Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunol Rev ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340232

RESUMEN

Enteric viruses are the main cause of acute gastroenteritis worldwide with a significant morbidity and mortality, especially among children and aged adults. Some enteric viruses also cause disseminated infections and severe neurological manifestations such as poliomyelitis. Protective immunity against these viruses is not well understood in humans, with most knowledge coming from animal models, although the development of poliovirus and rotavirus vaccines has extended our knowledge. In a classical view, innate immunity involves the recognition of foreign DNA or RNA by pathogen recognition receptors leading to the production of interferons and other inflammatory cytokines. Antigen uptake and presentation to T cells and B cells then activate adaptive immunity and, in the case of the mucosal immunity, induce the secretion of dimeric IgA, the more potent immunoglobulins in viral neutralization. The study of Inborn errors of immunity (IEIs) offers a natural opportunity to study nonredundant immunity toward pathogens. In the case of enteric viruses, patients with a defective production of antibodies are at risk of developing neurological complications. Moreover, a recent description of patients with low or absent antibody production with protracted enteric viral infections associated with hepatitis reinforces the prominent role of B cells and immunoglobulins in the control of enteric virus.

2.
Cell Mol Life Sci ; 81(1): 413, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365457

RESUMEN

The intricate connection between the gut and the brain involves multiple routes. Several viral families begin their infection cycle in the intestinal tract. However, amongst the long list of viral intestinal pathogens, picornaviruses, and astroviruses stand out for their ability to transition from the intestinal epithelia to central or peripheral nervous system cells. In immunocompromised, neonates and young children, these viral infections can manifest as severe diseases, such as encephalitis, meningitis, and acute flaccid paralysis. What confers this remarkable plasticity and makes them efficient in infecting cells of the gut and the brain axes? Here, we review the current understanding of the virus infection along the gut-brain axis for some enteric viruses and discuss the molecular mechanisms of their attenuation.


Asunto(s)
Picornaviridae , Humanos , Animales , Picornaviridae/fisiología , Encéfalo/virología , Astroviridae/genética , Astroviridae/fisiología , Infecciones por Enterovirus/virología , Infecciones por Picornaviridae/virología
3.
Clin Infect Dis ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093815

RESUMEN

BACKGROUND: Human parechovirus (HPeV) infection can result in severe disease in infants, including sepsis, seizures, brain injury, and death. In 2022, a resurgence of HPeV was noted in young infants. Spectrum of illness and outcomes remain to be fully described. METHODS: A multi-state retrospective cohort study was conducted to evaluate hospitalizations and outcomes of infants aged ≤6 months admitted in 2022 with laboratory-confirmed HPeV infection. Infants with severe disease were defined as having clinical seizures, or abnormalities on MRI or EEG during admission. Infants with severe vs non-severe disease were compared using descriptive statistics. RESULTS: 124 U.S. infants were identified with HPeV in 11 states. Cases of HPeV peaked in May and presented at a median of 25.8 days of life (0-194 d) with fever, fussiness, and poor feeding. Bacterial and other viral co-infections were rare. 33 (27%) of infants had severe neurologic disease, were more likely to present at an earlier age (13.9 vs 30 days of life, p<0.01), have preterm gestation (12% vs. 1%, p = 0.02), and present with respiratory symptoms (26% vs. 8%, p = 0.01) or apnea (41% vs. 1%, p <0.001). Subcortical white matter cytoxic cerebral edema was common in severe cases. Two infants with HPeV died during admission with severe neurologic HPeV disease; no infant with mild HPeV disease died. CONCLUSIONS: This is the largest, geographically-diverse U.S. study to describe the 2022 HPeV outbreak among infants. Longitudinal follow up of infants is needed to define predictors and outcomes of severe HPeV disease.

4.
Emerg Infect Dis ; 30(2): 234-244, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38270192

RESUMEN

Parechovirus infections usually affect neonates and young children; manifestations vary from asymptomatic to life-threatening. We describe laboratory capacity in Europe for assessing parechovirus circulation, seasonality, and epidemiology. We used retrospective anonymized data collected from parechovirus infection case-patients identified in Europe during January 2015-December 2021. Of 21 laboratories from 18 countries that participated in the study, 16 (76%) laboratories with parechovirus detection capacity reported 1,845 positive samples; 12/16 (75%) with typing capability successfully identified 517 samples. Parechovirus A3 was the most common type (n = 278), followed by A1 (153), A6 (50), A4 (13), A5 (22), and A14 (1). Clinical data from 1,269 participants highlighted correlation of types A3, A4, and A5 with severe disease in neonates. We observed a wide capacity in Europe to detect, type, and analyze parechovirus data. To enhance surveillance and response for PeV outbreaks, sharing typing protocols and data on parechovirus-positive cases should be encouraged.


Asunto(s)
Parechovirus , Niño , Recién Nacido , Humanos , Preescolar , Parechovirus/genética , Estudios Retrospectivos , Europa (Continente)/epidemiología , Brotes de Enfermedades , Laboratorios
5.
J Clin Microbiol ; 62(6): e0113923, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38647282

RESUMEN

Parechovirus A (PeV-A) infections have been detected with increasing frequency in US infants under 6 months of age, leading to a Centers for Disease Control and Prevention (CDC) health advisory in July 2022. Clinicians are advised to consider PeV-A laboratory testing of blood and cerebrospinal fluid when infants present with unexplained fever, sepsis-like illness, or neurological issues. Clinical laboratories are encouraged to offer in-house molecular testing for PeV-A to avoid diagnostic delays, unnecessary use of antibiotics, and prolonged hospitalization of infants presenting with sepsis-like illness. While data are evolving on potential neurodevelopmental sequelae after PeV-A infant central nervous system infections, most infected infants return to baseline health for age. This review examines the PeV-A literature with a focus on PeV-A3, including aspects of epidemiology, clinical presentations/management, laboratory diagnostics, genotyping, and post-infectious sequelae related to PeV-A infections in infants.


Asunto(s)
Parechovirus , Infecciones por Picornaviridae , Humanos , Parechovirus/genética , Parechovirus/aislamiento & purificación , Parechovirus/clasificación , Infecciones por Picornaviridae/diagnóstico , Infecciones por Picornaviridae/epidemiología , Lactante , Recién Nacido , Genotipo , Estados Unidos/epidemiología
6.
J Med Virol ; 96(2): e29477, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38376942

RESUMEN

Human parechovirus A (HPeV-A) is a causative agent of respiratory and gastrointestinal illnesses, acute flaccid paralysis encephalitis, meningitis, and neonatal sepsis. To clarify the characteristics of HPeV-A infection in children, 391 fecal specimens were collected from January 2014 to October 2015 from patients with acute gastroenteritis in Seoul, South Korea. Of these, 221/391 (56.5%) HPeV-A positive samples were found in children less than 2 years old. Three HPeV-A genotypes HPeV-A1 (117/221; 52.94%), HPeV-A3 (100/221; 45.25%), and HPeV-A6 (4/221; 1.81%) were detected, among which HPeV-A3 was predominant with the highest recorded value of 58.6% in 2015. Moreover, recombination events in the Korean HPeV-A3 strains were detected. Phylogenetic analysis revealed that the capsid-encoding regions and noncapsid gene 2A of the four Korean HPeV-A3 strains are closely related to the HPeV-A3 strains isolated in Canada in 2007 (Can82853-01), Japan in 2008 (A308/99), and Taiwan in 2011 (TW-03067-2011) while noncapsid genes P2 (2B-2C) and P3 (3A-3D) are closely related to those of HPeV-A1 strains BNI-788St (Germany in 2008) and TW-71594-2010 (Taiwan in 2010). This first report on the whole-genome analysis of HPeV-A3 in Korea provides insight into the evolving status and pathogenesis of HPeVs in children.


Asunto(s)
Parechovirus , Niño , Recién Nacido , Humanos , Preescolar , Filogenia , Parechovirus/genética , República de Corea/epidemiología , Evolución Biológica , Recombinación Genética
7.
Virol J ; 21(1): 102, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698421

RESUMEN

Human parechovirus, a member of the Picornaviridae family (PeVs), can lead to severe infections, including severe meningitis, meningoencephalitis, and sepsis-like syndrome. We report a case of human parechovirus-related encephalitis in a 52-year-old woman diagnosed with glioblastoma multiforme. She underwent surgical resection in June 2022. Unfortunately, her disease recurred, and she underwent a second resection in August 2022, followed by radiation therapy and Temozolomide therapy. She presented to the hospital with acute confusion followed by seizures, necessitating intubation for airway support. A cerebrospinal fluid (CSF) sample was obtained and processed using the Biofire FilmArray, which reported the detection of HSV-1. Despite being on Acyclovir, the patient did not show signs of improvement. Consequently, a second CSF sample was obtained and sent for next-generation sequencing (NGS), which returned a positive result for Parechovirus. In this presented case, the patient exhibited symptoms of an unknown infectious cause. The utilization of NGS and metagenomic analysis helped identify Parechovirus as the primary pathogen present, in addition to previously identified HSV. This comprehensive approach facilitated a thorough assessment of the underlying infection and guided targeted treatment. In conclusion, the application of NGS techniques and metagenomic analysis proved instrumental in identifying the root cause of the infection.


Asunto(s)
Huésped Inmunocomprometido , Parechovirus , Infecciones por Picornaviridae , Humanos , Femenino , Persona de Mediana Edad , Infecciones por Picornaviridae/virología , Infecciones por Picornaviridae/diagnóstico , Parechovirus/genética , Parechovirus/aislamiento & purificación , Parechovirus/clasificación , Arabia Saudita , Secuenciación de Nucleótidos de Alto Rendimiento , Glioblastoma/virología , Metagenómica , Encefalitis Viral/virología , Encefalitis Viral/diagnóstico , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/aislamiento & purificación , Hospitalización
8.
Artículo en Inglés | MEDLINE | ID: mdl-39331310

RESUMEN

PURPOSE: In November 2023, the National Reference Laboratory for Enteroviruses (Budapest, Hungary) received stool, pharyngeal swab and cerebrospinal fluid samples from five newborns suspected of having human parechovirus (PEV-A) infection. The neonates were born in the same hospital and presented with fever and sepsis-like symptoms at 8-9 days of age, and three of them showed symptoms consistent with central nervous system involvement. PEV-A positivity was confirmed by quantitative reverse transcription polymerase chain reaction. METHODS: To determine the PEV-A genotype responsible for the infections, fecal samples of four neonates were subjected to metagenomic sequencing. For further analyses, amplicon-based whole genome sequencing was performed directly from the clinical samples. RESULTS: On the basis of whole genome analysis, sequences were allocated to PEV-A genotype 3 (PEV-A3) and consensus sequences were identical. Two ambiguities were identified in the viral protein 1 (VP1) region of all sequences at a frequency of 17.7-53.7%, indicating the simultaneous presence of at least two quasispecies in the clinical samples. The phylogenetic analysis and similarity plotting showed that all sequences clustered without any topological inconsistencies between the P1 capsid and P2, P3 non-capsid regions, suggesting that recombination events during evolution were unlikely. CONCLUSION: Our findings suggest that the apparent cluster of cases were microbiologically related, and the results may also inform future investigations on the evolution and pathogenicity of PEV-A3 infections.

9.
Rev Med Virol ; 33(2): e2421, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639694

RESUMEN

Congenital CMV, enteroviruses, human parechovirus and herpes simplex virus are all common causes of severe central nervous system (CNS) infection in neonates. The introduction of screening (i.e. newborn hearing screening programme), integration of molecular syndromic testing (i.e. multiplex polymerase chain reaction assays) and increase in sexually transmitted infections (i.e. anogenital herpes) have contributed to increases in each of these infections over the last decade. However, therapeutic options are highly limited in part due to the lack of epidemiological data informing trials. This review will describe our current understanding of the clinical burden and epidemiology of these severe neonatal CNS infections, outline the novel antiviral and vaccines in the pipeline and suggest future research studies which could help develop new therapeutics.


Asunto(s)
Infecciones del Sistema Nervioso Central , Enfermedades Virales del Sistema Nervioso Central , Infecciones por Citomegalovirus , Infecciones por Enterovirus , Infecciones por Herpesviridae , Recién Nacido , Humanos , Infecciones por Enterovirus/epidemiología , Investigación
10.
Eur J Pediatr ; 183(6): 2615-2623, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492030

RESUMEN

Parechovirus (HpEV) and Enterovirus (EV) infections in children mostly have a mild course but are particularly fearsome in newborns in whom they may cause aseptic meningitis, encephalitis, and myocarditis. Our study aimed to describe the clinical presentations and peculiarities of CNS infection by HpEV and EV in neonates. This is a single-center retrospective study at Istituto Gaslini, Genoa, Italy. Infants aged ≤ 30 days with a CSF RTq-PCR positive for EV or HpEV from January 1, 2022, to December 1, 2023, were enrolled. Each patient's record included demographic data, blood and CSF tests, brain MRI, therapies, length of stay, ICU admission, complications, and mortality. The two groups were compared to identify any differences and similarities. Twenty-five patients (15 EV and 10 HpEV) with a median age of 15 days were included. EV patients had a more frequent history of prematurity/neonatal respiratory distress syndrome (p = 0.021), more respiratory symptoms on admission (p = 0.012), and higher C-reactive protein (CRP) levels (p = 0.027), whereas ferritin values were significantly increased in HpEV patients (p = 0.001). Eight patients had a pathological brain MRI, equally distributed between the two groups. Three EV patients developed myocarditis and one HpEV necrotizing enterocolitis with HLH-like. No deaths occurred.  Conclusion: EV and HpEV CNS infections are not easily distinguishable by clinical features. In both cases, brain MRI abnormalities are not uncommon, and a severe course of the disease is possible. Hyper-ferritinemia may represent an additional diagnostic clue for HpEV infection, and its monitoring is recommended to intercept HLH early and initiate immunomodulatory treatment. Larger studies are needed to confirm our findings. What is Known: • Parechovirus and Enteroviruses are the most common viral pathogens responsible for sepsis and meningoencephalitis in neonates and young infants. • The clinical course and distinguishing features of Parechovirus and Enterovirus central nervous system infections are not well described. What is New: • Severe disease course, brain MRI abnormalities, and complications are not uncommon in newborns with Parechovirus and Enteroviruses central nervous system infections. • Hyper-ferritinemia may represent an additional diagnostic clue for Parechovirus infection and its monitoring is recommended.


Asunto(s)
Infecciones por Enterovirus , Parechovirus , Infecciones por Picornaviridae , Humanos , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/complicaciones , Masculino , Estudios Retrospectivos , Femenino , Parechovirus/aislamiento & purificación , Recién Nacido , Infecciones por Picornaviridae/diagnóstico , Infecciones por Picornaviridae/complicaciones , Infecciones por Picornaviridae/epidemiología , Enterovirus/aislamiento & purificación , Italia/epidemiología , Infecciones del Sistema Nervioso Central/virología , Infecciones del Sistema Nervioso Central/diagnóstico , Infecciones del Sistema Nervioso Central/epidemiología , Infecciones del Sistema Nervioso Central/líquido cefalorraquídeo , Imagen por Resonancia Magnética
11.
Adv Exp Med Biol ; 1448: 249-267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39117819

RESUMEN

A wide variety of infections can trigger cytokine storm syndromes including those caused by bacteria, viruses, fungi and parasites. The most frequent viral trigger is Epstein-.Barr virus which is covered in Chapter 16. CSS associated with COVID-19 is also discussed separately (Chapter 22). This chapter will focus on other viruses including the hemorrhagic fever viruses, influenza, parainfluenza, adenovirus, parvovirus, hepatitis viruses, measles, mumps, rubella, enterovirus, parechovirus, rotavirus, human metapneumovirus and human T-lymphotropic virus. The published literature consists of many single case reports and moderate-sized case series reporting CSS, in most circumstances meeting the 2004 diagnostic criteria for hemophagocytic lymphohistiocytosis (HLH). There is no published clinical trial evidence specifically for management of HLH associated with these viruses. In some situations, patients received supportive therapy and blood product transfusions only but in most cases, they were treated with one or more of intravenous corticosteroids, intravenous immunoglobulin and/or etoposide. These were successful in many patients although in significant numbers progression of infection to CSS was associated with mortality.


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Humanos , Síndrome de Liberación de Citoquinas/inmunología , COVID-19/complicaciones , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Linfohistiocitosis Hemofagocítica/terapia , Linfohistiocitosis Hemofagocítica/inmunología , Linfohistiocitosis Hemofagocítica/virología , SARS-CoV-2 , Fiebres Hemorrágicas Virales/virología
12.
Aust J Rural Health ; 32(5): 938-943, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39031324

RESUMEN

OBJECTIVE: This study aims to analyse the clinical presentation caused by enterovirus (EV) and/or human parechovirus (HPeV) infection in children, as well as the management of such cases admitted to a regional hospital in Australia. METHODS: Retrospective study reviewing medical records. SETTING: Single hospital in regional Australia. PARTICIPANTS: All children under 18 years admitted over the 5-year period beginning from 1 January 2017 with confirmed EV and/or HPeV infection. Cases with clinically insignificant EV/HPeV isolation were excluded. MAIN OUTCOME MEASURES: Data collected included demographic data, signs and symptoms present, specimens of EV/HPeV isolation, co-occurring pathogens, peak C-reactive protein (CRP), antibiotic therapy, discharge diagnosis and follow-up after discharge. RESULTS: Overall, 27 patients fulfilled the inclusion criteria; 81.5% of the patients were ≤3 months of age with a median of 2 months (interquartile range 1-3); 74.1% were males. The most common clinical features were a fever ≥38°C and irritability/lethargy/high-pitched cry. 29.6% of the patients had co-occurring pathogens detected, and a CRP ≤10 mg/L was observed in 77.8% of cases. All but two children were treated with antibiotics while awaiting polymerase chain reaction results. The most common discharge diagnosis was meningitis. In all, 74.1% of the children attended follow-up appointments. CONCLUSIONS: EV and HPeV should be considered as a possible aetiology of fever and irritability/lethargy/high-pitched cry in children under 3 months.


Asunto(s)
Infecciones por Enterovirus , Parechovirus , Infecciones por Picornaviridae , Humanos , Masculino , Femenino , Lactante , Estudios Retrospectivos , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/terapia , Infecciones por Picornaviridae/diagnóstico , Infecciones por Picornaviridae/epidemiología , Parechovirus/aislamiento & purificación , Preescolar , Niño , Australia/epidemiología , Adolescente , Enterovirus/aislamiento & purificación
13.
J Infect Dis ; 227(2): 288-294, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35608411

RESUMEN

Parechovirus-A3 (PeV-A3), first reported in 2004 in Japan, is an emerging pathogen that causes sepsis and meningoencephalitis in neonates and young infants. Although PeV-A3 has been identified worldwide, its epidemiological characteristics differ by region. To investigate the molecular evolution and epidemiology of PeV-A3, we performed genetic analyses of 131 PeV-A3 strains from the years 1997-2019 in Niigata, Japan. During 2016-2019, annual numbers remained steady, in contrast to the PeV-A3 epidemic interval of every 2-3 years that was observed in Japan from 2006. Bayesian evolutionary analysis of the complete viral protein 1 region revealed alternate dominant clusters during years of PeV-A3 epidemics. The branch including the oldest and first isolated PeV-A3 strains in Japan has been disrupted since 2001. The year of PeV-A3 emergence was estimated to be 1991. Continuous surveillance with genetic analyses of different regions will improve understanding of PeV-A3 epidemiology worldwide.


Asunto(s)
Parechovirus , Infecciones por Picornaviridae , Lactante , Recién Nacido , Humanos , Infecciones por Picornaviridae/epidemiología , Parechovirus/genética , Japón/epidemiología , Teorema de Bayes , Evolución Molecular
14.
J Infect Dis ; 227(2): 278-287, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35867852

RESUMEN

BACKGROUND: A novel human parechovirus 3 Australian recombinant (HPeV3-AR) strain emerged in 2013 and coincided with biennial outbreaks of sepsis-like illnesses in infants. We evaluated the molecular evolution of the HPeV3-AR strain and its association with severe HPeV infections. METHODS: HPeV3-positive samples collected from hospitalized infants aged 5-252 days in 2 Australian states (2013-2020) and from a community-based birth cohort (2010-2014) were sequenced. Coding regions were used to conduct phylogenetic and evolutionary analyses. A recombinant-specific polymerase chain reaction was designed and utilized to screen all clinical and community HPeV3-positive samples. RESULTS: Complete coding regions of 54 cases were obtained, which showed the HPeV3-AR strain progressively evolving, particularly in the 3' end of the nonstructural genes. The HPeV3-AR strain was not detected in the community birth cohort until the initial outbreak in late 2013. High-throughput screening showed that most (>75%) hospitalized HPeV3 cases involved the AR strain in the first 3 clinical outbreaks, with declining prevalence in the 2019-2020 season. The AR strain was not statistically associated with increased clinical severity among hospitalized infants. CONCLUSIONS: HPeV3-AR was the dominant strain during the study period. Increased hospital admissions may have been from a temporary fitness advantage and/or increased virulence.


Asunto(s)
Parechovirus , Infecciones por Picornaviridae , Lactante , Humanos , Parechovirus/genética , Filogenia , Australia/epidemiología , Recombinación Genética
15.
J Med Virol ; 95(4): e28696, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36951317

RESUMEN

To investigate the antigenic changes in parechovirus 1 (PeVA1), seroepidemiological analyses were performed against the Harris strain (Harris), isolated in 1956, and PeVA1/Yamagata.JPN/2021-4785, isolated in 2021, using immune sera and 207 and 237 human serum specimens collected in 2021 and 1976, respectively. Although rabbit immune sera showed the highest neutralization antibody (NT-Ab) titers against the immunized viruses at 1:12 800-1:102 400, they were cross-reactive at 1:400-1:800. All 62 Yamagata isolates obtained between 2001 and 2021 (Yamagata strains), belonging to phylogenetic lineage 1B, reacted more strongly (mostly 4-64 times) to antiserum against PeVA1/Yamagata.JPN/2021-4785 than to antiserum against Harris, belonging to phylogenetic lineage 1 A. Human serum specimens obtained in 2021 showed higher NT-Ab titers against PeVA1/Yamagata.JPN/2021-4785, whereas those obtained in 1976 had similar NT-Ab titers against both strains. These findings suggested that Yamagata strains and Harris were antigenically cross-reactive, although there were differences. There are still high NT-Abs titers present against Harris in 2021 in particular, indicating that PeVA1 has been in circulation with high immunity in the population. In conclusion, this study suggested that PeVA1 has been endemically perpetuated with only minor antigenic changes as well as with high immunity over several decades in the community.


Asunto(s)
Gripe Humana , Parechovirus , Virus , Animales , Humanos , Conejos , Japón/epidemiología , Filogenia , Sueros Inmunes , Gripe Humana/epidemiología
16.
J Med Virol ; 95(10): e29194, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37881026

RESUMEN

Enteroviruses (EV) and parechoviruses A (PeV-A) are commonly circulating viruses able to cause severe disease. Surveillance studies from sub-Saharan Africa are limited and show high but variable infection rates and a high variation in genotypes. This is the first study to describe EV and PeV-A circulation in children in South Sudan. Of the fecal samples collected, 35% and 10% were positive for EV and PeV-A, respectively. A wide range of genotypes were found, including several rarely described EV and PeV-A types. Coxsackie virus A (CVA) EV-C types, particularly CVA13, were the most dominant EV types. The CVA13 types had a high diversity with the majority belonging to four different previously described clusters. PeV-A1 and -A14 were the most common PeV-A genotypes. A lack of representative data from our and other studies from sub-Saharan Africa demonstrates the need for more systematic surveillance of non-polio EV and PeV-A types in this region.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Parechovirus , Infecciones por Picornaviridae , Niño , Humanos , Parechovirus/genética , Filogenia , Infecciones por Picornaviridae/epidemiología , Enterovirus/genética , Infecciones por Enterovirus/epidemiología
17.
J Med Virol ; 95(7): e28964, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37464903

RESUMEN

Parechovirus-A (PeV-A) causes emerging infection in children, and clinical presentation depends on genotype. The virus has been investigated mainly in developed countries; however, data from developing countries, especially in Asia, are sparse. This study investigated whether PeV-A circulated in children in Myanmar. This retrospective study evaluated PeV-A in nasopharyngeal samples from children aged 1 month to 12 years who were hospitalized with acute lower respiratory infection at Yankin Children Hospital, Yangon, Myanmar, during the period from May 2017 to April 2019. Real-time polymerase chain reaction (PCR) was used to detect PeV-A, and PCR-positive samples were used for genotyping and phylogenetic analysis. In total, 11/570 (1.9%) of samples were positive for PeV-A; 7 were successfully genotyped by sequencing the VP3/VP1 region, as follows: PeV-A1 (n = 4), PeV-A5 (n = 1), PeV-A6 (n = 1), and PeV-A14 (n = 1). Median age was 10.0 months (interquartile range 4.0-12.0 months), and other respiratory viruses were detected in all cases. Phylogenetic analysis showed that all detected PeV-A1 strains were in clade 1 A, which was a minor clade worldwide. Four PeV-A genotypes were detected in Myanmar. The clinical impact of PeV-A in children should be evaluated in future studies.


Asunto(s)
Parechovirus , Infecciones por Picornaviridae , Niño , Humanos , Lactante , Parechovirus/genética , Infecciones por Picornaviridae/diagnóstico , Infecciones por Picornaviridae/epidemiología , Niño Hospitalizado , Estudios Retrospectivos , Mianmar/epidemiología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Genotipo
18.
Arch Virol ; 168(3): 91, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36786868

RESUMEN

The first bovine parechovirus (Bo_ParV) was reported in 2021, and currently, only two nearly complete genome sequences of Bo_ParV are available. In this study, we detected Bo_ParVs in 10 out of 158 bovine fecal samples tested using real-time RT-PCR, and Bo_ParVs were isolated from three of these samples using MA104 cells. Analysis of the P1 region revealed that Bo_ParVs shared high pairwise amino acid sequence similarity (≥ 95.7% identity), suggesting antigenic similarity among Bo_ParVs, whereas nucleotide sequence identity values (≥ 84.8%) indicated more variability. A recombination breakpoint was identified in the 2B region, which may influence the evolution of this virus.


Asunto(s)
Bovinos , Parechovirus , Animales , Bovinos/virología , Variación Genética , Genotipo , Parechovirus/genética , Filogenia , Prevalencia
19.
Rev Med Virol ; 32(6): e2380, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35822660

RESUMEN

Parechovirus A (PeV-A) belongs to the genus Parechovirus in the family Picornaviridae associated with gastroenteritis illness, particularly in children, but prior studies have produced ambiguous results. This study aimed to provide a systematic review of the PeV-A prevalence in paediatric patients with gastroenteritis and the association between PeV-A infection and the risk of gastroenteritis. A systematic search of the literature was conducted in Embase, PubMed, Scopus, and Web of Science, in combination with the reference lists of potentially relevant articles. A random effect-based model was applied to analyse data from included studies. The pooled odds ratio (OR) and 95% confidence interval (CI) were used for assessing the risk between PeV-A and gastroenteritis. A total of 41 studies assessing 21,850 cases and 1746 healthy controls were analysed. The overall prevalence of PeV-A among paediatric patients with gastroenteritis was 10.4% (95% CI: 7.9%-13.2%), while it was estimated at 8.1% (95% CI: 5.1%-11.7%) based on studies only investigating children without gastroenteritis. The pooled OR for all eight case-control studies was 1.079 (95% CI: 0.730-1.597), indicating there was no statistically significant association. PeV-A genotype 1 was the most frequent genotype of PeV-A infection in children with gastroenteritis. The PeV-A prevalence in cases of gastroenteritis is higher than that in children without gastroenteritis. However, the present meta-analysis did not indicate a statistically significant association between PeV-A infection and risk of gastroenteritis. Given the considerable heterogeneity and various sample sizes among the included studies, relevant investigations in the future should be carried out based on a large-scale population.


Asunto(s)
Gastroenteritis , Parechovirus , Infecciones por Picornaviridae , Humanos , Niño , Lactante , Parechovirus/genética , Infecciones por Picornaviridae/complicaciones , Infecciones por Picornaviridae/epidemiología , Gastroenteritis/epidemiología , Genotipo , Filogenia
20.
J Gen Virol ; 103(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35138239

RESUMEN

A novel picornavirus was isolated from the faeces of a diarrhoeic cow using MA-104 cells at the third blind passage. This virus, named Den1/2021/JPN, was completely sequenced using total RNA from the cell culture supernatant by deep sequencing. The genome of Den1/2021/JPN had a standard picornavirus genome organisation with conserved picornaviral motifs. The 5' untranslated region harboured a type-II internal ribosomal entry site. Den1/2021/JPN was most closely related to a bovine parechovirus (Bo_ParV) named cow/2018/4, which has been recently identified in publicly available databases. Phylogenetic analyses and pairwise sequence comparison revealed that Den1/2021/JPN and Bo_ParV cow/2018/4 clustered with parechoviruses and were most closely related to Parechovirus E identified in birds of prey, exhibiting nucleotide sequence similarity of 64.2-64.5 %, 58.6-59.7 % and 66.3-66.4 % in the polyprotein, P1 and 2C+3 CD coding regions, respectively. This study presents the first report on the isolation of Bo_ParV. Den1/2021/JPN and Bo_ParV cow/2018/4, which are candidates for a novel species in the genus Parechovirus.


Asunto(s)
Heces/virología , Genoma Viral , Parechovirus/aislamiento & purificación , Infecciones por Picornaviridae , ARN Viral , Animales , Bovinos , Japón , Infecciones por Picornaviridae/veterinaria , Infecciones por Picornaviridae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA