Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(46): e2307480120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37943835

RESUMEN

Ischemic diseases lead to considerable morbidity and mortality, yet conventional clinical treatment strategies for therapeutic angiogenesis fall short of being impactful. Despite the potential of biomaterials to deliver pro-angiogenic molecules at the infarct site to induce angiogenesis, their efficacy has been impeded by aberrant vascular activation and off-target circulation. Here, we present a semisynthetic low-molecular sulfated chitosan oligosaccharide (SCOS) that efficiently induces therapeutic arteriogenesis with a spontaneous generation of collateral circulation and blood reperfusion in rodent models of hind limb ischemia and myocardial infarction. SCOS elicits anti-inflammatory macrophages' (Mφs') differentiation into perivascular Mφs, which in turn directs artery formation via a cell-to-cell communication rather than secretory factor regulation. SCOS-mediated arteriogenesis requires a canonical Notch signaling pathway in Mφs via the glycosylation of protein O-glucosyltransferases 2, which results in promoting arterial differentiation and tissue repair in ischemia. Thus, this highly bioactive oligosaccharide can be harnessed to direct efficiently therapeutic arteriogenesis and perfusion for the treatment of ischemic diseases.


Asunto(s)
Neovascularización Fisiológica , Sulfatos , Ratones , Animales , Neovascularización Fisiológica/fisiología , Sulfatos/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Macrófagos/metabolismo , Miembro Posterior/irrigación sanguínea , Modelos Animales de Enfermedad
2.
Brain ; 147(9): 3059-3069, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39049445

RESUMEN

Perivascular macrophages (PVMs) and, to a lesser degree, microglia are targets and reservoirs of HIV and simian immunodeficiency virus (SIV) in the brain. Previously, we demonstrated that colony-stimulating factor 1 receptor (CSF1R) in PVMs was upregulated and activated in chronically SIV-infected rhesus macaques with encephalitis, correlating with SIV infection of PVMs. Herein, we investigated the role of CSF1R in the brain during acute SIV infection using BLZ945, a brain-penetrant CSF1R kinase inhibitor. Apart from three uninfected historic controls, nine Indian rhesus macaques were infected acutely with SIVmac251 and divided into three groups (n = 3 each): an untreated control and two groups treated for 20-30 days with low- (10 mg/kg/day) or high- (30 mg/kg/day) dose BLZ945. With the high-dose BLZ945 treatment, there was a significant reduction in cells expressing CD163 and CD206 across all four brain areas examined, compared with the low-dose treatment and control groups. In 9 of 11 tested regions, tissue viral DNA (vDNA) loads were reduced by 95%-99% following at least one of the two doses, and even to undetectable levels in some instances. Decreased numbers of CD163+ and CD206+ cells correlated significantly with lower levels of vDNA in all four corresponding brain areas. In contrast, BLZ945 treatment did not significantly affect the number of microglia. Our results indicate that doses as low as 10 mg/kg/day of BLZ945 are sufficient to reduce the tissue vDNA loads in the brain with no apparent adverse effect. This study provides evidence that infected PVMs are highly sensitive to CSF1R inhibition, opening new possibilities to achieve viral clearance.


Asunto(s)
Encéfalo , Macaca mulatta , Macrófagos , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/virología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Carga Viral/efectos de los fármacos , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Antígenos CD/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/virología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Receptores de Superficie Celular/metabolismo , Anisoles
3.
Acta Neuropathol ; 147(1): 38, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347307

RESUMEN

Diseases of the central nervous system (CNS) are often associated with vascular disturbances or inflammation and frequently both. Consequently, endothelial cells and macrophages are key cellular players that mediate pathology in many CNS diseases. Macrophages in the brain consist of the CNS-associated macrophages (CAMs) [also referred to as border-associated macrophages (BAMs)] and microglia, both of which are close neighbours or even form direct contacts with endothelial cells in microvessels. Recent progress has revealed that different macrophage populations in the CNS and a subset of brain endothelial cells are derived from the same erythromyeloid progenitor cells. Macrophages and endothelial cells share several common features in their life cycle-from invasion into the CNS early during embryonic development and proliferation in the CNS, to their demise. In adults, microglia and CAMs have been implicated in regulating the patency and diameter of vessels, blood flow, the tightness of the blood-brain barrier, the removal of vascular calcification, and the life-time of brain endothelial cells. Conversely, CNS endothelial cells may affect the polarization and activation state of myeloid populations. The molecular mechanisms governing the pas de deux of brain macrophages and endothelial cells are beginning to be deciphered and will be reviewed here.


Asunto(s)
Encéfalo , Células Endoteliales , Encéfalo/patología , Macrófagos , Sistema Nervioso Central/patología , Microglía
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612642

RESUMEN

Vascular cognitive impairment and dementia (VCID) represents a broad spectrum of cognitive decline secondary to cerebral vascular aging and injury. It is the second most common type of dementia, and the prevalence continues to increase. Nuclear factor erythroid 2-related factor 2 (NRF2) is enriched in the cerebral vasculature and has diverse roles in metabolic balance, mitochondrial stabilization, redox balance, and anti-inflammation. In this review, we first briefly introduce cerebrovascular aging in VCID and the NRF2 pathway. We then extensively discuss the effects of NRF2 activation in cerebrovascular components such as endothelial cells, vascular smooth muscle cells, pericytes, and perivascular macrophages. Finally, we summarize the clinical potential of NRF2 activators in VCID.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Humanos , Células Endoteliales , Factor 2 Relacionado con NF-E2 , Disfunción Cognitiva/etiología , Demencia Vascular/etiología
5.
Br J Anaesth ; 130(2): e370-e380, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35778276

RESUMEN

BACKGROUND: Peripheral surgical trauma can trigger neuroinflammation and ensuing neurological complications, such as delirium. The mechanisms whereby surgery contributes to postoperative neuroinflammation remain unclear and without effective therapies. Here, we developed a microfluidic-assisted blood-brain barrier (BBB) device and tested the effects of omega-3 fatty acids on neuroimmune interactions after orthopaedic surgery. METHODS: A microfluidic-assisted BBB device was established using primary human cells. Tight junction proteins, vascular cell adhesion molecule 1 (VCAM-1), BBB permeability, and astrocytic networks were assessed after stimulation with interleukin (IL)-1ß and in the presence or absence of a clinically available omega-3 fatty acid emulsion (Omegaven®; Fresenius Kabi, Bad Homburg, Germany). Mice were treated 1 h before orthopaedic surgery with 10 µl g-1 body weight of omega-3 fatty acid emulsion i.v. or equal volumes of saline. Changes in pericytes, perivascular macrophages, BBB opening, microglial activation, and inattention were evaluated. RESULTS: Omega-3 fatty acids protected barrier permeability, endothelial tight junctions, and VCAM-1 after exposure to IL-1ß in the BBB model. In vivo studies confirmed that omega-3 fatty acid treatment inhibited surgery-induced BBB impairment, microglial activation, and delirium-like behaviour. We identified a novel role for pericyte loss and perivascular macrophage activation in mice after surgery, which were rescued by prophylaxis with i.v. omega-3 fatty acids. CONCLUSIONS: We present a new approach to study neuroimmune interactions relevant to perioperative recovery using a microphysiological BBB platform. Changes in barrier function, including dysregulation of pericytes and perivascular macrophages, provide new targets to reduce postoperative delirium.


Asunto(s)
Delirio del Despertar , Ácidos Grasos Omega-3 , Ratones , Humanos , Animales , Barrera Hematoencefálica/metabolismo , Enfermedades Neuroinflamatorias , Emulsiones/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-3/metabolismo
6.
Handb Exp Pharmacol ; 273: 33-57, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33582883

RESUMEN

The neurovascular unit (NVU) encompasses all brain cells and underlines that neurons, glia and brain vasculature are in intimate physical and functional association. Brain function is dependent on blood flow and local increases in blood flow in response to neural activity - functional hyperaemia takes place at the NVU. Although this is a vital function of the NVU, many studies have demonstrated that the NVU also performs other tasks. Blood vessels in the brain, which are composed of multiple cell types, are essential for correct brain development. They constitute the niche for brain stem cells, sense the environment and communicate changes to neural tissue, and control the immune quiescence of the CNS. In this brief chapter we will discuss new insights into the biology of NVU, which have further revealed the heterogeneity and complexity of the vascular tree and its neurovascular associations.


Asunto(s)
Encéfalo , Neuronas , Barrera Hematoencefálica/metabolismo , Humanos , Neuroglía , Neuronas/metabolismo
7.
Int J Mol Sci ; 20(1)2018 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-30597969

RESUMEN

Metastasis is responsible for most of the cancer-associated deaths and proceeds through multiple steps. Several lines of evidence have established an indispensable involvement of macrophages present at the primary tumor sites in various steps of metastasis, from primary tumor growth to its intravasation into circulation. The lungs encompass a large, dense vascular area and, therefore, are vulnerable to metastasis, particularly, hematogenous ones arising from various types of neoplasms. Lung tissues constitutively contain several types of tissue-resident macrophages and circulating monocytes to counteract potentially harmful exogenous materials, which directly reach through the airway. Recent advances have provided an insight into the ontogenetic, phenotypic, and functional heterogeneity of these lung macrophage and monocyte populations, under resting and inflammatory conditions. In this review, we discuss the ontogeny, trafficking dynamics, and functions of these pulmonary macrophages and monocytes and their potential roles in lung metastasis and measures to combat lung metastasis by targeting these populations.


Asunto(s)
Neoplasias Pulmonares/patología , Macrófagos/patología , Animales , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Macrófagos/metabolismo
8.
Brain Behav Immun ; 62: 53-63, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28179107

RESUMEN

Activation of the hypothalamo-pituitary-adrenal (HPA) axis by inflammatory stressors (e.g., bacterial lipopolysaccharide) is thought to involve vascular transduction of circulating cytokines, with perivascular macrophages (PVMs) along with endothelia, effecting activation of HPA control circuitry via inducible (cyclooxygenase-2- or COX-2-dependent) prostaglandin synthesis. To test the stressor-specificity of this mechanism, we examined whether ablation of PVMs or pharmacologic blockade of COX activity affected HPA responses to a representative emotional stressor, restraint. Exposing rats to a single 30min acute restraint episode provoked increased plasma levels of at least one proinflammatory cytokine, IL-6, microglial activation and multiple indices of cerebrovascular activation, including COX-2 expression and increased brain prostaglandin E2 levels at 0-2h after stress. Pretreatment with the nonselective COX inhibitor, indomethacin, either icv (10µg in 5µl) or iv (1mg/kg) significantly reduced restraint-induced Fos expression in the paraventricular hypothalamic nucleus (PVH) by 45%, relative to vehicle-injected controls. A 75% reduction of the PVH activational response was seen in rats exposed to acute restraint 5-7days after ablation of brain PVMs by icv injection of liposomes encapsulating the bisphosphonate drug, clodronate. Basal plasma levels of ACTH and corticosterone were not altered in clodronate liposome-injected rats, but the peak magnitude of restraint-induced HPA secretory responses was substantially reduced, relative to animals pretreated with saline-filled liposomes. These findings support an unexpectedly prominent role for inducible prostaglandin synthesis by PVMs in HPA responses to acute restraint, a prototypic emotional stressor.


Asunto(s)
Encéfalo/metabolismo , Inflamación/metabolismo , Estrés Fisiológico/fisiología , Estrés Psicológico/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Inhibidores de la Ciclooxigenasa/farmacología , Emociones/fisiología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Indometacina/farmacología , Masculino , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología , Ratas , Ratas Sprague-Dawley , Restricción Física , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estrés Psicológico/fisiopatología
9.
Exp Neurol ; 374: 114680, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185314

RESUMEN

Cerebrovascular diseases are a major cause of stroke and dementia, both requiring long-term care. These diseases involve multiple pathophysiologies, with mitochondrial dysfunction being a crucial contributor to the initiation of inflammation, apoptosis, and oxidative stress, resulting in injuries to neurovascular units that include neuronal cell death, endothelial cell death, glial activation, and blood-brain barrier disruption. To maintain brain homeostasis against these pathogenic conditions, brain immune cells, including border-associated macrophages and microglia, play significant roles as brain innate immunity cells in the pathophysiology of cerebrovascular injury. Although microglia have long been recognized as significant contributors to neuroinflammation, attention has recently shifted to border-associated macrophages, such as perivascular macrophages (PVMs), which have been studied based on their crucial roles in the brain. These cells are strategically positioned around the walls of brain vessels, where they mainly perform critical functions, such as perivascular drainage, cerebrovascular flexibility, phagocytic activity, antigen presentation, activation of inflammatory responses, and preservation of blood-brain barrier integrity. Although PVMs act as scavenger and surveillant cells under normal conditions, these cells exert harmful effects under pathological conditions. PVMs detect mitochondrial dysfunction in injured cells and implement pathological changes to regulate brain homeostasis. Therefore, PVMs are promising as they play a significant role in mitochondrial dysfunction and, in turn, disrupt the homeostatic condition. Herein, we summarize the significant roles of PVMs in cerebrovascular diseases, especially ischemic and hemorrhagic stroke and dementia, mainly in correlation with inflammation. A better understanding of the biology and pathobiology of PVMs may lead to new insights on and therapeutic strategies for cerebrovascular diseases.


Asunto(s)
Trastornos Cerebrovasculares , Demencia , Enfermedades Mitocondriales , Humanos , Macrófagos/metabolismo , Encéfalo/metabolismo , Inflamación/metabolismo , Demencia/metabolismo
10.
Front Mol Neurosci ; 17: 1368058, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486963

RESUMEN

The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.

11.
Front Cell Dev Biol ; 12: 1368021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596358

RESUMEN

Introduction: The classically defined two retinal microglia layers are distributed in inner and outer plexiform layers. Although there are some reports that retinal microglia are also superficially located around the ganglion cell layer (GCL) in contact with the vitreous, there has been a lack of detailed descriptions and not fully understood yet. Methods: We visualized the microglial layers by using CX3CR1-GFP (C57BL6) transgenic mice with both healthy and disease conditions including NaIO3-induced retinal degeneration models and IRBP-induced auto-immune uveitis models. Result: We found the GCL microglia has two subsets; peripheral (pph) microglia located on the retinal parenchyma and BAM (CNS Border Associated Macrophage) which have a special stretched phenotype only located on the surface of large retinal veins. First, in the pph microglia subset, but not in BAM, Galectin-3 and LYVE1 are focally expressed. However, LYVE1 is specifically expressed in the amoeboid or transition forms, except the typical dendritic morphology in the pph microglia. Second, BAM is tightly attached to the surface of the retinal veins and has similar morphology patterns in both the healthy and disease conditions. CD86+ BAM has a longer process which vertically passes the proximal retinal veins. Our data helps decipher the basic anatomy and pathophysiology of the retinal microglia in the GCL. Discussion: Our data helps decipher the basic anatomy and pathophysiology of the retinal microglia in the GCL.

12.
Front Cell Neurosci ; 17: 1291673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077951

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease in which non-cell-autonomous processes have been proposed as its cause. Non-neuronal cells that constitute the environment around motor neurons are known to mediate the pathogenesis of ALS. Perivascular macrophages (PVM) are immune cells that reside between the blood vessels of the central nervous system and the brain parenchyma; PVM are components of the neurovascular unit and regulate the integrity of the blood-spinal cord barrier (BSCB). However, it is not known whether regulation of BSCB function by PVM is involved in the pathogenesis of ALS. Here, we used SOD1G93A mice to investigate whether PVM is involved in the pathogenesis of ALS. Immunostaining revealed that the number of PVM was increased during the disease progression of ALS in the spinal cord. We also found that both anti-inflammatory Lyve1+ PVM and pro-inflammatory MHCII+ PVM subtypes were increased in SOD1G93A mice, and that subtype heterogeneity was shifted toward MHCII+ PVM compared to wild-type (WT) mice. Then we depleted PVM selectively and continuously in SOD1G93A mice by repeated injection of clodronate liposomes into the cerebrospinal fluid and assessed motor neuron number, neurological score, and survival. Results showed that PVM depletion prevented the loss of motoneurons, slowed disease progression, and prolonged survival. Further histological analysis showed that PVM depletion prevents BSCB collapse by ameliorating the reduction of extracellular matrix proteins necessary for the maintenance of barrier function. These results indicate that PVM are involved in the pathogenesis of ALS, as PVM degrades the extracellular matrix and reduces BSCB function, which may affect motor neuron loss and disease progression. Targeting PVM interventions may represent a novel ALS therapeutic strategy.

13.
Front Toxicol ; 4: 825984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391824

RESUMEN

Background: To protect developing brain from any unfavorable effects, it is necessary to construct experimental techniques that can sensitively detect and evaluate developmental toxicity. We have previously shown that brain perivascular tissues, especially perivascular macrophages (PVMs), respond sensitively even to weak stimuli by foreign toxicants such as low-dose exposure to nanoparticle. This paper shows the protocol of a novel staining method that enables easy detection and rapid evaluation of brain perivascular abnormalities. Methods: As weak stimulus, low-dose of carbon black nanoparticle (95 µg/kg) or titanium dioxide nanoparticle (100 µg/kg) was intranasally administered to pregnant mice at gestational days 5 and 9. The offspring brains were used to confirm the properties of PVMs and to find suitable protocols for the detection and evaluation of the mild denaturation of PVMs. Furthermore, various procedures of novel combinational double staining including periodic acid-Schiff (PAS) staining and immunohistochemistry were examined. In addition, we checked the alterations in neurotransmitter levels and the behaviors of the offspring. Results and discussion: Maternal exposure to low-dose of nanoparticle at levels where no significant effects on the brain were observed, such as abnormal behavior, alteration of neurotransmitter levels, or microglial activation, resulted in mild denaturation of the PVMs, which was captured by PAS staining. However, it was difficult to detect and determine slight histopathological alterations. Therefore, we established PAS-immunohistochemical double-staining method for the brain. This double staining method enabled easy detection and rapid evaluation of brain perivascular abnormalities and the relationship between PVMs and the surrounding cells. In addition, this double staining allows evaluation of the histopathological denaturation of the PVMs and the associated abnormalities in the surrounding tissues in the same section. Conclusion: The slight responses of brain perivascular tissues, such as mild denaturation of PVMs, were sensitively and easily determined by the PAS-immunohistochemical double-staining method. This double staining method is a powerful tool to assess brain perivascular injuries including PVM denaturation and the relationship between the expression of various molecules and the morphology of PVMs. We propose that the observation of the tissue around brain blood vessels using the double staining provides potential endpoints to evaluate developmental neurotoxicity.

14.
J Cereb Blood Flow Metab ; 41(8): 1842-1857, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33444089

RESUMEN

The distribution and clearance of erythrocytes after subarachnoid hemorrhage (SAH) is poorly understood. We aimed to characterize the distribution of erythrocytes after SAH and the cells involved in their clearance. To visualize erythrocyte distribution, we injected fluorescently-labelled erythrocytes into the prechiasmatic cistern of mice. 10 minutes after injection, we found labelled erythrocytes in the subarachnoid space and ventricular system, and also in the perivascular spaces surrounding large penetrating arterioles. 2 and 5 days after SAH, fluorescence was confined within leptomeningeal and perivascular cells. We identified the perivascular cells as perivascular macrophages based on their morphology, location, Iba-1 immunoreactivity and preferential uptake of FITC-dextran. We subsequently depleted meningeal and perivascular macrophages 2 days before or 3 hours after SAH with clodronate liposomes. At day 5 after SAH, we found increased blood deposition in mice treated prior to SAH, but not those treated after. Treatment post-SAH improved neurological scoring, reduced neuronal cell death and perivascular inflammation, whereas pre-treatment only reduced perivascular inflammation. Our data indicate that after SAH, erythrocytes are distributed throughout the subarachnoid space extending into the perivascular spaces of parenchymal arterioles. Furthermore, meningeal and perivascular macrophages are involved in erythrocyte uptake and play an important role in outcome after SAH.


Asunto(s)
Macrófagos/fisiología , Hemorragia Subaracnoidea/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Eritrocitos/química , Eritrocitos/citología , Eritrocitos/metabolismo , Gliosis , Sistema Glinfático/citología , Sistema Glinfático/patología , Macrófagos/citología , Masculino , Meninges/citología , Meninges/fisiología , Ratones , Neuronas/metabolismo , Neuronas/patología , Imagen Óptica , Hemorragia Subaracnoidea/metabolismo , Espacio Subaracnoideo/citología , Espacio Subaracnoideo/patología
15.
Clin Transl Immunology ; 10(4): e1273, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854773

RESUMEN

OBJECTIVES: The immunologic events that build up to the fatal neurological stage of experimental cerebral malaria (ECM) are incompletely understood. Here, we dissect immune cell behaviour occurring in the central nervous system (CNS) when Plasmodium berghei ANKA (PbA)-infected mice show only minor clinical signs. METHODS: A 2-photon intravital microscopy (2P-IVM) brain imaging model was used to study the spatiotemporal context of early immunological events in situ during ECM. RESULTS: Early in the disease course, antigen-specific CD8+ T cells came in contact and arrested on the endothelium of post-capillary venules. CD8+ T cells typically adhered adjacent to, or were in the near vicinity of, perivascular macrophages (PVMs) that line post-capillary venules. Closer examination revealed that CD8+ T cells crawled along the inner vessel wall towards PVMs that lay on the abluminal side of large post-capillary venules. 'Activity hotspots' in large post-capillary venules were characterised by T-cell localisation, activated morphology and clustering of PVM, increased abutting of post-capillary venules by PVM and augmented monocyte accumulation. In the later stages of infection, when mice exhibited neurological signs, intravascular CD8+ T cells increased in number and changed their behaviour, actively crawling along the endothelium and displaying frequent, short-term interactions with the inner vessel wall at hotspots. CONCLUSION: Our study suggests an active interaction between PVM and CD8+ T cells occurs across the blood-brain barrier (BBB) in early ECM, which may be the initiating event in the inflammatory cascade leading to BBB alteration and neuropathology.

16.
Theranostics ; 11(3): 1059-1078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391521

RESUMEN

Emerging clinical and experimental evidence demonstrates that neuroinflammation plays an important role in cognitive impairment associated with neuropathic pain. However, how peripheral nerve challenge induces remote inflammation in the brain remains largely unknown. Methods: The circulating leukocytes and plasma C-X-C motif chemokine 12 (CXCL12) and brain perivascular macrophages (PVMs) were analyzed by flow cytometry, Western blotting, ELISA, and immunostaining in spared nerve injury (SNI) mice. The memory function was evaluated with a novel object recognition test (NORT) in mice and with Montreal Cognitive Assessment (MoCA) in chronic pain patients. Results: The classical monocytes and CXCL12 in the blood, PVMs in the perivascular space, and gliosis in the brain, particularly in the hippocampus, were persistently increased following SNI in mice. Using the transgenic CCR2RFP/+ and CX3CR1GFP/+ mice, we discovered that at least some of the PVMs were recruited from circulating monocytes. The SNI-induced increase in hippocampal PVMs, gliosis, and memory decline were substantially prevented by either depleting circulating monocytes via intravenous injection of clodronate liposomes or blockade of CXCL12-CXCR4 signaling. On the contrary, intravenous injection of CXCL12 at a pathological concentration in naïve mice mimicked SNI effects. Significantly, we found that circulating monocytes and plasma CXCL12 were elevated in chronic pain patients, and both of them were closely correlated with memory decline. Conclusion: CXCL12-mediated monocyte recruitment into the perivascular space is critical for neuroinflammation and the resultant cognitive impairment in neuropathic pain.


Asunto(s)
Quimiocina CXCL12/metabolismo , Sistema Glinfático/metabolismo , Inflamación/metabolismo , Trastornos de la Memoria/metabolismo , Monocitos/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Sistema Glinfático/patología , Hipocampo/metabolismo , Hipocampo/patología , Inflamación/patología , Masculino , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/patología , Neuralgia/patología , Neuronas/patología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Receptores CXCR4/metabolismo
17.
Front Immunol ; 12: 726421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526998

RESUMEN

CD8 T cell infiltration of the central nervous system (CNS) is necessary for host protection but contributes to neuropathology. Antigen presenting cells (APCs) situated at CNS borders are thought to mediate T cell entry into the parenchyma during neuroinflammation. The identity of the CNS-resident APC that presents antigen via major histocompatibility complex (MHC) class I to CD8 T cells is unknown. Herein, we characterize MHC class I expression in the naïve and virally infected brain and identify microglia and macrophages (CNS-myeloid cells) as APCs that upregulate H-2Kb and H-2Db upon infection. Conditional ablation of H-2Kb and H-2Db from CNS-myeloid cells allowed us to determine that antigen presentation via H-2Db, but not H-2Kb, was required for CNS immune infiltration during Theiler's murine encephalomyelitis virus (TMEV) infection and drives brain atrophy as a consequence of infection. These results demonstrate that CNS-myeloid cells are key APCs mediating CD8 T cell brain infiltration.


Asunto(s)
Células Presentadoras de Antígenos/patología , Encefalopatías/virología , Encéfalo/patología , Antígenos H-2/inmunología , Theilovirus/inmunología , Animales , Presentación de Antígeno , Células Presentadoras de Antígenos/virología , Atrofia , Encéfalo/inmunología , Encéfalo/virología , Encefalopatías/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Macrófagos/patología , Macrófagos/virología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Microglía/virología
18.
Cells ; 10(4)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919664

RESUMEN

Pericytes are increasingly recognized as being important in the control of blood-brain barrier permeability and vascular flow. Research on this important cell type has been hindered by widespread confusion regarding the phenotypic identity and nomenclature of pericytes and other perivascular cell types. In addition, pericyte heterogeneity and mouse-human species differences have contributed to confusion. Herein we summarize our present knowledge on the identification of pericytes and pericyte subsets in humans, primarily focusing on recent findings in humans and nonhuman primates. Precise identification and definition of pericytes and pericyte subsets in humans may help us to better understand pericyte biology and develop new therapeutic approaches specifically targeting disease-associated pericyte subsets.


Asunto(s)
Barrera Hematoencefálica/patología , Homeostasis , Enfermedades del Sistema Nervioso/patología , Pericitos/patología , Humanos , Macrófagos/patología , Miocitos del Músculo Liso/patología
19.
Brain Pathol ; 30(3): 603-613, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31834964

RESUMEN

We previously showed that rhesus macaques neonatally infected with simian immunodeficiency virus (SIV) do not develop SIV encephalitis (SIVE) and maintain low brain viral loads despite having similar plasma viral loads compared to SIV-infected adults. We hypothesize that differences in myeloid cell populations that are the known target of SIV and HIV in the brain contribute to the lack of neonatal susceptibility to lentivirus-induced encephalitis. Using immunohistochemistry and immunofluorescence microscopy, we examined the frontal cortices from uninfected and SIV-infected infant and adult macaques (n = 8/ea) as well as adults with SIVE (n = 4) to determine differences in myeloid cell populations. The number of CD206+ brain perivascular macrophages (PVMs) was significantly greater in uninfected infants than in uninfected adults and was markedly lower in SIV-infected infants while microglia numbers were unchanged across groups. CD206+ PVMs, which proliferate after infection in SIV-infected adults, did not undergo proliferation in infants. While virtually all CD206+ cells in adults are also CD163+, infants have a distinct CD206 single-positive population in addition to the double-positive population commonly seen in adults. Notably, we found that more than 60% of these unique CD206+CD163- PVMs in SIV-infected infants were positive for cleaved caspase-3, an indicator of apoptosis, and that nearly 100% of this subset were concomitantly positive for the necroptosis marker receptor-interacting protein kinase-3 (RIP3). These findings show that distinct subpopulations of PVMs found in infants undergo programmed cell death instead of proliferation following SIV infection, which may lead to the absence of PVM-dependent SIVE and the limited size of the virus reservoir in the infant brain.


Asunto(s)
Encéfalo/patología , Macrófagos/patología , Necroptosis/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Animales , Femenino , Macaca mulatta , Masculino , Virus de la Inmunodeficiencia de los Simios
20.
Front Physiol ; 11: 974, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922309

RESUMEN

Objective: Connexin 43 (Cx43) is a protein constituent of gap junctions (GJs) in various barrier cells, especially astrocytes and microglia of the blood-brain-barrier (BBB), where it plays an important role in intercellular communication and regulation of the barrier. Despite the importance of Cx43 in other blood barriers, not much attention has been paid to expression and function of Cx43 in the blood-labyrinth-barrier (BLB) of the stria vascularis in the cochlea. Methods: We used multiple research approaches, including immunocytochemical staining, patch-clamp dye loading technique, real-time quantitative reverse transcription (RT)-PCR, western blot, measurement of endocochlear potential (EP) with an electrode through the scala media, and auditory brainstem response to test hearing function. Results: We found Cx43 expressed in vascular endothelial cells (ECs) and perivascular resident macrophages (PVMs) in the stria vascularis of adult C57BL/6 mouse cochleae. In particular, we found Cx43 expressed in foot processes of PVMs at points of contact with the endothelium. Consistent with Cx43 expression in vivo, we also found Cx43 expressed in EC-EC and EC-PVM interfaces in a co-cultured cell line model. Using a patch-clamp dye loading technique, we demonstrated that Alexa Fluor® 568 dye injected into PVMs diffuses to connected neighboring ECs. The functional coupling between the ECs and PVMs is blocked by 18α-Glycyrrhetinic acid (18α-GA), a GJ blocker. Suppression of Cx43 with small interfering RNA (siRNA) in vivo significantly elevated hearing threshold and caused the EP to drop and the blood barrier to become more permeable. In further study, using in vitro primary EC cell line models, we demonstrated that suppression of Cx43 disrupts intercellular tight junctions (TJs) in the EC monolayer and increases endothelial monolayer permeability. Conculsion: Taken together, these findings underscore the importance of Cx43 expression in the normal ear for maintaining BLB integrity, normal EP, and hearing function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA