Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 170(2): 249-259.e25, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28669536

RESUMEN

Widespread resistance to first-line TB drugs is a major problem that will likely only be resolved through the development of new drugs with novel mechanisms of action. We have used structure-guided methods to develop a lead molecule that targets the thioesterase activity of polyketide synthase Pks13, an essential enzyme that forms mycolic acids, required for the cell wall of Mycobacterium tuberculosis. Our lead, TAM16, is a benzofuran class inhibitor of Pks13 with highly potent in vitro bactericidal activity against drug-susceptible and drug-resistant clinical isolates of M. tuberculosis. In multiple mouse models of TB infection, TAM16 showed in vivo efficacy equal to the first-line TB drug isoniazid, both as a monotherapy and in combination therapy with rifampicin. TAM16 has excellent pharmacological and safety profiles, and the frequency of resistance for TAM16 is ∼100-fold lower than INH, suggesting that it can be developed as a new antitubercular aimed at the acute infection. PAPERCLIP.


Asunto(s)
Antituberculosos/farmacología , Benzofuranos/farmacología , Diseño de Fármacos , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/efectos de los fármacos , Piperidinas/farmacología , Tuberculosis/microbiología , Animales , Antituberculosos/química , Benzofuranos/química , Benzofuranos/farmacocinética , Línea Celular , Femenino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Piperidinas/química , Piperidinas/farmacocinética , Organismos Libres de Patógenos Específicos
2.
J Pathol ; 263(2): 217-225, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551073

RESUMEN

Environmental factors like the pathogenicity island polyketide synthase positive (pks+) Escherichia coli (E. coli) could have potential for risk stratification in colorectal cancer (CRC) screening. The association between pks+ E. coli measured in fecal immunochemical test (FIT) samples and the detection of advanced neoplasia (AN) at colonoscopy was investigated. Biobanked FIT samples were analyzed for both presence of E. coli and pks+ E. coli and correlated with colonoscopy findings; 5020 CRC screening participants were included. Controls were participants in which no relevant lesion was detected because of FIT-negative results (cut-off ≥15 µg Hb/g feces), a negative colonoscopy, or a colonoscopy during which only a nonadvanced polyp was detected. Cases were participants with AN [CRC, advanced adenoma (AA), or advanced serrated polyp (ASP)]. Existing DNA isolation and quantitative polymerase chain reaction (qPCR) procedures were used for the detection of E. coli and pks+ E. coli in stool. A total of 4542 (90.2%) individuals were E. coli positive, and 1322 (26.2%) were pks+ E. coli positive. The prevalence of E. coli in FIT samples from individuals with AN was 92.9% compared to 89.7% in FIT samples of controls (p = 0.010). The prevalence of pks+ E. coli in FIT samples from individuals with AN (28.6%) and controls (25.9%) was not significantly different (p = 0.13). The prevalences of pks+ E. coli in FIT samples from individuals with CRC, AA, or ASP were 29.6%, 28.3%, and 32.1%, respectively. In conclusion, the prevalence of pks+ E. coli in a screening population was 26.2% and did not differ significantly between individuals with AN and controls. These findings disqualify the straightforward option of using a snapshot measurement of pks+ E. coli in FIT samples as a stratification biomarker for CRC risk. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Colorrectales , Detección Precoz del Cáncer , Escherichia coli , Heces , Sintasas Poliquetidas , Humanos , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/diagnóstico , Heces/microbiología , Heces/enzimología , Escherichia coli/aislamiento & purificación , Escherichia coli/enzimología , Escherichia coli/genética , Masculino , Detección Precoz del Cáncer/métodos , Femenino , Persona de Mediana Edad , Anciano , Sintasas Poliquetidas/genética , Colonoscopía , Factores de Riesgo , Adenoma/microbiología , Adenoma/diagnóstico , Medición de Riesgo , Biomarcadores de Tumor , Estudios de Casos y Controles
3.
Cancer Sci ; 115(4): 1184-1195, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38297479

RESUMEN

A significant association exists between the gut microbiome and colorectal carcinogenesis, as well as cancer progression. It has been reported that Escherichia coli (E. coli) containing polyketide synthetase (pks) island contribute to colorectal carcinogenesis by producing colibactin, a polyketide-peptide genotoxin. However, the functions of pks+ E. coli in initiation, proliferation, and metastasis of colorectal cancer (CRC) remain unclear. We investigated the clinical significance of pks+ E. coli to clarify its functions in CRC. This study included 413 patients with CRC. Pks+ E. coli of tumor tissue and normal mucosal tissue were quantified using droplet digital PCR. Pks+ E. coli was more abundant in Stages 0-I tumor tissue than in normal mucosal tissue or in Stages II-IV tumor tissue. High abundance of pks+ E. coli in tumor tissue was significantly associated with shallower tumor depth (hazard ratio [HR] = 5.0, 95% confidence interval [CI] = 2.3-11.3, p < 0.001) and absence of lymph node metastasis (HR = 3.0, 95% CI = 1.8-5.1, p < 0.001) in multivariable logistic analyses. Pks+ E. coli-low and -negative groups were significantly associated with shorter CRC-specific survival (HR = 6.4, 95% CI = 1.7-25.6, p = 0.005) and shorter relapse-free survival (HR = 3.1, 95% CI = 1.3-7.3, p = 0.01) compared to the pks+ E. coli-high group. Pks+ E. coli was abundant in Stages 0-I CRC and associated with CRC prognosis. These results suggest that pks+ E. coli might contribute to carcinogenesis of CRC but might not be associated with tumor progression.


Asunto(s)
Neoplasias Colorrectales , Policétidos , Humanos , Escherichia coli/genética , Recurrencia Local de Neoplasia , Membrana Mucosa , Carcinogénesis
4.
Microbiology (Reading) ; 170(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38314762

RESUMEN

The biosynthetic machinery for the production of colibactin is encoded by 19 genes (clbA - S) within the pks pathogenicity island harboured by many E. coli of the B2-phylogroup. Colibactin is a potent genotoxic metabolite which causes DNA-damage and which has potential roles in microbial competition and fitness of pks+ bacteria. Colibactin has also been strongly implicated in the development of colorectal cancer. Given the genotoxicity of colibactin and the metabolic cost of its synthesis, the regulatory system governing the clb cluster is accordingly highly complex, and many of the mechanisms remain to be elucidated. In this review we summarise the current understanding of regulation of colibactin biosynthesis by internal molecular components and how these factors are modulated by signals from the external environment.


Asunto(s)
Proteínas de Escherichia coli , Policétidos , Escherichia coli/genética , Escherichia coli/metabolismo , Péptidos/genética , Péptidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Policétidos/metabolismo
5.
Chemistry ; 30(3): e202302350, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37855054

RESUMEN

For a potential application of FK506 in the treatment of acute kidney failure only the FKBP12 binding capability of the compound is required, while the immunosuppressive activity via calcineurin binding is considered as a likely risk to the patients. The methoxy groups at C13 and C15 are thought to have significant influence on the immunosuppressive activity of the molecule. Consequently, FK506 analogs with different functionalities at C13 and C15 were generated by targeted CRISPR editing of the AT domains in module 7 and 8 of the biosynthetic assembly line in Streptomyces tsukubaensis. In addition, the corresponding FK520 (C21 ethyl derivative of FK506) analogs could be obtained by media adjustments. The compounds were tested for their bioactivity in regards to FKBP12 binding, BMP potentiation and calcineurin sparing. 15-desmethoxy FK506 was superior to the other tested analogs as it did not inhibit calcineurin but retained high potency towards FKBP12 binding and BMP potentiation.


Asunto(s)
Calcineurina , Streptomyces , Tacrolimus , Humanos , Tacrolimus/farmacología , Tacrolimus/metabolismo , Calcineurina/metabolismo , Proteína 1A de Unión a Tacrolimus/genética , Proteína 1A de Unión a Tacrolimus/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Inmunosupresores/farmacología , Inmunosupresores/química
6.
Antonie Van Leeuwenhoek ; 117(1): 95, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967683

RESUMEN

The decline of new antibiotics and the emergence of multidrug resistance in pathogens necessitates a revisit of strategies used for lead compound discovery. This study proposes to induce the production of bioactive compounds with sub-lethal concentrations of silver nanoparticles (Ag-NPs). A total of Forty-two Actinobacteria isolates from four Saudi soil samples were grown with and without sub-lethal concentration of Ag-NPs (50 µg ml-1). The spent broth grown with Ag-NPs, or without Ag-NPs were screened for antimicrobial activity against four bacteria. Interestingly, out of 42 strains, broths of three strains grown with sub-lethal concentration of Ag-NPs exhibit antimicrobial activity against Staphylococcus aureus and Micrococcus luteus. Among these, two strains S4-4 and S4-21 identified as Streptomyces labedae and Streptomyces tirandamycinicus based on 16S rRNA gene sequence were selected for detailed study. The change in the secondary metabolites profile in the presence of Ag-NPs was evaluated using GC-MS and LC-MS analyses. Butanol extracts of spent broth grown with Ag-NPs exhibit strong antimicrobial activity against M. luteus and S. aureus. While the extracts of the controls with the same concentration of Ag-NPs do not show any activity. GC-analysis revealed a clear change in the secondary metabolite profile when grown with Ag-NPs. Similarly, the LC-MS patterns also differ significantly. Results of this study, strongly suggest that sub-lethal concentrations of Ag-NPs influence the production of secondary metabolites by Streptomyces. Besides, LC-MS results identified possible secondary metabolites, associated with oxidative stress and antimicrobial activities. This strategy can be used to possibly induce cryptic biosynthetic gene clusters for the discovery of new lead compounds.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S , Plata , Staphylococcus aureus , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Plata/farmacología , Plata/química , Plata/metabolismo , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , ARN Ribosómico 16S/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Microbiología del Suelo , Metabolismo Secundario , Micrococcus luteus/efectos de los fármacos , Micrococcus luteus/crecimiento & desarrollo , Descubrimiento de Drogas
7.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 825-832, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38686460

RESUMEN

Biological control of pests and pathogens has attracted much attention due to its green, safe and effective characteristics. However, it faces the dilemma of insignificant effects in large-scale applications. Therefore, an in-depth exploration of the metabolic potential of biocontrol fungi based on big omics data is crucial for a comprehensive and systematic understanding of the specific modes of action operated by various biocontrol fungi. This article analyzes the preferences for extracellular carbon and nitrogen source degradation, secondary metabolites (nonribosomal peptides, polyketide synthases) and their product characteristics and the conversion relationship between extracellular primary metabolism and intracellular secondary metabolism for eight different filamentous fungi with characteristics appropriate for the biological control of bacterial pathogens and phytopathogenic nematodes. Further clarification is provided that Paecilomyces lilacinus, encoding a large number of hydrolase enzymes capable of degrading pathogen protection barrier, can be directly applied in the field as a predatory biocontrol fungus, whereas Trichoderma, as an antibiosis-active biocontrol control fungus, can form dominant strains on preferred substrates and produce a large number of secondary metabolites to achieve antibacterial effects. By clarifying the levels of biological control achievable by different biocontrol fungi, we provide a theoretical foundation for their application to cropping habitats.


Asunto(s)
Hongos , Hongos/metabolismo , Hongos/genética , Metabolismo Secundario , Carbono/metabolismo , Agentes de Control Biológico/metabolismo , Control Biológico de Vectores/métodos , Nitrógeno/metabolismo , Animales , Metabolómica/métodos
8.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397022

RESUMEN

Piperazic acid is a cyclic nonproteinogenic amino acid that contains a hydrazine N-N bond formed by a piperazate synthase (KtzT-like). This amino acid, found in bioactive natural products synthesized by non-ribosomal peptide synthetases (NRPSs), confers conformational constraint to peptides, an important feature for their biological activities. Genome mining of Streptomyces strains has been revealed as a strategy to identify biosynthetic gene clusters (BGCs) for potentially active compounds. Moreover, the isolation of new strains from underexplored habitats or associated with other organisms has allowed to uncover new BGCs for unknown compounds. The in-house "Carlos Sialer (CS)" strain collection consists of seventy-one Streptomyces strains isolated from the cuticle of leaf-cutting ants of the tribe Attini. Genomes from twelve of these strains have been sequenced and mined using bioinformatics tools, highlighting their potential to encode secondary metabolites. In this work, we have screened in silico those genomes, using KtzT as a hook to identify BGCs encoding piperazic acid-containing compounds. This resulted in uncovering the new BGC dpn in Streptomyces sp. CS113, which encodes the biosynthesis of the hybrid polyketide-depsipeptide diperamycin. Analysis of the diperamycin polyketide synthase (PKS) and NRPS reveals their functional similarity to those from the aurantimycin A biosynthetic pathway. Experimental proof linking the dpn BGC to its encoded compound was achieved by determining the growth conditions for the expression of the cluster and by inactivating the NRPS encoding gene dpnS2 and the piperazate synthase gene dpnZ. The identity of diperamycin was confirmed by High-Resolution Mass Spectrometry (HRMS) and Nuclear Magnetic Resonance (NMR) and by analysis of the domain composition of modules from the DpnP PKS and DpnS NRPS. The identification of the dpn BGC expands the number of BGCs that have been confirmed to encode the relatively scarcely represented BGCs for depsipeptides of the azinothricin family of compounds and will facilitate the generation of new-to-nature analogues by combinatorial biosynthesis.


Asunto(s)
Depsipéptidos , Piridazinas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Familia de Multigenes , Depsipéptidos/genética , Depsipéptidos/metabolismo , Aminoácidos/metabolismo
9.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731473

RESUMEN

Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.


Asunto(s)
Familia de Multigenes , Péptido Sintasas , Sintasas Poliquetidas , Streptomyces , Streptomyces/genética , Streptomyces/enzimología , Streptomyces/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
10.
World J Microbiol Biotechnol ; 40(10): 323, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292329

RESUMEN

The important role of dihydroxynaphthalene-(DHN) melanin in enhancing fungal stress resistance and its importance in fungal development and pathogenicity are well-established. This melanin also aids biocontrol fungi in surviving in the environment and effectively infecting insects. However, the biosynthetic origin of melanin in the biocontrol agents, Metarhizium spp., has remained elusive due to the complexity resulting from the divergence of two DHN-like biosynthetic pathways. Through the heterologous expression of biosynthetic enzymes from these two pathways in baker's yeast Saccharomyces cerevisiae, we have confirmed the presence of DHN biosynthesis in M. roberstii, and discovered a novel naphthopyrone intermediate, 8, that can produce a different type of pigment. These two pigment biosynthetic pathways differ in terms of polyketide intermediate structures and subsequent modification steps. Stress resistance studies using recombinant yeast cells have demonstrated that both DHN and its intermediates confer resistance against UV light prior to polymerization; a similar result was observed for its naphthopyrone counterpart. This study contributes to the understanding of the intricate and diverse biosynthetic mechanisms of fungal melanin and has the potential to enhance the application efficiency of biocontrol fungi such as Metarhizium spp. in agriculture.


Asunto(s)
Vías Biosintéticas , Melaninas , Metarhizium , Saccharomyces cerevisiae , Metarhizium/metabolismo , Metarhizium/genética , Melaninas/metabolismo , Melaninas/biosíntesis , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Naftoles/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Rayos Ultravioleta
11.
Metab Eng ; 80: 45-65, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683719

RESUMEN

DHA is a marine PUFA of commercial value, given its multiple health benefits. The worldwide emerging shortage in DHA supply has increased interest in microbial cell factories that can provide the compound de novo. In this regard, the present work aimed to improve DHA production in the oleaginous yeast strain Y. lipolytica Af4, which synthetized the PUFA via a heterologous myxobacterial polyketide synthase (PKS)-like gene cluster. As starting point, we used transcriptomics, metabolomics, and 13C-based metabolic pathway profiling to study the cellular dynamics of Y. lipolytica Af4. The shift from the growth to the stationary DHA-production phase was associated with fundamental changes in carbon core metabolism, including a strong upregulation of the PUFA gene cluster, as well as an increase in citrate and fatty acid degradation. At the same time, the intracellular levels of the two DHA precursors acetyl-CoA and malonyl-CoA dropped by up to 98% into the picomolar range. Interestingly, the degradation pathways for the ketogenic amino acids l-lysine, l-leucine, and l-isoleucine were transcriptionally activated, presumably to provide extra acetyl-CoA. Supplementation with small amounts of these amino acids at the beginning of the DHA production phase beneficially increased the intracellular CoA-ester pools and boosted the DHA titer by almost 40%. Isotopic 13C-tracer studies revealed that the supplements were efficiently directed toward intracellular CoA-esters and DHA. Hereby, l-lysine was found to be most efficient, as it enabled long-term activation, due to storage within the vacuole and continuous breakdown. The novel strategy enabled DHA production in Y. lipolytica at the gram scale for the first time. DHA was produced at a high selectivity (27% of total fatty acids) and free of the structurally similar PUFA DPA, which facilitates purification for high-value medical applications that require API-grade DHA. The assembled multi-omics picture of the central metabolism of Y. lipolytica provides valuable insights into this important yeast. Beyond our work, the enhanced catabolism of ketogenic amino acids seems promising for the overproduction of other compounds in Y. lipolytica, whose synthesis is limited by the availability of CoA ester precursors.


Asunto(s)
Policétidos , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Sintasas Poliquetidas/metabolismo , Acetilcoenzima A/metabolismo , Lisina/genética , Multiómica , Ésteres/metabolismo , Policétidos/metabolismo , Ingeniería Metabólica
12.
Bioorg Med Chem Lett ; 94: 129440, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567320

RESUMEN

Promysalin is an amphipathic antibiotic isolated from Pseudomonas promysalinigenes (previously Pseudomonas putida RW10S1) which shows potent antibacterial activities against Gram-negative pathogens by inactivating succinate dehydrogenase. Based on the in-vivo studies, promysalin is hypothesized to be assembled from three building blocks: salicylic acid, proline, and myristic acid via a proposed but uncharacterized hybrid NRPS-PKS biosynthetic pathway. So far, no in-vitro biosynthetic studies have been reported for this promising antibiotic. Here, we report the first in-vitro reconstitution and biochemical characterization of two early enzymes on the pathway: PpgH, an isochorismate synthase (IS), and PpgG, an isochorismate pyruvate lyase (IPL) which are involved in the biosynthesis of salicylic acid, the polar fragment of promysalin. We also report a secondary chorismate mutase (CM) activity for PpgG. Based on our biochemical experiments, preliminary mechanistic proposals have been postulated for PpgH and PpgG. We believe this study will lay a strong foundation for elucidating the functions and mechanisms of other intriguing enzymes of the promysalin biosynthesis pathway, which may potentially unravel interesting enzyme chemistries and promote pathway engineering in the future.


Asunto(s)
Pirrolidinas , Salicilamidas , Ácido Salicílico , Antibacterianos/farmacología
13.
Bioorg Med Chem ; 81: 117212, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36804747

RESUMEN

Among the various bacterial infections, tuberculosis continues to hold center stage. Its causative agent, Mycobacterium tuberculosis, possesses robust defense mechanisms against most front-line antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. It is now well-established that bacteria change their membrane composition to optimize their environment to survive and elude drug action. Thus targeting membrane or membrane components is a promising avenue for exploiting the chemical space focussed on developing novel membrane-centric anti-bacterial small molecules. These approaches are more effective, non-toxic, and can attenuate resistance phenotype. We present the relevance of targeting the mycobacterial membrane as a practical therapeutic approach. The review highlights the direct and indirect targeting of membrane structure and function. Direct membrane targeting agents cause perturbation in the membrane potential and can cause leakage of the cytoplasmic contents. In contrast, indirect membrane targeting agents disrupt the function of membrane-associated proteins involved in cell wall biosynthesis or energy production. We discuss the chronological chemical improvements in various scaffolds targeting specific membrane-associated protein targets, their clinical evaluation, and up-to-date account of their ''mechanisms of action, potency, selectivity'' and limitations. The sources of anti-TB drugs/inhibitors discussed in this work have emerged from target-based identification, cell-based phenotypic screening, drug repurposing, and natural products. We believe this review will inspire the exploration of uncharted chemical space for informing the development of new scaffolds that can inhibit novel mycobacterial membrane targets.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/farmacología , Proteínas de la Membrana/metabolismo , Tuberculosis/tratamiento farmacológico , Proteínas Bacterianas/metabolismo
14.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37218693

RESUMEN

6-methylsalicylic acid (6-MSA) is a small, simple polyketide produced by a broad spectrum of fungal species. Since fungi obtained the ability to synthesize 6-MSA from bacteria through a horizontal gene transfer event, it has developed into a multipurpose metabolic hub from where numerous complex compounds are produced. The most relevant metabolite from a human perspective is the small lactone patulin as it is one of the most potent mycotoxins. Other important end products derived from 6-MSA include the small quinone epoxide terreic acid and the prenylated yanuthones. The most advanced modification of 6-MSA is observed in the aculin biosynthetic pathway, which is mediated by a non-ribosomal peptide synthase and a terpene cyclase. In this short review, we summarize for the first time all the possible pathways that takes their onset from 6-MSA and provide a synopsis of the responsible gene clusters and derive the resulting biosynthetic pathways.


Asunto(s)
Patulina , Humanos , Familia de Multigenes , Bacterias/genética , Sintasas Poliquetidas/genética
15.
Mar Drugs ; 21(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37623706

RESUMEN

Dinoflagellates are unicellular organisms that are implicated in harmful algal blooms (HABs) caused by potent toxins that are produced through polyketide synthase (PKS) pathways. However, the exact mechanisms of toxin synthesis are unknown due to a lack of genomic segregation of fat, toxins, and other PKS-based pathways. To better understand the underlying mechanisms, the actions and expression of the PKS proteins were investigated using the toxic dinoflagellate Amphidinium carterae as a model. Cerulenin, a known ketosynthase inhibitor, was shown to reduce acetate incorporation into all fat classes with the toxins amphidinol and sulpho-amphidinol. The mass spectrometry analysis of cerulenin-reacted synthetic peptides derived from ketosynthase domains of A. carterae multimodular PKS transcripts demonstrated a strong covalent bond that could be localized using collision-induced dissociation. One multi-modular PKS sequence present in all dinoflagellates surveyed to date was found to lack an AT domain in toxin-producing species, indicating trans-acting domains, and was shown by Western blotting to be post-transcriptionally processed. These results demonstrate how toxin synthesis in dinoflagellates can be differentiated from fat synthesis despite common underlying pathway.


Asunto(s)
Cerulenina , Dinoflagelados , Sintasas Poliquetidas , Floraciones de Algas Nocivas , Western Blotting
16.
Mar Drugs ; 21(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827136

RESUMEN

Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (-)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Filogenia , Espectroscopía Infrarroja por Transformada de Fourier , Aspergillus , Hongos/metabolismo , Metaboloma , Antibacterianos/metabolismo , Extractos Vegetales/metabolismo
17.
J Assist Reprod Genet ; 40(9): 2233-2240, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37501006

RESUMEN

PURPOSE: To report a rare type of Pallister-Killian syndrome (PKS) diagnosed prenatally by the utility of non-invasive prenatal testing (NIPT). METHODS: NIPT was performed in the first trimester. Conventional karyotyping and chromosomal microarray analysis (CMA) were performed on the amniotic samples in the second trimester. Copy number variation sequencing (CNV-seq) was used for the validation of fetal skin and the placental tissue after pregnancy termination. RESULTS: NIPT results showed increased signal from chromosome 12p. Subsequent prenatal diagnostic testing by karyotype revealed 47, XY, +i (12p), and CMA displayed four copies of 12p: 12p13.33-12p11.1(173786_34835641) × 4. The CNV-seq results of the fetal skin and the fetal side of placenta showed four copies of 12p13.33-p11 and an estimated chimeric duplication of 34.08 Mb (chimerism ratio: 10%) in 12 p13.33-p11, respectively. However, no abnormality was detected by CNV-seq at the maternal side of placenta. CONCLUSIONS: Our findings suggest that a positive signal from chromosome 12p on NIPT should raise suspicion for PKS. With the wide application of NIPT, the true positive of incidental finding is expected to increase.


Asunto(s)
Trastornos de los Cromosomas , Pruebas Prenatales no Invasivas , Embarazo , Femenino , Humanos , Tetrasomía , Variaciones en el Número de Copia de ADN/genética , Placenta , Diagnóstico Prenatal , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 12/genética
18.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37958874

RESUMEN

Colletotrichum higginsianum is a major pathogen causing anthracnose in Chinese flowering cabbage (Brassica parachinensis), posing a significant threat to the Chinese flowering cabbage industry. The conidia of C. higginsianum germinate and form melanized infection structures called appressoria, which enable penetration of the host plant's epidermal cells. However, the molecular mechanism underlying melanin biosynthesis in C. higginsianum remains poorly understood. In this study, we identified two enzymes related to DHN-melanin biosynthesis in C. higginsianum: ChPks and ChThr1. Our results demonstrate that the expression levels of genes ChPKS and ChTHR1 were significantly up-regulated during hyphal and appressorial melanization processes. Furthermore, knockout of the gene ChPKS resulted in a blocked DHN-melanin biosynthetic pathway in hyphae and appressoria, leading to increased sensitivity of the ChpksΔ mutant to cell-wall-interfering agents as well as decreased turgor pressure and pathogenicity. It should be noted that although the Chthr1Δ mutant still exhibited melanin accumulation in colonies and appressoria, its sensitivity to cell-wall-interfering agents and turgor pressure decreased compared to wild-type strains; however, complete loss of pathogenicity was not observed. In conclusion, our results indicate that DHN-melanin plays an essential role in both pathogenicity and cell wall integrity in C. higginsianum. Specifically, ChPks is crucial for DHN-melanin biosynthesis while deficiency of ChThr1 does not completely blocked melanin production.


Asunto(s)
Colletotrichum , Melaninas , Virulencia , Melaninas/metabolismo , Pared Celular/metabolismo
19.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139213

RESUMEN

NAC is a class of plant-specific transcription factors that are widely involved in the growth, development and (a)biotic stress response of plants. However, their molecular evolution has not been extensively studied in Malvales, especially in Aquilaria sinensis, a commercial and horticultural crop that produces an aromatic resin named agarwood. In this study, 1502 members of the NAC gene family were identified from the genomes of nine species from Malvales and three model plants. The macroevolutionary analysis revealed that whole genome duplication (WGD) and dispersed duplication (DSD) have shaped the current architectural structure of NAC gene families in Malvales plants. Then, 111 NAC genes were systemically characterized in A. sinensis. The phylogenetic analysis suggests that NAC genes in A. sinensis can be classified into 16 known clusters and four new subfamilies, with each subfamily presenting similar gene structures and conserved motifs. RNA-seq analysis showed that AsNACs presents a broad transcriptional response to the agarwood inducer. The expression patterns of 15 AsNACs in A. sinensis after injury treatment indicated that AsNAC019 and AsNAC098 were positively correlated with the expression patterns of four polyketide synthase (PKS) genes. Additionally, AsNAC019 and AsNAC098 were also found to bind with the AsPKS07 promoter and activate its transcription. This comprehensive analysis provides valuable insights into the molecular evolution of the NAC gene family in Malvales plants and highlights the potential mechanisms of AsNACs for regulating secondary metabolite biosynthesis in A. sinensis, especially for the biosynthesis of 2-(2-phenyl) chromones in agarwood.


Asunto(s)
Malvales , Thymelaeaceae , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Thymelaeaceae/genética , Thymelaeaceae/química , Genes de Plantas
20.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36770594

RESUMEN

Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities.


Asunto(s)
Bacillus , Bacillus subtilis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA