediate. Although the new compounds represented the PARP-1 suppression impact of IC50 values in the nanomolar range, compounds 8a, 5 were the most promising suppressors, producing IC50 values of 2.31 and 3.05 nM compared to Olaparib with IC50 of 4.40 nM. Compounds 4, 10b, and 11b showed a mild decrease in the potency of the IC50 range of 6.35-8.73 nM. Furthermore, compounds 4, 5, 8a, 10b, and 11b were evaluated as in vitro antiproliferative agents against the mutant BRCA1 (MDA-MB-436, breast cancer) compared to Olaparib as a positive control. Compound 5 exhibited the most significant potency of IC50; 2.57 µM, whereas the IC50 value of Olaparib was 8.90 µM. In addition, the examined derivatives displayed a promising safety profile against the normal WI-38 cell line. Cell cycle, apoptosis, and autophagy analyses were carried out in the MDA-MB-436 cell line for compound 5, which exhibited cell growth arrest at the G2/M phase, in addition to induction of programmed apoptosis and an increase in the autophagic process. Molecular docking of the compounds 4, 5, 8a, 10b, and 11b into the active site of PARP-1 was carried out to determine their modes of interaction. In addition, an in silico ADMET study was performed. The results evidenced that compound 5 could serve as a new framework for discovering new potent anticancer agents targeting the PARP-1 enzyme.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Quinoxalinas/química , Relación Estructura-Actividad
8.
Transpl Int ; 34(3): 561-571, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33368686

RESUMEN

Acute allografts rejection is the most important factor causing allograft disability for many patients undergoing organ transplantation. PJ34, which is a specific inhibitor of poly(ADP-ribose) polymerase 1, is involved in immune regulation, may be effective in preventing acute cardiac rejection. We performed the models of abdominal heterotopic heart transplantation. PJ34 was injected intraperitoneally daily (20 mg/kg/day) starting the day after surgery. The severity of rejection was determined by histology. The mRNA expression levels of cytokines and transcription factors in the grafts were measured by quantitative polymerase chain reaction (qPCR). The proportion and number of T-cell subpopulations in the spleens were analyzed by flow cytometry. In vitro, the effect of PJ34 on allogeneic responses was investigated. We found treatment with PJ34 prolonged allograft survival compared with normal saline treatment. Compared with the control group, PJ34 treatment reduced the proportion of CD4+ IFN-γ+ and CD4+ IL-17A+ cells and increased the percent of CD4+ IL-4+ and CD4+ Foxp3+ cells in the spleens. In vitro, PJ34 treatment significantly inhibited the mRNA levels of IFN-γ and IL-17A and promoted the mRNA levels of TGF-ß and FOXP-3 in activated CD4+ T cells. Modulating the CD4+ T lymphocyte response with PJ34 could attenuate acute allografts rejection after murine heart transplantation. These findings indicate that PARP1 may be a promising therapeutic target to attenuate acute cardiac allograft rejection.


Asunto(s)
Rechazo de Injerto , Trasplante de Corazón , Aloinjertos , Animales , Rechazo de Injerto/prevención & control , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenantrenos , Poli(ADP-Ribosa) Polimerasa-1 , Linfocitos T Reguladores
9.
Bioorg Chem ; 111: 104840, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33780687

RESUMEN

To further explore the research of novel PARP-1 inhibitors, we designed and synthesized a series of novel amide PARP-1 inhibitors based on our previous research. Most compounds displayed certain antitumor activities against four tumor cell lines (A549, HepG2, HCT-116, and MCF-7). Specifically, the candidate compound R8e possessed strong anti-proliferative potency toward A549 cells with the IC50 value of 2.01 µM. Compound R8e had low toxicity to lung cancer cell line. And the in vitro enzyme inhibitory activity of compound R8e was better than rucaparib. Molecular docking studies provided a rational binding model of compound R8e in complex with rucaparib. The following cell cycle and apoptosis assays revealed that compound R8e could arrest cell cycle in the S phase and induce cell apoptosis. Western blot analysis further showed that compound R8e could effectively inhibit the PAR's biosynthesis and was more effective than rucaparib. Overall, based on the biological activity evaluation, compound R8e could be a potential lead compound for further developing novel amide PARP-1 inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Azepinas/farmacología , Ciclohexanonas/farmacología , Diseño de Fármacos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Compuestos de Espiro/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Azepinas/síntesis química , Azepinas/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclohexanonas/síntesis química , Ciclohexanonas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
10.
Chem Pharm Bull (Tokyo) ; 69(7): 620-629, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193711

RESUMEN

Poly(ADP-ribose)polymerase (PARP) is a significant therapeutic target for the treatment of numerous human diseases. Olaparib has been approved as a PARP inhibitor. In this paper, a series of new compounds were designed and synthesized with Olaparib as the lead compound. In order to evaluate the inhibitory activities against PARP1 of the synthesized compounds, in vitro PARP1 inhibition assay and intracellular PARylation assay were conducted. The results showed that the inhibitory activities of the derivatives were related to the type of substituent and the length of alkyl chain connecting the aromatic ring. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT)-based assay also proved that these compounds demonstrating strong inhibition to PARP1 also have high anti-proliferative activities against BRCA2-deficient cell line (Capan-1). Analysis of the entire results suggest that compound 23 with desirable inhibitory efficiency may hold promise for further in vivo exploration of PARP inhibition.


Asunto(s)
Diseño de Fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Ftalazinas/síntesis química , Ftalazinas/química , Ftalazinas/farmacología , Piperazinas/síntesis química , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Relación Estructura-Actividad
11.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805293

RESUMEN

Genome-wide studies focusing on elucidating the effects on cancer progression have enabled the consequent identification of a distinct subpopulation of pancreatic cancer cells with unstable genomic characteristics. Based on this background, deleterious changes by poly (adenosine diphosphate (ADP)-ribose) polymerase-1 (PARP)-1 have been concentrated in oncology. One of the critical functions of PARP-1 is the response to DNA damage, which plays a pivotal role in DNA repair in cancers. PARP-1 also has widespread functions that are essential for the survival and growth of cancer cells. It regulates oxidative stress in mitochondria through the regulation of superoxide and oxidation. PARP-1 is in charge of regulating mitosis, which is a crucial role in tumorigenesis and remodels histones and chromatin enzymes related to transcriptional regulation, causing alterations in epigenetic markers and chromatin structure. Given the significance of these processes, it can be understood that these processes in cancer cells are at the frontline of the pathogenetic changes required for cancer cell survival, and these contributions can result in malignant transformation. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 in pancreatic cancer related to the aforementioned roles, along with the summary of recent approaches with PARP-1 inhibition in clinical studies targeting pancreatic cancer. This understanding could help to embrace the importance of targeting PARP-1 in the treatment of pancreatic cancer, which may present the potential to find out a variety of research topics that can be both challenged clinically and non-clinically.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Daño del ADN , Reparación del ADN , Humanos , Estrés Oxidativo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Transcripción Genética
12.
Bioorg Chem ; 96: 103575, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31962202

RESUMEN

Inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) have shown to be promising in clinical trials against cancer, and many researchers are interested in the development of new PARP-1 inhibitors. Herein, we designed and synthesized 44 novel erythrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors. MTT assay results indicated that compound 10b had the most potent anti-proliferative activity against A549 cells among five cancer cells. The enzyme inhibitory activity in vitro of compound 10b was also significantly better than rucaparib. Furthermore, the selectivity index of compound 10b was higher than rucaparib for lung cancer cells. Flow cytometry analysis showed that compound 10b induced apoptosis of A549 cells by the mitochondrial pathway. Western blot analysis indicated that compound 10b was able to inhibit the biosynthesis of PAR effectively, and it was more potent than rucaparib. Also, compound 10b was able to up-regulate the ratio of bax/bcl-2, activate caspase-3, and ultimately induced apoptosis of A549 cells. The combined results revealed that the discovery of novel non-amide based PARP-1 inhibitors have great research significance and provide a better choice for the future development of drugs.


Asunto(s)
Diseño de Fármacos , Erythrina/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Triazoles/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Mitocondrias/efectos de los fármacos , Simulación del Acoplamiento Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química
13.
Bioorg Chem ; 94: 103385, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669094

RESUMEN

A series of homoerythrina alkaloid derivatives containing a 1,2,3-triazole moiety as PARP-1 inhibitors were designed and synthesized. And their anti-proliferative activity was further evaluated. Compound 10n had excellent activity to inhibit proliferation of A549 cells (IC50 = 1.89 µM), which was higher than harringtonine (IC50 = 10.55 µM), pemetrexed (IC50 = 3.39 µM), and rucaparib (IC50 = 4.91 µM). Furthermore, the selectivity index of compound 10n was higher than rucaparib and pemetrexed for lung cancer cells. Flow cytometry analysis showed that compound 10n significantly arrested the cell cycle in the S phase, then induced apoptosis of A549 cells (apoptosis rate is 46%), which effectively inhibited cell proliferation. Simultaneously, western blot analysis revealed that compound 10n could prevent the biosynthesis of PAR. Further analysis results revealed that compound 10n could inhibit the expression of cyclin A, down-regulate the expression of bcl-2/bax, activate caspase-3, and ultimately induce apoptosis of A549 cells. All the results indicated that compound 10n had potential research value as a novel PARP-1 inhibitor in antitumor, and it provided a new reference for further development of PARP-1 inhibitors.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Triazoles/farmacología , Alcaloides/síntesis química , Alcaloides/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Relación Estructura-Actividad , Triazoles/química , Células Tumorales Cultivadas
14.
Molecules ; 25(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167505

RESUMEN

Internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3) is the most common mutation in patients with acute myeloid leukemia (AML). FLT3-ITD+ induces constitutive activation of FLT3, causing an abnormally rapid proliferation of cancer cells. In this study, we identified novel FLT3 inhibitors and investigated 5-(4-fluorophenyl)-N-phenyloxazol-2-amine (compound 7; 7c) as candidates for the treatment of AML. The results showed that 7c inhibited the activities of FLT3 and mutated FLT3 in a cell-free kinase assay and Molm-13 and MV4-11 cells, as well as the proliferation of FLT3-ITD+ AML cells, increasing apoptosis. The anti-leukemic activity of 7c was confirmed by in vivo tumor growth inhibition in MV4-11 xenograft mice. Besides, 7c suppressed the expression of DNA damage repair genes. Combination treatment with 7c and olaparib (a poly (ADP-ribose) polymerase [PARP] inhibitor) synergistically inhibited cell proliferation in Molm-13 and MV4-11 cells. Our findings demonstrated that 7c is a therapeutic candidate targeting FLT3 for AML treatment and suggested that combination treatment with 7c and a PARP inhibitor may be an effective therapy regimen for FLT3-mutated AML.


Asunto(s)
Aminas/síntesis química , Antineoplásicos/uso terapéutico , Oxazoles/síntesis química , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Daño del ADN , Reparación del ADN , Células HL-60 , Humanos , Concentración 50 Inhibidora , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Mutación/efectos de los fármacos , Trasplante de Neoplasias , Poli(ADP-Ribosa) Polimerasa-1/química , Inhibidores de Proteínas Quinasas/farmacología
15.
J Cell Biochem ; 120(8): 13037-13045, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30873673

RESUMEN

Although some progresses have been made in breast cancer therapy, effective treatment for BRCA1-deficient breast cancer remains to be a great challenge. It has been demonstrated that the PI3K pathway is inappropriately activated in BRCA1-deficient breast cancers which can be downregulated by microRNA 451 (miR-451). In addition, although PARP1 inhibitors showed relatively positive results in both preclinical and clinical studies, additional efforts to decrease drug resistance as well as reduce systematic toxicity need to be addressed. To this end, by encapsulating the miR-451 mimic and PARP1 inhibitor in the same cationic liposome, we examined the potential of enhancing the response of PARP1 inhibition on BRCA1-deficient breast cancer by regulating the PI3K pathway. Our results revealed that in BRCA1-deficient human breast cancer cell line, PARP1 inhibition resulted in DNA damage with viability decrease, G2/M arrest as well as apoptosis. In contrast, single PI3K inhibition induced G1 arrest along with retarded cell proliferation. However, it was noted that combination of PARP inhibitor and PI3K regulator could exert synergetic function to evidently decrease cell proliferation compared with PARP inhibition alone, which was also confirmed by in vivo antitumor assay using xenograft tumor models. Collectively, our results offer an alternative but superior strategy for the therapy of BRCA1-deficient human breast cancers which may benefit the clinical applications.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteína BRCA1/deficiencia , Neoplasias de la Mama/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína BRCA1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Cationes/química , Línea Celular Tumoral , Femenino , Humanos , Liposomas/administración & dosificación , Liposomas/química , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Ftalazinas/administración & dosificación , Piperazinas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética
16.
Int J Cancer ; 145(3): 714-727, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30675909

RESUMEN

PARP1 inhibitors (PARPis) are used clinically during cancer therapy and are thought to exert their cytotoxicity through PARP1 polymerase inhibition and PARP1-DNA trapping. Here, we showed no significant correlation between PARP1-DNA trapping and cytotoxicity induced by PARPis. We complemented PARP1-knockout sublines with wild-type PARP1 and 11 mutants with different point mutations that affect the polymerase activity. When examining the PARPi talazoparib, the induced cytotoxicity was highly significantly correlated with cellular PARP1 polymerase activity, but not with its PARP1-DNA trapping or polymerase inhibition. Similarly, talazoparib's PARP1-DNA trapping revealed significant correlation with the polymerase activity rather than its inhibition. Differently, however, when evaluating purified wild-type and mutated PARP1, we identified an almost linear relationship between PARPis' inhibiting PARP1 dissociation from DNA and their cytotoxicity in 17 cancer cell lines. In contrast, no significant correlation existed between PARP1 polymerase inhibition in the histone-based systems and the cytotoxicity. After careful comparisons on different methods and detection targets, we conclude that the PARPi-mediated increase in PARP1-DNA binding by inhibiting autoPARylation of PARP1 on DNA rather than in PARP1-DNA trapping is correlated with PARPi's cytotoxicity. Accordingly, we established a new PARPi screening model that more closely predicts cytotoxicity.


Asunto(s)
ADN de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Línea Celular Tumoral , ADN de Neoplasias/genética , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Silenciamiento del Gen , Humanos , NAD/metabolismo , Neoplasias/genética , Ftalazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética
17.
Bioorg Med Chem Lett ; 29(15): 1904-1908, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31153806

RESUMEN

Poly (ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear protein that plays important roles in a variety of nuclear processes, and it has been proved a prominent target in oncology for its key function in DNA damage repair. In this study, we discovered a series of naphthacemycins as a new class of PARP1 inhibitors from a microbial metabolites library via high-throughput screening. Compound I, one of this series of compounds, could reduce cellular poly (ADP-ribose) level, trap PARP1 on the damaged DNA and elevate the level of γ-H2AX, and showed the selective cytotoxicity against BRCA1-deficient cell line. Our study provided a potential scaffold for the development of new PARP1 inhibitors in cancer therapy.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Simulación del Acoplamiento Molecular/métodos , Naftacenos/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Humanos , Naftacenos/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
18.
Bioorg Chem ; 83: 242-249, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30390553

RESUMEN

Poly(ADP-ribose)polymerase-1 inhibitor (PARPi) AZD2461 was designed to be a weak P-glycoprotein (P-gp) analogue of FDA approved olaparib. With this chemical property in mind, we utilized the AZD2461 ligand architecture to develop a CNS penetrant and PARP-1 selective imaging probe, in order to investigate PARP-1 mediated neuroinflammation and neurodegenerative diseases, such as Alzheimer's and Parkinson's. Our work led to the identification of several high-affinity PARPi, including AZD2461 congener 9e (PARP-1 IC50 = 3.9 ±â€¯1.2 nM), which was further evaluated as a potential 18F-PET brain imaging probe. However, despite the similar molecular scaffolds of 9e and AZD2461, our studies revealed non-appreciable brain-uptake of [18F]9e in non-human primates, suggesting AZD2461 to be non-CNS penetrant.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Ftalazinas/farmacología , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/agonistas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Radioisótopos de Flúor/química , Humanos , Macaca mulatta , Masculino , Ratones Endogámicos BALB C , Ftalazinas/síntesis química , Piperidinas/síntesis química
19.
J Enzyme Inhib Med Chem ; 34(1): 150-162, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30427217

RESUMEN

A series of new Olaparib derivatives was designed and synthesized, and their inhibitory activities against poly (ADP-ribose) polymerases-1 (PARP-1) enzyme and cancer cell line MDA-MB-436 in vitro were evaluated. The results showed that compound 5l exhibited the most potent inhibitory effects on PARP-1 enzyme (16.10 ± 1.25 nM) and MDA-MB-436 cancer cell (11.62 ± 2.15 µM), which was close to that of Olaparib. As a PARP-1 inhibitor had been reported to be viable to neuroprotection, in order to search for new multitarget-directed ligands (MTDLs) for the treatment of Alzheimer's disease (AD), the inhibitory activities of the synthesized compounds against the enzymes AChE (from electric eel) and BChE (from equine serum) were also tested. Compound 5l displayed moderate BChE inhibitory activity (9.16 ± 0.91 µM) which was stronger than neostigmine (12.01 ± 0.45 µM) and exhibited selectivity for BChE over AChE to some degree. Molecular docking studies indicated that 5l could bind simultaneously to the catalytic active of PARP-1, but it could not interact well with huBChE. For pursuit of PARP-1 and BChE dual-targeted inhibitors against AD, small and flexible non-polar groups introduced to the compound seemed to be conducive to improving its inhibitory potency on huBChE, while keeping phthalazine-1-one moiety unchanged which was mainly responsible for PARP-1 inhibitory activity. Our research gave a clue to search for new agents based on AChE and PARP-1 dual-inhibited activities to treat Alzheimer's disease.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antineoplásicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Ftalazinas/química , Ftalazinas/farmacología , Piperazinas/química , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Butirilcolinesterasa/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Electrophorus , Caballos , Humanos , Estructura Molecular , Ftalazinas/síntesis química , Piperazinas/síntesis química , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Relación Estructura-Actividad
20.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554189

RESUMEN

Class III receptor tyrosine kinase (RTK) inhibitors targeting mainly FLT3 or c-KIT have not been well studied in lung cancer. To identify a small molecule potentially targeting class III RTK, we synthesized novel small molecule compounds and identified 5-(4-bromophenyl)-N-(naphthalen-1-yl) oxazol-2-amine (AIU2001) as a novel class III RKT inhibitor. In an in vitro kinase profiling assay, AIU2001 inhibited the activities of FLT3, mutated FLT3, FLT4, and c-KIT of class III RTK, and the proliferation of NSCLC cells in vitro and in vivo. AIU2001 induced DNA damage, reactive oxygen species (ROS) generation, and cell cycle arrest in the G2/M phase. Furthermore, AIU2001 suppressed the DNA damage repair genes, resulting in the 'BRCAness'/'DNA-PKness' phenotype. The mRNA expression level of STAT5 was downregulated by AIU2001 treatment and knockdown of STAT5 inhibited the DNA repair genes. Our results show that compared to either drug alone, the combination of AIU2001 with a poly (ADP-ribose) polymerase (PARP) inhibitor olaparib or irradiation showed synergistic efficacy in H1299 and A549 cells. Hence, our findings demonstrate that AIU2001 is a candidate therapeutic agent for NSCLC and combination therapies with AIU2001 and a PARP inhibitor or radiotherapy may be used to increase the therapeutic efficacy of AIU2001 due to inhibition of DNA damage repair.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN , Reparación del ADN/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares , Ratones , Estructura Molecular , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA