Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Cell Mol Med ; 28(11): e18392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864705

RESUMEN

Deciphering the lncRNA-associated competitive endogenous RNA (ceRNA) network is essential in decoding glioblastoma multiforme (GBM) pathogenesis by regulating miRNA availability and controlling mRNA stability. This study aimed to explore novel biomarkers for GBM by constructing a lncRNA-miRNA-mRNA network. A ceRNA network in GBM was constructed using lncRNA, mRNA and miRNA expression profiles from the TCGA and GEO datasets. Seed nodes were identified by protein-protein interaction (PPI) network analysis of deregulated-mRNAs (DEmRNAs) in the ceRNA network. A lncRNA-miRNA-seed network was constructed by mapping the seed nodes into the preliminary ceRNA network. The impact of the seed nodes on the overall survival (OS) of patients was assessed by the GSCA database. Functional enrichment analysis of the deregulated-lncRNAs (DElncRNA) in the ceRNA network and genes interacting with OS-related genes in the PPI network were performed. Finally, the positive correlation between seed nodes and their associated lncRNAs and the expression level of these molecules in GBM tissue compared with normal samples was validated using the GEPIA database. Our analyzes revealed that three novel regulatory axes AL161785.1/miR-139-5p/MS4A6A, LINC02611/miR-139-5p/MS4A6A and PCED1B-AS1/miR-433-3p/MS4A6A may play essential roles in GBM pathogenesis. MS4A6A is upregulated in GBM and closely associated with shorter survival time of patients. We also identified that MS4A6A expression positively correlates with genes related to tumour-associated macrophages, which induce macrophage infiltration and immune suppression. The functional enrichment analysis demonstrated that DElncRNAs are mainly involved in neuroactive ligand-receptor interaction, calcium/MAPK signalling pathway, ribosome, GABAergic/Serotonergic/Glutamatergic synapse and immune system process. In addition, genes related to MS4A6A contribute to immune and inflammatory-related biological processes. Our findings provide novel insights to understand the ceRNA regulation in GBM and identify novel prognostic biomarkers or therapeutic targets.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma , MicroARNs , ARN Largo no Codificante , ARN Mensajero , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/mortalidad , Glioblastoma/metabolismo , ARN Largo no Codificante/genética , Pronóstico , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Mapas de Interacción de Proteínas/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/metabolismo , Perfilación de la Expresión Génica , Biología Computacional/métodos , Bases de Datos Genéticas , ARN Endógeno Competitivo
2.
BMC Ophthalmol ; 22(1): 450, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418980

RESUMEN

BACKGROUND: This study was to assess the diagnostic value of PCED1B-AS1 for proliferative diabetic retinopathy (PDR) and investigate the involvement of PCED1B-AS1 in PDR. METHODS: The vitreous and blood specimens from 37 subjects with PDR and 21 non-diabetics were examined by reverse transcription quantitative PCR to determine the PCED1B-AS1 level. The two groups were age- and gender-matched. Receiver operating characteristic (ROC) curves were plotted to visually illustrate the diagnostic ability of PCED1B-AS1. Human retinal Müller glial cells were studied by ELISA. Proliferation and migration of human retinal microvascular endothelial cells (HRMECs) were assessed in vitro. RESULTS: Significant increases of PCED1B-AS1 levels were observed in the vitreous samples and CD34 + VEGFR-2 + cells from blood samples of diabetic subjects with PDR, compared with those of non-diabetics. The ROC curve based on the vitreous PCED1B-AS1 levels revealed an AUC of 0.812, while the ROC curve based on the PCED1B-AS1 levels in CD34 + VEGFR-2 + cells from blood samples revealed an AUC of 0.870. In Müller cell cultures, PCED1B-AS1 siRNA significantly attenuated VEGF and MCP-1 upregulation which were induced by CoCl2 and TNF-α. Additionally, PCED1B-AS1 siRNA attenuated VEGF-induced proliferation and migration in HRMECs. CONCLUSION: This study revealed the potential of PCED1B-AS1 as a diagnostic biomarker for PDR. In vitro data point to the anti-angiogenic and anti-proliferation effects of PCED1B-AS1.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Retinopatía Diabética/diagnóstico , Regulación hacia Arriba , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cuerpo Vítreo/metabolismo , Células Endoteliales/metabolismo , ARN Interferente Pequeño
3.
J Cell Biochem ; 121(2): 1823-1833, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31680313

RESUMEN

Glioma with poor prognosis is accepted as a lethal, malignant intracranial tumor among central nervous system diseases. It has been frequently exhibited that long noncoding RNAs (lncRNAs) exert indispensable functions in glioma through regulating gene expression through various molecular mechanisms. To unveil a novel lncRNA functioning in glioma, we browsed the cancer genome atlas dataset and chose the lncRNA PC-esterase domain containing 1B antisense RNA 1 (PCED1B-AS1) for further investigations. Loss-of-function experiments depicted that the proliferation ability was restrained and apoptosis ability was induced in glioma cells by PCED1B-AS1 silencing and this phenomenon was also observed when PCED1B was knocked down. In view of the position of PCED1B-AS1 in the cytoplasm, we produced the Venn diagram and discovered one shared microRNA of PCED1B-AS1 and PCED1B. The competing endogenous RNA network formed by PCED1B-AS1, miR-194-5p, and PCED1B was attested by mechanism assays. Rescue experiments reconfirmed that miR-194-5p suppression or PCED1B overexpression neutralized the obstructive impacts of PCED1B-AS1 silence on proliferation and the promoting effects of PCED1B-AS1 silence on apoptosis. The modulation mechanism of the PCED1B-AS1/miR-194-5p/PCED1B axis in glioma was investigated and affirmed, which supports researchers with a new insight into the therapy of patients with glioma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Glioma/genética , Glioma/metabolismo , Humanos , Células Tumorales Cultivadas
4.
Biol Direct ; 19(1): 34, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698487

RESUMEN

BACKGROUND: LncRNA PCED1B-AS1 is abnormally expressed in multiple cancers and has been confirmed as an oncogene. Our study aimed to investigate the regulatory mechanism of lncRNA PCED1B-AS1 in gastric cancer. METHODS: TCGA database was used to analyze the abnormal expression of lncRNA PCED1B-AS1 in gastric cancer. By database prediction and mass spectrometric analysis, miR-3681-3p and MAP2K7 are potential downstream target molecules of lncRNA PCED1B-AS1 and verified by dual-luciferase report assay. RT-qPCR analysis and western blot were performed to detect the expressions of PCED1B-AS1 and MAP2K7 in gastric cancer cell lines and tissues. CCK-8 kit was applied to measure the cell viability. Wound healing and Transwell experiment were used to detect the migration and invasion. Western blot and immunohistochemical staining were performed to detect the expressions of EMT-related proteins in tissues. The changes of tumor proliferation were detected by xenograft experiment in nude mice. RESULTS: PCED1B-AS1 expression was higher but miR-3681-3 expression was lower in gastric cancer cell lines or tissues, compared to normal group. Function analysis verified PCED1B-AS1 promoted cell proliferation and inhibited cell apoptosis in gastric cancer cells in vitro and in vivo. LncRNA PCED1B-AS1 could bind directly to miR-3681-3p, and MAP2K7 was found to be a downstream target of miR-3681-3p. MiR-3681-3p mimics or si-MAP2K7 could partly reverse the effect of PCED1B-AS1 on gastric cancer cells. CONCLUSION: PCED1B-AS1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-3681-3p to upregulate MAP2K7 expression in gastric cancer, which indicated PCED1B-AS1/miR-3681-3p/MAP2K7 axis may serve as a potential therapeutic target for gastric cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Quinasas Quinasa Quinasa PAM , Ratones Desnudos , MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Animales , Ratones , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Movimiento Celular , Metástasis de la Neoplasia
5.
Curr Med Sci ; 44(3): 503-511, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748366

RESUMEN

OBJECTIVE: This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1 (PCED1B-AS1) in the development of hepatocellular carcinoma (HCC). METHODS: A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients. The interactions of PCED1B-AS1 and microRNA-34a (miR-34a) were detected by dual luciferase activity assay and RNA pull-down assay. The RNA expression levels of PCED1B-AS1, miR-34a and CD44 were detected by RT-qPCR, and the protein expression level of CD44 was determined by Western blotting. The cell proliferation was detected by cell proliferation assay, and the cell invasion and migration by transwell invasion assay. The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study. RESULTS: PCED1B-AS1 was highly expressed in HCC tissues, which was associated with poor survival of HCC patients. Furthermore, PCED1B-AS1 interacted with miR-34a in HCC cells, but they did not regulate the expression of each other. Additionally, PCED1B-AS1 increased the expression level of CD44, which was targeted by miR-34a. The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro, while CD44 exhibited the opposite effects. Furthermore, PCED1B-AS1 suppressed the role of miR-34a. Moreover, the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo. CONCLUSION: PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Receptores de Hialuranos , Neoplasias Hepáticas , MicroARNs , Invasividad Neoplásica , ARN Largo no Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Proliferación Celular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Ratones , Invasividad Neoplásica/genética , Masculino , Línea Celular Tumoral , Femenino , Movimiento Celular/genética , Persona de Mediana Edad , Ratones Desnudos , ARN sin Sentido/genética
6.
J Orthop Surg Res ; 17(1): 464, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274134

RESUMEN

BACKGROUND: LncRNA PCED1B-AS1 (PCED1B-AS1) promotes glioma. This study aimed to investigate its role in osteosarcoma (OS). METHODS: The study included 60 OS patients. Accumulation of miR-10a and PCED1B-AS1 in tissues from OS patients and cell lines was determined by RT-qPCR. Cell transfections were performed for interaction analysis. Participation of PCED1B-AS1 siRNA silencing and miR-10a overexpression in proliferation, invasion, and migration of U2OS and MG-63 cells was analyzed by cell proliferation assay and Transwell assay. RESULTS: PCED1B-AS1 level was increased in OS and positively correlated with miR-10a level. In OS cells, PCED1B-AS1 siRNA silencing downregulated miR-10a. Methylation-specific PCR analysis showed that PCED1B-AS1 siRNA silencing decreased the methylation of miR-10a gene promoter. Moreover, PCED1B-AS1 siRNA silencing suppressed OS cell proliferation, invasion, and migration. In addition, miR-10a overexpression attenuated the effects of PCED1B-AS1 siRNA silencing. CONCLUSION: PCED1B-AS1 knockdown may inhibit OS cell proliferation and movement by regulating miR-10 gene methylation.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , ARN Largo no Codificante , Humanos , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Metilación , MicroARNs/metabolismo , Osteosarcoma/metabolismo , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño
7.
Eur J Ophthalmol ; 32(5): 2676-2682, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34889141

RESUMEN

PURPOSE: To determine if sex is associated with corneal epithelial wound healing time in patients with persistent corneal epithelial defects (PCEDs). METHODS: Retrospective case series on patients with PCED from November 2014 to January 2019. Records of 127 patients with diagnosis of PCED were reviewed. Patients with an epithelial defect that lasted more than two weeks in the absence of an active corneal infection were included. Main outcome was corneal epithelial wound healing time. RESULTS: 55 patients (29 males) with a mean age of 65.3 ± 16.5 years were included. No difference was found between female and male patients in terms of risk factors, age, treatment strategies or intervals between visits (median of 15 days in females and 12 days in males; p = 0.24). Median duration of the PCED was 51 days (IQR 32-130), with a median number of 5 clinical visits (IQR 4-8). Female patients had significantly longer healing times (p = 0.004) and a corresponding increase in the number of clinical visits (median of 7 visits vs. 5 clinical visits in males, p = 0.012). CONCLUSION: Results from this study suggest female patients with PCED might have a longer corneal epithelial wound healing duration and may therefore require earlier intervention.


Asunto(s)
Lesiones de la Cornea , Epitelio Corneal , Cicatrización de Heridas , Anciano , Anciano de 80 o más Años , Lesiones de la Cornea/terapia , Epitelio Corneal/lesiones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Distribución por Sexo , Factores de Tiempo
8.
Bioengineered ; 13(3): 5407-5420, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35176937

RESUMEN

Long non-coding RNA (lncRNA) PCED1B-AS1 was shown to play essential roles in human cancers, while its function in colorectal adenocarcinoma remains unclear. This study was carried out to investigate the function of PCED1B-AS1 in regulating the microRNA(miR)-633/HOXA9 axis in colorectal adenocarcinoma. The expression of PCED1B-AS1, miR-633 and HOXA9 was measured by quantitative real-time PCR (qRT-PCR) or Western blot analysis. Cell behaviors of colorectal adenocarcinoma cell lines were assessed by CCK-8, EdU, Transwell and flow cytometry assays. The interaction among PCED1B-AS1, miR-633 and HOXA9 was determined by luciferase reporter and RIP assays. Rescue experiments were performed to determine the regulatory axis in colorectal adenocarcinoma. Moreover, an animal model was established to verify the role of PCED1B-AS1. We found that PCED1B-AS1 was upregulated and miR-633 was downregulated in colorectal adenocarcinoma tissues and corresponding cell lines. Knockdown of PCED1B-AS1 inhibited cell proliferation and promoted apoptosis, while miR-633 inhibitor elevated proliferation and reduced apoptosis of cancer cell lines. In addition, overexpression of HOXA9 obviously attenuated the protective role of knockdown of PCED1B-AS1 or miR-633 mimics in colorectal adenocarcinoma progression. PCED1B-AS1 could negatively regulate the expression of HOXA9 by sponging miR-633. The in vivo experiments confirmed the role of PCED1B-AS1 and miR-633 in colorectal adenocarcinoma, as well as the regulatory relationship of this axis. Our results demonstrated that knockdown of PCED1B-AS1 inhibited the progression of colorectal adenocarcinoma by regulating the miR-633/HOXA9 axis.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Adenocarcinoma/genética , Animales , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
Onco Targets Ther ; 14: 393-402, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33469315

RESUMEN

BACKGROUND: Long non-coding RNA (lncRNA) has been recognized as the new regulator and biomarker for cancers. However, in clear cell renal cell carcinoma (ccRCC), the functions of lncRNAs are not well characterized. This research aimed to probe the function of lncRNA PCED1B-AS1 in the progression of ccRCC. MATERIALS AND METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression levels of PCED1B-AS1, microRNA-484 (miR-484), and zinc finger E-box binding homeobox 1 (ZEB1) in 40 pairs of human ccRCC tissues and corresponding adjacent kidney tissue samples. Chi-square test was employed to evaluate the association between PCED1B-AS1 expression level and clinicopathological characteristics. The effects of PCED1B-AS1, miR-484 and ZEB1 on the cell proliferation, migration and epithelial-mesenchymal transition (EMT) process of ccRCC cells were studied by CCK-8 assay, EdU cell proliferation assay, wound healing test and Western blotting. The regulatory relationships among PCED1B-AS1, miR-484, ZEB1 were examined by luciferase reporter gene assay and RNA immunoprecipitation assay. RESULTS: PCED1B-AS1 was remarkably up-regulated in ccRCC tissues and cell lines. High expression of PCED1B-AS1 was associated with poor prognosis of the patients. Loss-of-function experiments showed that PCED1B-AS1 could regulate the proliferation, migration and EMT of ccRCC cells. PCED1B-AS1 sponged miR-484 to suppress its expression, and miR-484 targeted the 3'-UTR of ZEB1 to repress the expression of ZEB1. MiR-484 counteracted the functions of PCED1B-AS1 in promoting the proliferation, migration and EMT of ccRCC cells, and PCED1B-AS1 promotes the expression of ZEB1 via repressing miR-484. CONCLUSION: PCED1B-AS1/miR-484/ZEB1 axis is involved in regulating the progression of ccRCC.

10.
Bioengineered ; 12(1): 6083-6095, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34516330

RESUMEN

Long non-coding RNAs (lncRNAs) emerge as vital modulators and tissue-specific biomarkers of multiple cancers, including gastric cancer (GC). Instead, the expression characteristics, biological function and molecular mechanism of lncRNA PCED1B antisense RNA 1 (PCED1B-AS1) in GC await more elaboration. In this study, 48 cases of GC tissues and matched non-cancerous tissues were collected, and PCED1B-AS1, microRNA-215-3p (miR-215-3p) and C-X-C motif chemokine receptor 1 (CXCR1) expression levels were detected by qRT-PCR. Besides, CCK-8, EdU, Transwell and Western blot assays were conducted to assess the impact of PCED1B-AS1 or miR-215-3p on cell growth, migration, invasion and epithelial-mesenchymal transition (EMT). The interaction between genes was verified by bioinformatics analysis, rna immunoprecitipation (RIP) and dual-luciferase reporter gene assays. We demonstrated that, PCED1B-AS1 expression level was raised in GC tissues and cell lines, and increased expression of PCED1B-AS1 was in association with tumor size, TNM stage and lymph node metastasis in GC patients. Additionally, PCED1B-AS1 overexpression promoted GC cells proliferation, migration, invasion and EMT, and miR-215-3p overexpression counteracted the biological effects of PCED1B-AS1. Mechanistically, PCED1B-AS1 specifically inhibited miR-215-3p expressions, thus up-regulating CXCR1 expressions. In conclusion, PCED1B-AS1 accelerates GC progression via adsorbing miR-215-3p and up-regulating CXCR1, indicating that PCED1B-AS1 is a novel therapeutic target for treating GC.


Asunto(s)
MicroARNs/genética , ARN Largo no Codificante/genética , Receptores de Interleucina-8A/genética , Neoplasias Gástricas , Línea Celular Tumoral , Femenino , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , ARN Largo no Codificante/metabolismo , Receptores de Interleucina-8A/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad
11.
Hepatol Int ; 15(2): 444-458, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33219943

RESUMEN

BACKGROUND: PD-L1 and PD-L2 are PD-1 ligands (PD-Ls). PD-Ls over-expression is associated with poor prognosis in hepatocellular carcinoma (HCC). However, little is known about how PD-Ls expression is regulated. Here, we investigated the involvement of lncRNA-microRNA network in the regulation of PD-Ls in HCC. METHODS: The expression of PD-Ls, PCED1B-AS1 and hsa-miR-194-5p was measured in 45 pairs of HCC samples. The interaction between PCED1B-AS1 and hsa-miR-194-5p was measured by microRNA pull down and in vitro binding assay. The effects of PCED1B-AS1 knockdown and over-expression on hsa-miR-194-5p and PD-Ls expression were investigated in HCC cell lines. Immunosuppression was evaluated in co-culture of HCC cell line and human T cells. Exosomes were isolated from HCC cells and their effects on receipt cells were investigated. Tumor behaviors were evaluated by in vitro and in vivo assays. RESULTS: PD-L1 expression was highly correlated with PD-L2 expression in HCC. PCED1B-AS1 and hsa-miR-194-5p expression was up-regulated in HCC. PCED1B-AS1 was positively correlated with PD-Ls but negatively correlated hsa-miR-194-5p in HCC. These correlations were cross-validated by TCGA-LIHC dataset. PCED1B-AS1 interacted with hsa-mir-194-5p which inhibited PD-Ls expression. PCED1B-AS1 enhanced the expression of PD-Ls via sponging hsa-mir-194-5p. PCED1B-AS1-induced PD-Ls-mediated immunosuppression in co-cultured T cells. HCC cells released PCED1B-AS1 containing exosomes and the exosomal PCED1B-AS1 enhanced PD-Ls expression in receipt HCC cells while inhibited receipt T cells and macrophages. Blood exosomal PCED1B-AS1 was correlated with HCC PD-Ls expression. Finally, PCED1B-AS1 promoted cell proliferation, colony formation and in vivo tumor formation in xenografted nude mice while inhibited apoptosis. CONCLUSIONS: PCED1B-AS1 enhances the expression and function of PD-Ls via sponging hsa-miR-194-5p to induce immunosuppression in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Antígeno B7-H1/genética , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Terapia de Inmunosupresión , Neoplasias Hepáticas/genética , Ratones , Ratones Desnudos , MicroARNs , Proteína 2 Ligando de Muerte Celular Programada 1 , ARN Largo no Codificante
12.
Blood Sci ; 1(2): 161-167, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35402806

RESUMEN

Erythropoiesis is a complex and sophisticated multi-stage process regulated by a variety of factors, including the transcription factor GATA1 and non-coding RNA. GATA1 is regarded as an essential transcriptional regulator promoting transcription of erythroid-specific genes-such as long non-coding RNAs (lncRNA). Here, we comprehensively screened lncRNAs that were potentially regulated by GATA1 in erythroid cells. We identified a novel lncRNA-PCED1B-AS1-and verified its role in promoting erythroid differentiation of K562 erythroid cells. We also predicted a model in which PCED1B-AS1 participates in erythroid differentiation via dynamic chromatin remodeling involving GATA1. The relationship between lncRNA and chromatin in the process of erythroid differentiation remains to be revealed, and in our study we have carried out preliminary explorations.

13.
Ocul Surf ; 13(3): 204-212.e1, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26045234

RESUMEN

Impaired corneal wound healing that occurs with ocular surface disease, trauma, systemic disease, or surgical intervention can lead to persistent corneal epithelial defects (PCED), which result in corneal scarring, ulceration, opacification, corneal neovascularization, and, ultimately, visual compromise and vision loss. The current standard of care can include lubricants, ointments, bandage lenses, amniotic membranes, autologous serum eye drops, and corneal transplants. Various inherent problems exist with application and administration of these treatments, which often may not result in a completely healed surface. A topically applicable compound capable of promoting corneal epithelial cell proliferation and/or migration would be ideal to accelerate healing. We hypothesize that human growth hormone (HGH) is such a compound. In a recent study, HGH was shown to activate signal transducer and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial migration in a co-culture system of corneal epithelial cells and fibroblasts. These effects require an intact communication between corneal epithelia and fibroblasts. Further, HGH promotes corneal wound healing in a rabbit debridement model, thus demonstrating the effectiveness of HGH in vivo as well. In conclusion, HGH may represent an exciting and effective topical therapeutic to promote corneal wound healing.


Asunto(s)
Lesiones de la Cornea/tratamiento farmacológico , Epitelio Corneal/patología , Hormona de Crecimiento Humana/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Animales , Proliferación Celular , Células Cultivadas , Lesiones de la Cornea/patología , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/lesiones , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA