Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 879
Filtrar
Más filtros

Intervalo de año de publicación
1.
Development ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058236

RESUMEN

Drafting gene regulatory networks (GRNs) requires embryological knowledge pertaining to the cell type families, information on the regulatory genes, causal data from gene knockdown experiments and validations of the identified interactions by cis-regulatory analysis. We use multi-omics involving next-generation sequencing (-seq) to obtain the necessary information for drafting Strongylocentrotus purpuratus posterior gut GRN. Here we present an update to the GRN using i) a single cell RNA-seq derived cell atlas highlighting the 2 day post fertilization (dpf) sea urchin gastrula cell type families, as well as the genes expressed at single cell level, ii) a set of putative cis-regulatory modules and transcription factor (TF) binding sites obtained from chromatin accessibility ATAC-seq data, and iii) interactions directionality obtained from differential bulk RNA-seq following knockdown of the TF Sp-Pdx1, a key regulator of gut patterning in sea urchins. Combining these datasets, we draft the GRN for the hindgut Sp-Pdx1 positive cells in the 2 dpf gastrula embryo. Overall, our data suggests the complex connectivity of the posterior gut GRN and increases the resolution of gene regulatory cascades operating within it.

2.
Proc Natl Acad Sci U S A ; 121(25): e2310793121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861592

RESUMEN

mTORC1 is aberrantly activated in renal cell carcinoma (RCC) and is targeted by rapalogs. As for other targeted therapies, rapalogs clinical utility is limited by the development of resistance. Resistance often results from target mutation, but mTOR mutations are rarely found in RCC. As in humans, prolonged rapalog treatment of RCC tumorgrafts (TGs) led to resistance. Unexpectedly, explants from resistant tumors became sensitive both in culture and in subsequent transplants in mice. Notably, resistance developed despite persistent mTORC1 inhibition in tumor cells. In contrast, mTORC1 became reactivated in the tumor microenvironment (TME). To test the role of the TME, we engineered immunocompromised recipient mice with a resistance mTOR mutation (S2035T). Interestingly, TGs became resistant to rapalogs in mTORS2035T mice. Resistance occurred despite mTORC1 inhibition in tumor cells and could be induced by coculturing tumor cells with mutant fibroblasts. Thus, enforced mTORC1 activation in the TME is sufficient to confer resistance to rapalogs. These studies highlight the importance of mTORC1 inhibition in nontumor cells for rapalog antitumor activity and provide an explanation for the lack of mTOR resistance mutations in RCC patients.


Asunto(s)
Carcinoma de Células Renales , Resistencia a Antineoplásicos , Neoplasias Renales , Diana Mecanicista del Complejo 1 de la Rapamicina , Serina-Treonina Quinasas TOR , Animales , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Ratones , Humanos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Sirolimus/farmacología , Mutación , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico
3.
Mol Cell ; 72(1): 71-83.e7, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220561

RESUMEN

Cancer cells entail metabolic adaptation and microenvironmental remodeling to survive and progress. Both calcium (Ca2+) flux and Ca2+-dependent signaling play a crucial role in this process, although the underlying mechanism has yet to be elucidated. Through RNA screening, we identified one long noncoding RNA (lncRNA) named CamK-A (lncRNA for calcium-dependent kinase activation) in tumorigenesis. CamK-A is highly expressed in multiple human cancers and involved in cancer microenvironment remodeling via activation of Ca2+-triggered signaling. Mechanistically, CamK-A activates Ca2+/calmodulin-dependent kinase PNCK, which in turn phosphorylates IκBα and triggers calcium-dependent nuclear factor κB (NF-κB) activation. This regulation results in the tumor microenvironment remodeling, including macrophage recruitment, angiogenesis, and tumor progression. Notably, our human-patient-derived xenograft (PDX) model studies demonstrate that targeting CamK-A robustly impaired cancer development. Clinically, CamK-A expression coordinates with the activation of CaMK-NF-κB axis, and its high expression indicates poor patient survival rate, suggesting its role as a potential biomarker and therapeutic target.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Señalización del Calcio/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/metabolismo , Macrófagos/patología , FN-kappa B/genética , Neoplasias/patología , Fosforilación , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35708349

RESUMEN

Pancreatic and duodenal homeobox 1 (PDX1) is crucial for pancreas organogenesis, yet the dynamic changes in PDX1 binding in human or mouse developing pancreas have not been examined. To address this knowledge gap, we performed PDX1 ChIP-seq and single-cell RNA-seq using fetal human pancreata. We integrated our datasets with published datasets and revealed the dynamics of PDX1 binding and potential cell lineage-specific PDX1-bound genes in the pancreas from fetal to adult stages. We identified a core set of developmentally conserved PDX1-bound genes that reveal the broad multifaceted role of PDX1 in pancreas development. Despite the well-known dramatic changes in PDX1 function and expression, we found that PDX1-bound genes are largely conserved from embryonic to adult stages. This points towards a dual role of PDX1 in regulating the expression of its targets at different ages, dependent on other functionally congruent or directly interacting partners. We also showed that PDX1 binding is largely conserved in mouse pancreas. Together, our study reveals PDX1 targets in the developing pancreas in vivo and provides an essential resource for future studies on pancreas development.


Asunto(s)
Genes Homeobox , Proteínas de Homeodominio , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Páncreas , Transactivadores/genética , Transactivadores/metabolismo , Transcriptoma/genética
5.
J Pathol ; 263(2): 242-256, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578195

RESUMEN

There are diverse phenotypes of castration-resistant prostate cancer, including neuroendocrine disease, that vary in their sensitivity to drug treatment. The efficacy of BET and CBP/p300 inhibitors in prostate cancer is attributed, at least in part, to their ability to decrease androgen receptor (AR) signalling. However, the activity of BET and CBP/p300 inhibitors in prostate cancers that lack the AR is unclear. In this study, we showed that BRD4, CBP, and p300 were co-expressed in AR-positive and AR-null prostate cancer. A combined inhibitor of these three proteins, NEO2734, reduced the growth of both AR-positive and AR-null organoids, as measured by changes in viability, size, and composition. NEO2734 treatment caused consistent transcriptional downregulation of cell cycle pathways. In neuroendocrine models, NEO2734 treatment reduced ASCL1 levels and other neuroendocrine markers, and reduced tumour growth in vivo. Collectively, these results show that epigenome-targeted inhibitors cause decreased growth and phenotype-dependent disruption of lineage regulators in neuroendocrine prostate cancer, warranting further development of compounds with this activity in the clinic. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteína p300 Asociada a E1A , Receptores Androgénicos , Transducción de Señal , Masculino , Humanos , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Animales , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Regulación Neoplásica de la Expresión Génica , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas que Contienen Bromodominio , Proteína de Unión a CREB
6.
Mol Ther ; 32(8): 2741-2761, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38894542

RESUMEN

HER2 amplification occurs in approximately 5% of colorectal cancer (CRC) cases and is associated only partially with clinical response to combined human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR)-targeted treatment. An alternative approach based on adoptive cell therapy using T cells engineered with anti-HER2 chimeric antigen receptor (CAR) proved to be toxic due to on-target/off-tumor activity. Here we describe a combinatorial strategy to safely target HER2 amplification and carcinoembryonic antigen (CEA) expression in CRC using a synNotch-CAR-based artificial regulatory network. The natural killer (NK) cell line NK-92 was engineered with an anti-HER2 synNotch receptor driving the expression of a CAR against CEA only when engaged. After being transduced and sorted for HER2-driven CAR expression, cells were cloned. The clone with optimal performances in terms of specificity and amplitude of CAR induction demonstrated significant activity in vitro and in vivo specifically against HER2-amplified (HER2amp)/CEA+ CRC models, with no effects on cells with physiological HER2 levels. The HER2-synNotch/CEA-CAR-NK system provides an innovative, scalable, and safe off-the-shelf cell therapy approach with potential against HER2amp CRC resistant or partially responsive to HER2/EGFR blockade.


Asunto(s)
Neoplasias Colorrectales , Receptor ErbB-2 , Receptores Quiméricos de Antígenos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Animales , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Ratones , Línea Celular Tumoral , Antígeno Carcinoembrionario/inmunología , Antígeno Carcinoembrionario/genética , Amplificación de Genes , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Inmunoterapia/métodos , Inmunoterapia Adoptiva/métodos , Modelos Animales de Enfermedad , Femenino
7.
J Proteome Res ; 23(8): 3269-3279, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334954

RESUMEN

Protein-protein interactions (PPIs) are fundamental to understanding biological systems as protein complexes are the active molecular modules critical for carrying out cellular functions. Dysfunctional PPIs have been associated with various diseases including cancer. Systems-wide PPI analysis not only sheds light on pathological mechanisms, but also represents a paradigm in identifying potential therapeutic targets. In recent years, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for defining endogenous PPIs of cellular networks. While proteome-wide studies have been performed in cell lysates, intact cells and tissues, applications of XL-MS in clinical samples have not been reported. In this study, we adopted a DSBSO-based in vivo XL-MS platform to map interaction landscapes from two breast cancer patient-derived xenograft (PDX) models. As a result, we have generated a PDX interaction network comprising 2,557 human proteins and identified interactions unique to breast cancer subtypes. Interestingly, most of the observed differences in PPIs correlated well with protein abundance changes determined by TMT-based proteome quantitation. Collectively, this work has demonstrated the feasibility of XL-MS analysis in clinical samples, and established an analytical workflow for tissue cross-linking that can be generalized for mapping PPIs from patient samples in the future to dissect disease-relevant cellular networks.


Asunto(s)
Neoplasias de la Mama , Mapas de Interacción de Proteínas , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Animales , Espectrometría de Masas/métodos , Ratones , Proteoma/metabolismo , Proteoma/análisis , Proteómica/métodos , Mapeo de Interacción de Proteínas/métodos
8.
Diabetologia ; 67(7): 1368-1385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38503901

RESUMEN

AIMS/HYPOTHESIS: Protein kinase CK2 acts as a negative regulator of insulin expression in pancreatic beta cells. This action is mainly mediated by phosphorylation of the transcription factor pancreatic and duodenal homeobox protein 1 (PDX1). In pancreatic alpha cells, PDX1 acts in a reciprocal fashion on glucagon (GCG) expression. Therefore, we hypothesised that CK2 might positively regulate GCG expression in pancreatic alpha cells. METHODS: We suppressed CK2 kinase activity in αTC1 cells by two pharmacological inhibitors and by the CRISPR/Cas9 technique. Subsequently, we analysed GCG expression and secretion by real-time quantitative RT-PCR, western blot, luciferase assay, ELISA and DNA pull-down assays. We additionally studied paracrine effects on GCG secretion in pseudoislets, isolated murine islets and human islets. In vivo, we examined the effect of CK2 inhibition on blood glucose levels by systemic and alpha cell-specific CK2 inhibition. RESULTS: We found that CK2 downregulation reduces GCG secretion in the murine alpha cell line αTC1 (e.g. from 1094±124 ng/l to 459±110 ng/l) by the use of the CK2-inhibitor SGC-CK2-1. This was due to a marked decrease in Gcg gene expression through alteration of the binding of paired box protein 6 (PAX6) and transcription factor MafB to the Gcg promoter. The analysis of the underlying mechanisms revealed that both transcription factors are displaced by PDX1. Ex vivo experiments in isolated murine islets and pseudoislets further demonstrated that CK2-mediated reduction in GCG secretion was only slightly affected by the higher insulin secretion after CK2 inhibition. The kidney capsule transplantation model showed the significance of CK2 for GCG expression and secretion in vivo. Finally, CK2 downregulation also reduced the GCG secretion in islets isolated from humans. CONCLUSIONS/INTERPRETATION: These novel findings not only indicate an important function of protein kinase CK2 for proper GCG expression but also demonstrate that CK2 may be a promising target for the development of novel glucose-lowering drugs.


Asunto(s)
Quinasa de la Caseína II , Células Secretoras de Glucagón , Glucagón , Proteínas de Homeodominio , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/genética , Animales , Glucagón/metabolismo , Ratones , Humanos , Células Secretoras de Glucagón/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Transactivadores/metabolismo , Transactivadores/genética , Masculino , Línea Celular , Insulina/metabolismo
9.
Dev Biol ; 504: 113-119, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37739117

RESUMEN

Beclin1 (Becn1) is a multifunctional protein involved in autophagy regulation, membrane trafficking, and tumor suppression. In this study, we examined the roles of Becn1 in the pancreas development by generating mice with conditional deletion of Becn1 in the pancreas using pancreatic transcriptional factor 1a (Ptf1a)-Cre mice (Becn1f/f; Ptf1aCre/+). Surprisingly, loss of Becn1 in the pancreas resulted in severe pancreatic developmental defects, leading to insufficient exocrine and endocrine pancreatic function. Approximately half of Becn1f/f; Ptf1aCre/+ mice died immediately after birth. However, duodenum and neural tissue development were almost normal, indicating that pancreatic insufficiency was the cause of death. These findings demonstrated a novel role for Becn1 in pancreas morphogenesis, differentiation, and growth, and suggested that loss of this factor leaded to pancreatic agenesis at birth.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Páncreas , Animales , Ratones , Beclina-1/genética , Beclina-1/metabolismo , Duodeno/metabolismo , Páncreas/metabolismo , Factores de Transcripción/metabolismo
10.
J Biol Chem ; 299(2): 102878, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623733

RESUMEN

Deletion of O-GlcNAc transferase (Ogt) in pancreatic epithelial progenitor cells results in pancreatic hypoplasia at birth, partly due to increased apoptosis during embryonic development. Constitutive loss of Ogt in ß-cells results in increased ER stress and apoptosis, and in the Ogt-deficient pancreas, transcriptomic data previously revealed both tumor suppressor protein p53 and pancreatic duodenal homeobox 1 (Pdx1), key cell survival proteins in the developing pancreas, as upstream regulators of differentially expressed genes. However, the specific roles of these genes in pancreatic hypoplasia are unclear. In this study, we explored the independent roles of p53, ER stress protein CHOP, and Pdx1 in pancreas development and their use in the functional rescue of pancreatic hypoplasia in the context of Ogt loss. Using in vivo genetic manipulation and morphometric analysis, we show that Ogt plays a key regulatory role in pancreas development. Heterozygous, but not homozygous, loss of pancreatic p53 afforded a partial rescue of ß-cell, α-cell, and exocrine cell masses, while whole body loss of CHOP afforded a partial rescue in pancreas weight and a full rescue in exocrine cell mass. However, neither was sufficient to fully mitigate pancreatic hypoplasia at birth in the Ogt-deficient pancreas. Furthermore, overexpression of Pdx1 in the pancreatic epithelium resulted in partial rescues in pancreas weight and ß-cell mass in the Ogt loss background. These findings highlight the requirement of Ogt in pancreas development by targeting multiple proteins such as transcription factor Pdx1 and p53 in the developing pancreas.


Asunto(s)
Expresión Génica , Células Secretoras de Glucagón , Enfermedades Pancreáticas , Proteína p53 Supresora de Tumor , Animales , Ratones , Células Secretoras de Glucagón/metabolismo , Páncreas Exocrino/metabolismo , Proteína p53 Supresora de Tumor/genética , Expresión Génica/genética , Enfermedades Pancreáticas/genética , Enfermedades Pancreáticas/fisiopatología
11.
Prostate ; 84(11): 1033-1046, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38708958

RESUMEN

BACKGROUND: Preclinical models recapitulating the metastatic phenotypes are essential for developing the next-generation therapies for metastatic prostate cancer (mPC). We aimed to establish a cohort of clinically relevant mPC models, particularly androgen receptor positive (AR+) bone metastasis models, from LuCaP patient-derived xenografts (PDX) that reflect the heterogeneity and complexity of mPC. METHODS: PDX tumors were dissociated into single cells, modified to express luciferase, and were inoculated into NSG mice via intracardiac injection. The progression of metastases was monitored by bioluminescent imaging. Histological phenotypes of metastases were characterized by immunohistochemistry and immunofluorescence staining. Castration responses were further investigated in two AR-positive models. RESULTS: Our PDX-derived metastasis (PDM) model collection comprises three AR+ adenocarcinomas (ARPC) and one AR- neuroendocrine carcinoma (NEPC). All ARPC models developed bone metastases with either an osteoblastic, osteolytic, or mixed phenotype, while the NEPC model mainly developed brain metastasis. Different mechanisms of castration resistance were observed in two AR+ PDM models with distinct genotypes, such as combined loss of TP53 and RB1 in one model and expression of AR splice variant 7 (AR-V7) expression in another model. Intriguingly, the castration-resistant tumors displayed inter- and intra-tumor as well as organ-specific heterogeneity in lineage specification. CONCLUSION: Genetically diverse PDM models provide a clinically relevant system for biomarker identification and personalized medicine in metastatic castration-resistant prostate cancer.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Receptores Androgénicos , Animales , Humanos , Masculino , Ratones , Adenocarcinoma/patología , Adenocarcinoma/secundario , Adenocarcinoma/metabolismo , Adenocarcinoma/genética , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/genética , Modelos Animales de Enfermedad , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
12.
Cancer Immunol Immunother ; 73(10): 203, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105847

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-T cells have been used to treat blood cancers by producing a wide variety of cytokines. However, they are not effective in treating solid cancers and can cause severe side-effects, including cytokine release syndrome. TNFα is a tumoricidal cytokine, but it markedly increases the protein levels of cIAP1 and cIAP2, the members of inhibitor of apoptosis protein (IAP) family of E3 ubiquitin ligase that limits caspase-induced apoptosis. Degradation of IAP proteins by an IAP antagonist does not effectively kill cancer cells but enables TNFα to strongly induce cancer cell apoptosis. It would be a promising approach to treat cancers by targeted delivery of TNFα through an inactive adoptive cell in combination with an IAP antagonist. METHODS: Human dendritic cells (DCs) were engineered to express a single tumoricidal factor, TNFα, and a membrane-anchored Mucin1 antibody scFv, named Mucin 1 directed DCs expressing TNFα (M-DCsTNF). The efficacy of M-DCsTNF in recognizing and treating breast cancer was tested in vitro and in vivo. RESULTS: Mucin1 was highly expressed on the surface of a wide range of human breast cancer cell lines. M-DCsTNF directly associated with MDA-MB-231 cells in the bone of NSG mice. M-DCsTNF plus an IAP antagonist, SM-164, but neither alone, markedly induce MDA-MB-231 breast cancer cell apoptosis, which was blocked by TNF antibody. Importantly, M-DCsTNF combined with SM-164, but not SM-164 alone, inhibited the growth of patient-derived breast cancer in NSG mice. CONCLUSION: An adoptive cell targeting delivery of TNFα combined with an IAP antagonist is a novel effective approach to treat breast cancer and could be expanded to treat other solid cancers. Unlike CAR-T cell, this novel adoptive cell is not activated to produce a wide variety of cytokines, except for additional overexpressed TNF, and thus could avoid the severe side effects such as cytokine release syndrome.


Asunto(s)
Células Dendríticas , Receptores Quiméricos de Antígenos , Factor de Necrosis Tumoral alfa , Humanos , Animales , Ratones , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Receptores Quiméricos de Antígenos/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Mucina-1/inmunología , Mucina-1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/metabolismo , Inmunoterapia Adoptiva/métodos , Apoptosis , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , Inmunoterapia/métodos , Neoplasias/terapia , Neoplasias/inmunología , Ratones SCID
13.
Mol Biol Rep ; 51(1): 711, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824245

RESUMEN

BACKGROUND: Diabetes is a chronic metabolic disease that affects many parts of the body. Considering diabetes as a beta cells' defect and loss, the focus is on finding mechanisms and compounds involved in stimulating the function and regeneration of pancreatic ß-cells. DNA methylation as an epigenetic mechanism plays a pivotal role in the ß-cells' function and development. Considering the regenerative and anti-diabetic effects of Rosa canina extract, this study aimed to assess the methylation levels of Pdx-1, Pax-4, and Ins-1 genes in diabetic rats treated with Rosa Canina extract. METHODS AND RESULTS: Streptozotocin-induced diabetic rats were used to evaluate the frequency of Pdx-1, Pax-4, and Ins-1 gene methylation. Treatment groups were exposed to Rosa canina as spray-dried and decoction extracts. Following blood glucose measurement, pancreatic DNA was extracted and bisulfited. Genes' methylation was measured using MSP-PCR and qRT-PCR techniques. Oral administration of Rosa canina extracts significantly reduced blood sugar levels in diabetic rats compared to the control group. The methylation levels of the Pdx-1, Pax-4, and Ins-1 genes promoter in streptozotocin-induced diabetic rats increased compared to the control rats while, the treatment of diabetic rats with Rosa canina extracts, spray-dried samples especially, led to a decreased methylation in these genes. CONCLUSION: The results of this study showed that Rosa canina extract as a spray-dried sample could be effective in treating diabetes by regulating the methylation of genes including Pdx-1, Pax-4, and Ins-1 involved in the activity and regeneration of pancreatic islet cells.


Asunto(s)
Glucemia , Metilación de ADN , Diabetes Mellitus Experimental , Extractos Vegetales , Rosa , Transactivadores , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Rosa/química , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Ratas , Extractos Vegetales/farmacología , Masculino , Transactivadores/genética , Transactivadores/metabolismo , Glucemia/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Estreptozocina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Insulina/metabolismo
14.
Exp Cell Res ; 425(1): 113538, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871856

RESUMEN

Breast cancer has become the highest incidence of cancer in women. It was extensively and deeply studied by biologists and medical workers worldwide. However, the meaningful results in lab researches cannot be realized in clinical, and a part of new drugs in clinical experiments do not obtain as good results as the preclinical researches. It is urgently that promote a kind of breast cancer research models that can get study results closer to the physiological condition of the human body. Patient-derived models (PDMs) originating from clinical tumor, contain primary elements of tumor and maintain key clinical features of tumor. So they are promising research models to facilitate laboratory researches translate to clinical application, and predict the treatment outcome of patients. In this review, we summarize the establishment of PDMs of breast cancer, reviewed the application of PDMs in clinical translational researches and personalized precision medicine with breast cancer as an example, to improve the understanding of PDMs among researchers and clinician, facilitate them to use PDMs on a large scale of breast cancer researches and promote the clinical translation of laboratory research and new drug development.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Investigación , Medicina de Precisión/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Biol Pharm Bull ; 47(2): 532-538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38417905

RESUMEN

Patient derived xenograft (PDX) is a powerful tool to confirm pharmacological efficacy in non-clinical studies for the development of various drugs including anti-cancer agents and therapeutic research. A standardized extract of cultured Lentinula edodes mycelia, a product name AHCC® is produced by Amino Up Co., Ltd. (Sapporo, Japan). In this study, we investigated the inhibitory effect of AHCC® on the growth of tumor PDX in Super SCID (severe combined immunodeficiency) mice. Effects of AHCC® and BCG administration on the growth of renal cancer PDX implanted in Super SCID mice were evaluated by PDX growth curve. Tendency for the effects on the growth of renal cancer PDX in Super SCID by administration of AHCC® and BCG before implanting the PDX were demonstrated. The effects of the oral administration of AHCC® on the growth of renal, invasive and non-invasive breast cancer PDX in Super SCID mice were studied. In Super SCID mice transplanted with renal cancer PDX, AHCC® significantly suppressed tumor proliferation from the day 48 to 83 after transplantation. In two types of breast cancer PDX, tendency of the growth inhibitory effects of AHCC® were shown by PDX growth curve. Significant inhibitory effect was found at only one time point for during proliferation in each PDX. Super SCID-PDX model has the potential to be a useful tool to investigate for the effect of functional foods.


Asunto(s)
Neoplasias de la Mama , Neoplasias Renales , Hongos Shiitake , Humanos , Ratones , Animales , Femenino , Xenoinjertos , Ratones SCID , Vacuna BCG , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203818

RESUMEN

Epirubicin hydrochloride (EPI) is an anticancer drug widely used in the treatment of many solid tumors, including ovarian cancer. Because of its anatomical location, ovarian cancer shows symptoms when it is already in an advanced stage and is thus more difficult to treat. Epirubicin hydrochloride kills cancer cells effectively, but its dose escalation is limited by its severe toxicity. By encapsulating epirubicin in dextran-based nanoparticles (POLEPI), we expected to deliver higher and thus clinically more effective doses directly to tumors, where epirubicin would be released and retained longer in the tumor. The antitumor activity of POLEPI compared to EPI was first tested ex vivo in a series of ovarian cancer patient-derived tumor xenografts (PDX). The most promising PDX was then implanted orthotopically into immunocompromised mice, and tumor growth was monitored via magnetic resonance imaging (MRI). Although we succeeded in suppressing the growth of ovarian cancer derived from a patient, in a mouse model by 70% compared to 40% via EPI in 5 days after only one injection, we could not eliminate serious side effects, and the study was terminated prematurely for humane reasons.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Policétidos , Humanos , Animales , Ratones , Femenino , Epirrubicina/farmacología , Epirrubicina/uso terapéutico , Xenoinjertos , Antraciclinas , Neoplasias Ováricas/tratamiento farmacológico , Modelos Animales de Enfermedad
17.
Pak J Med Sci ; 40(3Part-II): 509-513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356808

RESUMEN

Objective: To investigate the correlation of maternal PDX1 methylation, NGN3 and Pax6 expression levels with neonatal blood sugars and birth weight in pregnant women with GDM and non GDM. Methods: This was a prospective cohort study. Total 80 pregnant women who were examined and delivered in the Department of Obstetrics of Affiliated Hospital of Hebei University from January 2019 to June 2022 were recruited and divided into two groups according to the results of oral glucose tolerance test (OGTT): the control group and the observation group, with 40 cases in each group. PDXl methylation rate was measured by the methylation-specific PCR method, whereas gene expression levels of PDX1, NGN3 and Pax6 were measured by RT-PCR meanwhile, neonatal blood glucose and hemoglobin A1c (HbA1c) levels were also measured. Results: In comparison with the control group, the observation group had higher levels of FBG, 2-hour postprandial blood glucose (2hPBG) and HbA1c (P<0.05). Neonatal birth weight and insulin levels in the observation group were significantly higher than those in the control group, while Apgar scores and blood glucose were lower than those in the control group(P<0.05). Moreover, the observation group had significantly lower gene expression levels of PDX1, NGN3 and Pax6, and a higher PDX1 methylation rate than the control group (P<0.05). Correlation analysis revealed a negative correlation between neonatal blood glucose levels and PDX1, NGN3 and Pax6 levels in the observation group, with statistical significance (P<0.05). Conclusion: Changes in maternal PDX1 methylation, NGN3 and Pax6 expression levels may lead to abnormal glucose metabolism in neonates, which has a close bearing on neonatal hypoglycemia and blood glucose levels caused by GDM.

18.
Arkh Patol ; 86(3): 12-20, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38881001

RESUMEN

OBJECTIVE: To study the features of gastric neuroendocrine tumors (NETs) and the diagnostic and prognostic significance of PDX-1 expression in them. MATERIAL AND METHODS: 207 NETs identified in 56 men and 115 women (59 had multiple NETs), and 94 cases of gastric cancer (comparison group) were studied morphologically and immunohistochemically. RESULTS: In more than half of the cases (54.93%), NETs were localized in the body of the stomach; the cardiac and antral parts of the stomach accounted for 8.64% and 11.73%, respectively. NETs of the cardiac region predominated in men, and of the body and antrum - in women. NETs of the cardiac region predominated in men, and of the body and antrum - in women. The vast majority of NETs were highly differentiated (89.20%), of which Grade 1, 2 and 3 were 55.41%, 40.76% and 3.82%, respectively. Neuroendocrine carcinomas (NEC) accounted for 10.80% of all NET cases. NECs were more often localized in the cardiac part of the stomach and accounted for 35.71% of all NETs in the cardiac part. The share of NEC among all NETs of the antrum was 15.79%, of the body of the stomach - only 3.37%. Metastases were found in 17.90% of NETs. Expression of PDX-1 was detected in 44.73% of NETs, 70% of NECs and 74.50% of gastric cancers. CONCLUSION: PDX-1 is involved in the mechanisms of precancerous and cancerous lesions of the stomach and its overexpression is detected in the majority of the most malignant NETs and gastric cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio , Tumores Neuroendocrinos , Neoplasias Gástricas , Transactivadores , Humanos , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Transactivadores/metabolismo , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Adulto , Anciano
19.
J Cell Mol Med ; 27(5): 634-649, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36753396

RESUMEN

Ovarian cancer has the highest facility rate among gynaecological tumours. Current therapies including PARP inhibitors have a defect that ovarian tumour is easy to recurrent and become resistant to therapy. To solve this problem, we found that BRD4 inhibitor AZD5153 and PARP inhibitor olaparib had a widespread synergistic effect in multiple models with different gene backgrounds. AZD5153 sensitizes cells to olaparib and reverses the acquired resistance by down-regulating PTEN expression levels to destabilize hereditary materials. In this study, we used the following multiple ovarian cancer models PDX, PDO and 3D/2D cell lines to elucidate the co-effect of AZD5153 and olaparib in vivo and in vitro. The similar results of these models further proved that the mechanism identified was consistent with the biological process occurring in ovarian cancer patients after drug treatment. This consistency between the results of different models suggests the possibility of translating these laboratory research findings into clinical studies towards developing treatments.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antineoplásicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Proteínas de Ciclo Celular/genética
20.
Mol Cancer ; 22(1): 107, 2023 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422628

RESUMEN

BACKGROUND: Acute leukemias represent deadly malignancies that require better treatment. As a challenge, treatment is counteracted by a microenvironment protecting dormant leukemia stem cells. METHODS: To identify responsible surface proteins, we performed deep proteome profiling on minute numbers of dormant patient-derived xenograft (PDX) leukemia stem cells isolated from mice. Candidates were functionally screened by establishing a comprehensive CRISPR‒Cas9 pipeline in PDX models in vivo. RESULTS: A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) was identified as an essential vulnerability required for the survival and growth of different types of acute leukemias in vivo, and reconstitution assays in PDX models confirmed the relevance of its sheddase activity. Of translational importance, molecular or pharmacological targeting of ADAM10 reduced PDX leukemia burden, cell homing to the murine bone marrow and stem cell frequency, and increased leukemia response to conventional chemotherapy in vivo. CONCLUSIONS: These findings identify ADAM10 as an attractive therapeutic target for the future treatment of acute leukemias.


Asunto(s)
Leucemia , Proteómica , Humanos , Ratones , Animales , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Sistemas CRISPR-Cas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Leucemia/genética , Modelos Animales de Enfermedad , Microambiente Tumoral , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA