Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.064
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 33: 107-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25493331

RESUMEN

Immune responses occur in the midst of a variety of cellular stresses that can severely perturb endoplasmic reticulum (ER) function. The unfolded protein response is a three-pronged signaling axis dedicated to preserving ER homeostasis. In this review, we highlight many important and emerging functional roles for ER stress in immunity, focusing on how the bidirectional cross talk between immunological processes and basic cell biology leads to pleiotropic signaling outcomes and enhanced sensitivity to inflammatory stimuli. We also discuss how dysregulated ER stress responses can provoke many diseases, including autoimmunity, firmly positioning the unfolded protein response as a major therapeutic target in human disease.


Asunto(s)
Estrés del Retículo Endoplásmico/inmunología , Inmunidad , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Diferenciación Celular/inmunología , Retículo Endoplásmico/metabolismo , Humanos , Fenómenos del Sistema Inmunológico , Infecciones/etiología , Infecciones/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Unión Proteica , Transducción de Señal , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada
2.
Cell ; 185(21): 3896-3912.e22, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36167070

RESUMEN

Olfactory sensory neurons (OSNs) convert the stochastic choice of one of >1,000 olfactory receptor (OR) genes into precise and stereotyped axon targeting of OR-specific glomeruli in the olfactory bulb. Here, we show that the PERK arm of the unfolded protein response (UPR) regulates both the glomerular coalescence of like axons and the specificity of their projections. Subtle differences in OR protein sequences lead to distinct patterns of endoplasmic reticulum (ER) stress during OSN development, converting OR identity into distinct gene expression signatures. We identify the transcription factor Ddit3 as a key effector of PERK signaling that maps OR-dependent ER stress patterns to the transcriptional regulation of axon guidance and cell-adhesion genes, instructing targeting precision. Our results extend the known functions of the UPR from a quality-control pathway that protects cells from misfolded proteins to a sensor of cellular identity that interprets physiological states to direct axon wiring.


Asunto(s)
Axones/metabolismo , Estrés del Retículo Endoplásmico , Receptores Odorantes , Animales , Ratones , Bulbo Olfatorio , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Factores de Transcripción/metabolismo
3.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38703775

RESUMEN

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Asunto(s)
Glioblastoma , Glucosa , Histonas , Macrófagos , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/patología , Animales , Histonas/metabolismo , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Glucosa/metabolismo , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Interleucina-10/metabolismo , Glucólisis , Microglía/metabolismo , Microglía/inmunología , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Tolerancia Inmunológica
4.
Cell ; 168(4): 692-706, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28187289

RESUMEN

Malignant cells utilize diverse strategies that enable them to thrive under adverse conditions while simultaneously inhibiting the development of anti-tumor immune responses. Hostile microenvironmental conditions within tumor masses, such as nutrient deprivation, oxygen limitation, high metabolic demand, and oxidative stress, disturb the protein-folding capacity of the endoplasmic reticulum (ER), thereby provoking a cellular state of "ER stress." Sustained activation of ER stress sensors endows malignant cells with greater tumorigenic, metastatic, and drug-resistant capacity. Additionally, recent studies have uncovered that ER stress responses further impede the development of protective anti-cancer immunity by manipulating the function of myeloid cells in the tumor microenvironment. Here, we discuss the tumorigenic and immunoregulatory effects of ER stress in cancer, and we explore the concept of targeting ER stress responses to enhance the efficacy of standard chemotherapies and evolving cancer immunotherapies in the clinic.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias/inmunología , Neoplasias/patología , Animales , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Neoplasias/tratamiento farmacológico , Neovascularización Patológica , Escape del Tumor , Microambiente Tumoral , Respuesta de Proteína Desplegada
5.
Mol Cell ; 82(8): 1477-1491, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35452616

RESUMEN

Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Mamíferos , Control de Calidad , Transducción de Señal
6.
Immunity ; 52(4): 668-682.e7, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294407

RESUMEN

The primary mechanisms supporting immunoregulatory polarization of myeloid cells upon infiltration into tumors remain largely unexplored. Elucidation of these signals could enable better strategies to restore protective anti-tumor immunity. Here, we investigated the role of the intrinsic activation of the PKR-like endoplasmic reticulum (ER) kinase (PERK) in the immunoinhibitory actions of tumor-associated myeloid-derived suppressor cells (tumor-MDSCs). PERK signaling increased in tumor-MDSCs, and its deletion transformed MDSCs into myeloid cells that activated CD8+ T cell-mediated immunity against cancer. Tumor-MDSCs lacking PERK exhibited disrupted NRF2-driven antioxidant capacity and impaired mitochondrial respiratory homeostasis. Moreover, reduced NRF2 signaling in PERK-deficient MDSCs elicited cytosolic mitochondrial DNA elevation and, consequently, STING-dependent expression of anti-tumor type I interferon. Reactivation of NRF2 signaling, conditional deletion of STING, or blockade of type I interferon receptor I restored the immunoinhibitory potential of PERK-ablated MDSCs. Our findings demonstrate the pivotal role of PERK in tumor-MDSC functionality and unveil strategies to reprogram immunosuppressive myelopoiesis in tumors to boost cancer immunotherapy.


Asunto(s)
Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Epitelial de Ovario/inmunología , Regulación Neoplásica de la Expresión Génica , Melanoma Experimental/inmunología , Proteínas de la Membrana/inmunología , Neoplasias Cutáneas/inmunología , eIF-2 Quinasa/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Femenino , Humanos , Terapia de Inmunosupresión , Interferón-alfa/genética , Interferón-alfa/inmunología , Interferón beta/genética , Interferón beta/inmunología , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/inmunología , Mitocondrias/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/inmunología , Receptores de Interferón/genética , Receptores de Interferón/inmunología , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Respuesta de Proteína Desplegada/inmunología , eIF-2 Quinasa/deficiencia , eIF-2 Quinasa/genética
7.
Mol Cell ; 74(5): 877-890.e6, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31023583

RESUMEN

Endoplasmic reticulum (ER) stress and unfolded protein response are energetically challenging under nutrient stress conditions. However, the regulatory mechanisms that control the energetic demand under nutrient and ER stress are largely unknown. Here we show that ER stress and glucose deprivation stimulate mitochondrial bioenergetics and formation of respiratory supercomplexes (SCs) through protein kinase R-like ER kinase (PERK). Genetic ablation or pharmacological inhibition of PERK suppresses nutrient and ER stress-mediated increases in SC levels and reduces oxidative phosphorylation-dependent ATP production. Conversely, PERK activation augments respiratory SCs. The PERK-eIF2α-ATF4 axis increases supercomplex assembly factor 1 (SCAF1 or COX7A2L), promoting SCs and enhanced mitochondrial respiration. PERK activation is sufficient to rescue bioenergetic defects caused by complex I missense mutations derived from mitochondrial disease patients. These studies have identified an energetic communication between ER and mitochondria, with implications in cell survival and diseases associated with mitochondrial failures.


Asunto(s)
Factor de Transcripción Activador 4/genética , Metabolismo Energético/genética , Factor 2 Eucariótico de Iniciación/genética , Mitocondrias/genética , eIF-2 Quinasa/genética , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Línea Celular , Supervivencia Celular/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Glucosa/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Mutación Missense/genética , Nutrientes/metabolismo , Fosforilación , Factores de Empalme Serina-Arginina/genética , Transducción de Señal
8.
Mol Cell ; 73(3): 474-489.e5, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595434

RESUMEN

Local translation is rapidly regulated by extrinsic signals during neural wiring, but its control mechanisms remain elusive. Here we show that the extracellular cue Sema3A induces an initial burst in local translation that precisely controls phosphorylation of the translation initiation factor eIF2α via the unfolded protein response (UPR) kinase PERK. Strikingly, in contrast to canonical UPR signaling, Sema3A-induced eIF2α phosphorylation bypasses global translational repression and underlies an increase in local translation through differential activity of eIF2B mediated by protein phosphatase 1. Ultrasensitive proteomics analysis of axons reveals 75 proteins translationally controlled via the Sema3A-p-eIF2α pathway. These include proteostasis- and actin cytoskeleton-related proteins but not canonical stress markers. Finally, we show that PERK signaling is needed for directional axon migration and visual pathway development in vivo. Thus, our findings reveal a noncanonical eIF2 signaling pathway that controls selective changes in axon translation and is required for neural wiring.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Neurogénesis , Células Ganglionares de la Retina/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Axones/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/genética , Femenino , Masculino , Neurogénesis/efectos de los fármacos , Fosforilación , Mapas de Interacción de Proteínas , Proteómica/métodos , Células Ganglionares de la Retina/efectos de los fármacos , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Transducción de Señal , Técnicas de Cultivo de Tejidos , Xenopus laevis/embriología , Xenopus laevis/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
9.
EMBO J ; 41(16): e110501, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35791631

RESUMEN

Proteostasis is essential for cellular survival and particularly important for highly specialised post-mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R-like endoplasmic reticulum (ER) kinase (PERK)-mediated phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type-specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK-deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK-deficient neurons. Haem-regulated inhibitor (HRI) mediates p-eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back-up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.


Asunto(s)
Factor 2 Eucariótico de Iniciación , eIF-2 Quinasa , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Neuronas/metabolismo , Fosforilación , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
10.
Mol Cell ; 69(2): 169-181, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29107536

RESUMEN

The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases.


Asunto(s)
Linaje de la Célula/fisiología , Respuesta de Proteína Desplegada/fisiología , Factor de Transcripción Activador 6/metabolismo , Animales , Apoptosis , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Homeostasis , Humanos , Modelos Biológicos , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Vías Secretoras/fisiología , Transducción de Señal , eIF-2 Quinasa/metabolismo
11.
J Biol Chem ; 300(3): 105673, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272235

RESUMEN

The protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells. CHIP mediated the ubiquitination and degradation of nonphosphorylated eIF2α in a chaperone-independent manner and promoted the upregulation of the cyclic AMP-dependent transcription factor under endoplasmic reticulum stress conditions. Cyclic AMP-dependent transcription factor induced the transcriptional enhancement of the tumor suppressor genes PTEN and RBM5. Although transcription was enhanced, the PTEN protein was subsequently degraded by CHIP, but the expression of the RBM5 protein was upregulated, thereby suppressing the proliferation and migration of A549 cells. Overall, our study established a new mechanism that deepened the understanding of the PERK-eIF2α pathway through the ubiquitination and degradation of eIF2α. The crosstalk between the phosphorylation and ubiquitination of eIF2α shed light on a new perspective for tumor progression.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Genes Supresores de Tumor , Ubiquitina-Proteína Ligasas , Ubiquitinación , Regulación hacia Arriba , Humanos , Células A549 , Proliferación Celular/genética , AMP Cíclico/metabolismo , Estrés del Retículo Endoplásmico/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Ubiquitinación/genética , Regulación hacia Arriba/genética , Movimiento Celular/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35929539

RESUMEN

tRNA synthetase deficiency leads to unfolded protein responses in neuronal disorders; however, its function in embryonic neurogenesis remains unclear. This study identified an aars1cq71/cq71 mutant zebrafish allele that showed increased neuronal apoptosis and compromised neurogenesis. aars1 transcripts were highly expressed in primary neural progenitor cells, and their aberration resulted in protein overloading and activated Perk. nfe2l2b, a paralog of mammalian Nfe2l2, which encodes Nrf2, is a pivotal executor of Perk signaling that regulates neuronal phenotypes in aars1cq71/cq71 mutants. Interference of nfe2l2b in nfe2l2bΔ1/Δ1 mutants did not affect global larval development. However, aars1cq71/cq71;nfe2l2bΔ1/Δ1 mutant embryos exhibited increased neuronal cell survival and neurogenesis compared with their aars1cq71/cq71 siblings. nfe2l2b was harnessed by Perk at two levels. Its transcript was regulated by Chop, an implementer of Perk. It was also phosphorylated by Perk. Both pathways synergistically assured the nuclear functions of nfe2l2b to control cell survival by targeting p53. Our study extends the understanding of tRNA synthetase in neurogenesis and implies that Nrf2 is a cue to mitigate neurodegenerative pathogenesis.


Asunto(s)
Alanina-ARNt Ligasa , Factor 2 Relacionado con NF-E2 , Animales , Diferenciación Celular/genética , Supervivencia Celular/genética , Mamíferos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Pez Cebra
13.
J Virol ; 98(7): e0081324, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38904364

RESUMEN

Enteroviruses are single-stranded, positive-sense RNA viruses causing endoplasmic reticulum (ER) stress to induce or modulate downstream signaling pathways known as the unfolded protein responses (UPR). However, viral and host factors involved in the UPR related to viral pathogenesis remain unclear. In the present study, we aimed to identify the major regulator of enterovirus-induced UPR and elucidate the underlying molecular mechanisms. We showed that host Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1), which supports enteroviruses replication, was a major regulator of the UPR caused by infection with enteroviruses. In addition, we found that severe UPR was induced by the expression of 3A proteins encoded in human pathogenic enteroviruses, such as enterovirus A71, coxsackievirus B3, poliovirus, and enterovirus D68. The N-terminal-conserved residues of 3A protein interact with the GBF1 and induce UPR through inhibition of ADP-ribosylation factor 1 (ARF1) activation via GBF1 sequestration. Remodeling and expansion of ER and accumulation of ER-resident proteins were observed in cells infected with enteroviruses. Finally, 3A induced apoptosis in cells infected with enteroviruses via activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) pathway of UPR. Pharmaceutical inhibition of PERK suppressed the cell death caused by infection with enteroviruses, suggesting the UPR pathway is a therapeutic target for treating diseases caused by infection with enteroviruses.IMPORTANCEInfection caused by several plus-stranded RNA viruses leads to dysregulated ER homeostasis in the host cells. The mechanisms underlying the disruption and impairment of ER homeostasis and its significance in pathogenesis upon enteroviral infection remain unclear. Our findings suggested that the 3A protein encoded in human pathogenic enteroviruses disrupts ER homeostasis by interacting with GBF1, a major regulator of UPR. Enterovirus-mediated infections drive ER into pathogenic conditions, where ER-resident proteins are accumulated. Furthermore, in such scenarios, the PERK/CHOP signaling pathway induced by an unresolved imbalance of ER homeostasis essentially drives apoptosis. Therefore, elucidating the mechanisms underlying the virus-induced disruption of ER homeostasis might be a potential target to mitigate the pathogenesis of enteroviruses.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Factores de Intercambio de Guanina Nucleótido , Homeostasis , Respuesta de Proteína Desplegada , Humanos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Apoptosis , Enterovirus/fisiología , Enterovirus/metabolismo , Células HeLa , Replicación Viral , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Células HEK293 , Interacciones Huésped-Patógeno , Transducción de Señal , eIF-2 Quinasa/metabolismo
14.
Mol Cell ; 65(5): 885-899.e6, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28238652

RESUMEN

Loss of ER Ca2+ homeostasis triggers endoplasmic reticulum (ER) stress and drives ER-PM contact sites formation in order to refill ER-luminal Ca2+. Recent studies suggest that the ER stress sensor and mediator of the unfolded protein response (UPR) PERK regulates intracellular Ca2+ fluxes, but the mechanisms remain elusive. Here, using proximity-dependent biotin identification (BioID), we identified the actin-binding protein Filamin A (FLNA) as a key PERK interactor. Cells lacking PERK accumulate F-actin at the cell edges and display reduced ER-PM contacts. Following ER-Ca2+ store depletion, the PERK-FLNA interaction drives the expansion of ER-PM juxtapositions by regulating F-actin-assisted relocation of the ER-associated tethering proteins Stromal Interaction Molecule 1 (STIM1) and Extended Synaptotagmin-1 (E-Syt1) to the PM. Cytosolic Ca2+ elevation elicits rapid and UPR-independent PERK dimerization, which enforces PERK-FLNA-mediated ER-PM juxtapositions. Collectively, our data unravel an unprecedented role of PERK in the regulation of ER-PM appositions through the modulation of the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/enzimología , Actinas/metabolismo , Membrana Celular/enzimología , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/enzimología , Filaminas/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Filaminas/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Interferencia de ARN , Transducción de Señal , Molécula de Interacción Estromal 1/metabolismo , Sinaptotagmina I/metabolismo , Factores de Tiempo , Transfección , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética
15.
Mol Cell ; 68(5): 885-900.e6, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220654

RESUMEN

The integrated stress response (ISR) is a homeostatic mechanism induced by endoplasmic reticulum (ER) stress. In acute/transient ER stress, decreased global protein synthesis and increased uORF mRNA translation are followed by normalization of protein synthesis. Here, we report a dramatically different response during chronic ER stress. This chronic ISR program is characterized by persistently elevated uORF mRNA translation and concurrent gene expression reprogramming, which permits simultaneous stress sensing and proteostasis. The program includes PERK-dependent switching to an eIF3-dependent translation initiation mechanism, resulting in partial, but not complete, translational recovery, which, together with transcriptional reprogramming, selectively bolsters expression of proteins with ER functions. Coordination of transcriptional and translational reprogramming prevents ER dysfunction and inhibits "foamy cell" development, thus establishing a molecular basis for understanding human diseases associated with ER dysfunction.


Asunto(s)
Estrés del Retículo Endoplásmico , Factor 3 de Iniciación Eucariótica/metabolismo , Fibroblastos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/biosíntesis , Transcripción Genética , eIF-2 Quinasa/metabolismo , Animales , Reprogramación Celular , Factor 3 de Iniciación Eucariótica/genética , Fibroblastos/patología , Células HEK293 , Humanos , Ratones , Sistemas de Lectura Abierta , Fenotipo , Proteostasis , Interferencia de ARN , ARN Mensajero/genética , Transducción de Señal , Factores de Tiempo , Transfección , eIF-2 Quinasa/genética
16.
J Proteome Res ; 23(1): 356-367, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38038604

RESUMEN

Coronaviruses (CoV), including SARS-CoV-2, modulate host proteostasis through the activation of stress-responsive signaling pathways such as the Unfolded Protein Response (UPR), which remedies misfolded protein accumulation by attenuating translation and increasing protein folding capacity. While CoV nonstructural proteins (nsps) are essential for infection, little is known about the role of nsps in modulating the UPR. We characterized the impact of overexpression of SARS-CoV-2 nsp4, a key driver of replication, on the UPR in cell culture using quantitative proteomics to sensitively detect pathway-wide upregulation of effector proteins. We find that nsp4 preferentially activates the ATF6 and PERK branches of the UPR. Previously, we found that an N-terminal truncation of nsp3 (nsp3.1) can suppress pharmacological ATF6 activation. To determine how nsp3.1 and nsp4 tune the UPR, their coexpression demonstrated that nsp3.1 suppresses nsp4-mediated PERK, but not ATF6 activation. Reanalysis of SARS-CoV-2 infection proteomics data revealed time-dependent activation of PERK targets early in infection, which subsequently fades. This temporal regulation suggests a role for nsp3 and nsp4 in tuning the PERK pathway to attenuate host translation beneficial for viral replication while avoiding later apoptotic signaling caused by chronic activation. This work furthers our understanding of CoV-host proteostasis interactions and highlights the power of proteomic methods for systems-level analysis of the UPR.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteómica , Respuesta de Proteína Desplegada , Técnicas de Cultivo de Célula
17.
J Cell Mol Med ; 28(14): e18561, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39072992

RESUMEN

Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , ARN Largo no Codificante , Respuesta de Proteína Desplegada , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Animales , Regulación de la Expresión Génica , Transducción de Señal
18.
J Biol Chem ; 299(7): 104915, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37315790

RESUMEN

Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown. In the present work, we demonstrated that UBL5 was an ER stress-responsive protein, undergoing rapid depletion in mammalian cells and livers of mice. The ER stress-induced UBL5 depletion was mediated by proteasome-dependent yet ubiquitin-independent proteolysis. Activation of the protein kinase R-like ER kinase arm of the UPR was essential and sufficient for inducing UBL5 degradation. RNA-Seq analysis of UBL5-regulated transcriptome revealed that multiple death pathways were activated in UBL5-silenced cells. In agreement with this, UBL5 knockdown induced severe apoptosis in culture and suppressed tumorigenicity of cancer cells in vivo. Furthermore, overexpression of UBL5 protected specifically against ER stress-induced apoptosis. These results identify UBL5 as a physiologically relevant survival regulator that is proteolytically depleted by the UPR-protein kinase R-like ER kinase pathway, linking ER stress to cell death.


Asunto(s)
Muerte Celular , Estrés del Retículo Endoplásmico , Ubiquitinas , eIF-2 Quinasa , Animales , Ratones , Apoptosis , eIF-2 Quinasa/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Respuesta de Proteína Desplegada
19.
J Biol Chem ; 299(2): 102821, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563857

RESUMEN

Tauopathies are neurodegenerative diseases caused by pathologic misfolded tau protein aggregation in the nervous system. Population studies implicate EIF2AK3 (eukaryotic translation initiation factor 2 alpha kinase 3), better known as PERK (protein kinase R-like endoplasmic reticulum kinase), as a genetic risk factor in several tauopathies. PERK is a key regulator of intracellular proteostatic mechanisms-unfolded protein response and integrated stress response. Previous studies found that tauopathy-associated PERK variants encoded functional hypomorphs with reduced signaling in vitro. But, it remained unclear how altered PERK activity led to tauopathy. Here, we chemically or genetically modulated PERK signaling in cell culture models of tau aggregation and found that PERK pathway activation prevented tau aggregation, whereas inhibition exacerbated tau aggregation. In primary tauopathy patient brain tissues, we found that reduced PERK signaling correlated with increased tau neuropathology. We found that tauopathy-associated PERK variants targeted the endoplasmic reticulum luminal domain; and two of these variants damaged hydrogen bond formation. Our studies support that PERK activity protects against tau aggregation and pathology. This may explain why people carrying hypomorphic PERK variants have increased risk for developing tauopathies. Finally, our studies identify small-molecule augmentation of PERK signaling as an attractive therapeutic strategy to treat tauopathies by preventing tau pathology.


Asunto(s)
Agregado de Proteínas , Agregación Patológica de Proteínas , eIF-2 Quinasa , Proteínas tau , Humanos , Susceptibilidad a Enfermedades , eIF-2 Quinasa/química , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Mutación , Factores de Riesgo , Proteínas tau/química , Proteínas tau/metabolismo , Tauopatías/metabolismo , Tauopatías/patología
20.
Circulation ; 147(14): 1079-1096, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37011073

RESUMEN

BACKGROUND: Large-scale human and mechanistic mouse studies indicate a strong relationship between the microbiome-dependent metabolite trimethylamine N-oxide (TMAO) and several cardiometabolic diseases. This study aims to investigate the role of TMAO in the pathogenesis of abdominal aortic aneurysm (AAA) and target its parent microbes as a potential pharmacological intervention. METHODS: TMAO and choline metabolites were examined in plasma samples, with associated clinical data, from 2 independent patient cohorts (N=2129 total). Mice were fed a high-choline diet and underwent 2 murine AAA models, angiotensin II infusion in low-density lipoprotein receptor-deficient (Ldlr-/-) mice or topical porcine pancreatic elastase in C57BL/6J mice. Gut microbial production of TMAO was inhibited through broad-spectrum antibiotics, targeted inhibition of the gut microbial choline TMA lyase (CutC/D) with fluoromethylcholine, or the use of mice genetically deficient in flavin monooxygenase 3 (Fmo3-/-). Finally, RNA sequencing of in vitro human vascular smooth muscle cells and in vivo mouse aortas was used to investigate how TMAO affects AAA. RESULTS: Elevated TMAO was associated with increased AAA incidence and growth in both patient cohorts studied. Dietary choline supplementation augmented plasma TMAO and aortic diameter in both mouse models of AAA, which was suppressed with poorly absorbed oral broad-spectrum antibiotics. Treatment with fluoromethylcholine ablated TMAO production, attenuated choline-augmented aneurysm initiation, and halted progression of an established aneurysm model. In addition, Fmo3-/- mice had reduced plasma TMAO and aortic diameters and were protected from AAA rupture compared with wild-type mice. RNA sequencing and functional analyses revealed choline supplementation in mice or TMAO treatment of human vascular smooth muscle cells-augmented gene pathways associated with the endoplasmic reticulum stress response, specifically the endoplasmic reticulum stress kinase PERK. CONCLUSIONS: These results define a role for gut microbiota-generated TMAO in AAA formation through upregulation of endoplasmic reticulum stress-related pathways in the aortic wall. In addition, inhibition of microbiome-derived TMAO may serve as a novel therapeutic approach for AAA treatment where none currently exist.


Asunto(s)
Aneurisma de la Aorta Abdominal , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Porcinos , Ratones Endogámicos C57BL , Colina , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA