Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 9(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212755

RESUMEN

Essential oils (EOs) have historically been used for centuries in folk medicine, and nowadays they seem to be a promising control strategy against wide spectra of pathogens, diseases, and parasites. Studies on free-living nematodes are scarce. The free-living microbivorous nematode Panagrolaimus sp. was chosen as the test organism. The nematode possesses extraordinary biological properties, such as resistance to extremely low temperatures and long-term survival under minimal metabolic activity. Fifty EOs from 22 plant families of gymnosperms and angiosperms were tested on Panagrolaimus sp. The aims of this study were to investigate the in vitro impact of EOs on the psychrophilic nematode Panagrolaimus sp. in a direct contact bioassay, to list the activity of EOs based on median lethal concentration (LC50), to determine the composition of the EOs with the best nematicidal activity, and to compare the activity of EOs on Panagrolaimus sp. versus plant parasitic nematodes. The results based on the LC50 values, calculated using Probit analysis, categorized the EOs into three categories: low, moderate and highly active. The members of the laurel family, i.e., Cinnamomum cassia and C. burmannii, exhibited the best nematicidal activity. Aldehydes were generally the major chemical components of the most active EOs and were the chemicals potentially responsible for the nematicidal activity.

2.
Biol Open ; 6(12): 1953-1959, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29175859

RESUMEN

Panagrolaimus sp. DAW1 is a freeze-tolerant Antarctic nematode which survives extensive intracellular ice formation. The molecular mechanisms of this extreme adaptation are still poorly understood. We recently showed that desiccation-enhanced RNA interference (RNAi) soaking can be used in conjunction with quantitative polymerase chain reaction (qPCR) to screen for phenotypes associated with reduced expression of candidate genes in Panagrolaimus sp. DAW1. Here, we present the use of this approach to investigate the role of trehalose synthesis genes in this remarkable organism. Previous studies have shown that acclimating Panagrolaimus sp. DAW1 at 5°C before freezing or desiccation substantially enhances survival. In this study, the expression of tps-2 and other genes associated with trehalose metabolism, as well as lea-1, hsp-70 and gpx-1, in cold-acclimated and non-acclimated nematodes was analyzed using qPCR. Pd-tps-2 and Pd-lea-1 were significantly upregulated after cold acclimation, indicating an inducible expression in the cold adaptation of Panagrolaimus sp. DAW1. The role of trehalose synthesis genes in Panagrolaimus sp. DAW1 was further investigated by RNAi. Compared to the controls, Pd-tps-2a(RNAi)-treated and cold-acclimated nematodes showed a significant decrease in mRNA, but no change in trehalose content or freezing survival. The involvement of two other trehalose synthesis genes (tps-2b and gob-1) was also investigated. These findings provide the first functional genomic investigation of trehalose synthesis genes in the non-model organism Panagrolaimus sp. DAW1. The presence of several trehalose synthesis genes with different RNAi sensitivities suggests the existence of multiple backup systems in Panagrolaimus sp. DAW1, underlining the importance of this sugar in preparation for freezing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA