Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Mikrochim Acta ; 191(2): 108, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244133

RESUMEN

Microcystin LR (MC-LR) is a hazardous cyanotoxin produced by cyanobacteria during freshwater eutrophication, which can cause liver cancer. Here, a photoelectrochemical (PEC) aptasensor based on methylene blue (MB)-loaded Ni-MOF composite (Ni-MOF/MB) with spatial confinement was constructed for the sensitive detection of MC-LR. Ni-MOF with two-dimensional sheet structure was prepared via a liquid-liquid interface synthesis method with environmental-friendly solvent and milder reaction conditions. Benefiting from the uniform pore size, Ni-MOF acted as reaction platform to anchor the photosensitive molecule MB. The electron donor, ascorbic acid (AA), was produced by alkaline phosphatase (ALP) loaded on DNA strand catalyzing ascorbic acid phosphate. The generated AA was absorbed by Ni-MOF/MB, thereby effectively improving the utilization of AA and avoiding the external environment interferences to enlarge the photocurrent of MB. For analysis, ALP-labeled aptamer can specifically recognize MC-LR by forming a complex to strip from aptasensor, thus leading to a  decreased photocurrent. The developed PEC aptasensor offered a linear range of 10 fM-100 pM with a detection limit of 6 fM. It was successfully employed for detecting MC-LR in farm water and fish meat, and the results were validated by ultrahigh-performance liquid chromatography-mass spectrometry. This method presents a new idea of MOF-limited domain for PEC aptasensing.


Asunto(s)
Aptámeros de Nucleótidos , Toxinas Marinas , Microcistinas , Nanocompuestos , Animales , Azul de Metileno/química , Técnicas Electroquímicas , Aptámeros de Nucleótidos/química , Ácido Ascórbico
2.
Mikrochim Acta ; 191(11): 649, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39369363

RESUMEN

A photoelectrochemical (PEC) aptasensor us reported based on W6+-doped carbon nitride with carbon-rich structure (WCCN). WCCN exhibited excellent photoelectric conversion performance owing to the carbon-rich structure and W6+ doping. C atoms can replace the center N/edge N atoms to form a carbon-rich structure, improving the insufficient light absorption of CN in the visible region. Also, W6+ doping forms a directional electron transfer channel, achieving the efficient separation and transport of carriers. W6+ doping and carbon-rich structure can promote the generation, transfer, and separation of photogenerated carriers, further enhancing PEC performance. The fabricated PEC aptasensor based on WCCN demonstrated a wide detection range (3.92 ~ 588 pg L-1), a low detection limit (1.31 pg L-1, S/N = 3), good reproducibility, selectivity, stability, and practical application in actual water samples. This work explores the modification strategy of element doping for carbon nitride with high photoelectric property and offers a cost-effective and simplified method for the detection of pesticide residues.

3.
Mikrochim Acta ; 191(3): 139, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38360951

RESUMEN

Bisphenol A (BPA), an important endocrine disrupting compound, has infiltrated human daily lives through electronic devices, food containers, and children's toys. Developing of novel BPA assay methods with high sensitivity holds tremendous importance in valuing the pollution state. Here, we constructed an ultrasensitive photoelectrochemical (PEC) aptasensor for BPA determination by regulating photoactivities of CdS/Ni-based metal-organic framework (CdS/Ni-MOF) with [Ru(bpy)2dppz]2+ sensitizer. CdS/Ni-MOF spheres exhibited excellent photocatalytic performance, serving as a potential sensing platform for the construction of target recognition process. [Ru(bpy)2dppz]2+ were embedded into DNA double-stranded structure, functioning as sensitizer for modulating the signal response of the developed PEC aptasensor. The proposed PEC sensor exhibited outstanding analytical performances, including a wide linear range (0.1 to 1000.0 nM), low detection limit (0.026 nM, at 3σ/m), excellent selectivity, and high stability. This work provides a perspective for the design of ideal photosensitive materials and signal amplification strategies and extends their application in environment analysis.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Fenoles , Niño , Humanos , Sustancias Intercalantes , Técnicas Biosensibles/métodos , Compuestos de Bencidrilo , ADN
4.
Mikrochim Acta ; 190(9): 351, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580613

RESUMEN

Highly photoactive 3D nanoflower-like FeIn2S4/CdS heterostructures were synthesized by hydrothermal treatment and low-temperature cation exchange. The FeIn2S4/CdS displayed 14.5 times signal amplification in contrast to FeIn2S4 alone. It was applied as a photoactive substrate to construct a label-free photoelectrochemical (PEC) aptasensor for ultrasensitive determination of kanamycin (KAN). Under the optimal conditions, the constructed PEC aptasensor displayed a wide linear range (5.0 × 10-4 ~ 5.0 × 101 ng mL-1) and a low detection limit (S/N = 3) of 40.01 fg mL-1. This study provides some constructive insights for preparation of advanced photoactive materials and exhibits great potential for quantitative determination of antibiotics in foods and environmental samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Electroquímicas , Kanamicina , Aptámeros de Nucleótidos/química , Antibacterianos
5.
Mikrochim Acta ; 190(5): 193, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37103619

RESUMEN

A new BiVO4-carboxylated graphene (cG)-WO3 Z-scheme heterojunction was constructed on a fluorine-doped tin oxide (FTO) substrate electrode by ultrasonic mixing and cast-coating for determination of oxytetracycline (OTC). Since cG can absorb visible light and well match with the energy levels of WO3 and BiVO4 to promote the charge separation and transfer, the photocurrent on the BiVO4-cG-WO3/FTO photoelectrode is 4.4 times that on the control BiVO4-WO3/FTO photoelectrode. An amino-functionalized OTC aptamer was fixed on the BiVO4-cG-WO3/FTO photoelectrode by the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide mediated amide reaction, and then hexaammonium ruthenium(III) (Ru(NH3)63+) was attached to the OTC aptamer to increase the photocurrent response to the OTC binding. Under the optimized conditions, the photocurrent on the BiVO4-cG-WO3/FTO photoelectrode at 0 V vs SCE was linear with the common logarithm of OTC concentration from 0.01 nM to 500 nM, with a limit of detection of 3.1 pM (S/N = 3). Satisfactory recovery results were obtained in the analysis of real water samples.

6.
Mikrochim Acta ; 190(10): 407, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37731054

RESUMEN

A superior photoelectrochemical (PEC) aptasensor was manufactured for the detection of Escherichia coli (E. coli) based on a hybrid of triazine-based covalent-organic framework (COF) and cuprous oxide (Cu2O). The COF synthesized using 1,3,5-tris(4-aminophenyl)-benzene (TAPB) and 1,3,5-triformylphloroglucinol (Tp) as building blocks acted as a scaffold for encapsulated Cu2O nanoparticles (denoted as Cu2O@TAPB-Tp-COF), which then was employed as the bioplatform for anchoring E. coli-targeted aptamer. Cu2O@Cu@TAPB-Tp-COF demonstrated enhanced separation of the photogenerated carriers and photoabsorption ability and boosted photoelectric conversion efficiency. The developed Cu2O@TAPB-Tp-COF-based PEC aptasensor exhibited a lower detection limit of 2.5 CFU mL-1 toward E. coli within a wider range of 10 CFU mL-1 to 1 × 104 CFU mL-1 than most of reported aptasensors for determining foodborne bacteria, together with high selectivity, good stability, and superior ability and reproducibility. The recoveries of E. coli spiked into milk and bread samples ranged within 95.3-103.6% and 96.6-102.8%, accompanying with low RSDs of 1.37-4.48% and 1.74-3.66%, respectively. The present study shows a promising alternative for the sensitive detection of foodborne bacteria from complex foodstuffs and pathogenic bacteria-polluted environment.


Asunto(s)
Escherichia coli , Estructuras Metalorgánicas , Reproducibilidad de los Resultados , Benzamidinas
7.
Mikrochim Acta ; 190(3): 85, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36749408

RESUMEN

Constructing of heterostructures can significantly improve the photoelectrical (PEC) response signal by promoting the migration and suppressing the recombination of photogenerated carries. A bifunctional PEC sensing platform was designed for simultaneous high-performance detection of mucin-1 (MUC1) and carcinoembryonic antigen (CEA), which was based on generated Z-scheme heterostructured Ag3PO4/Ag/TiO2 nanorod arrays (NAs) and enzyme-mediated catalytic precipitation by alkaline phosphatase (ALP) and Au/hollow Co3O4 polyhedron. The proposed aptasensor displayed linear ranges of 1.0-100 ng mL-1 and 0.1-50 ng mL-1 for MUC1 and CEA with limit of detections of 0.430 and 0.058 ng mL-1, respectively. This strategy offers potential applications for early diagnosis, monitoring progression, and even evaluating the prognosis of breast cancer in practice.


Asunto(s)
Biomarcadores de Tumor , Nanotubos , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Límite de Detección , Nanotubos/química , Plata/química
8.
Mikrochim Acta ; 189(12): 453, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411347

RESUMEN

A photoelectrochemical (PEC) aptasensor based on CdSe@SnS2 nanocomposite has been developed to detect sulfamethazine (SMZ). The introduction of CdSe into SnS2 displayed an amplified PEC signal, which was higher than that of pure CdSe and SnS2, attributable to its enhanced light harvesting capacity and promoted PEC energy conversion efficiency. Due to the formation of specific non-covalent bonds, the SMZ-binding aptamer (SBA) has significant specificity and sensitivity. When SMZ was incubated on a CdSe@SnS2 modified electrode fixed with aminated SBA, the formation of the SMZ/SBA complex increased the space resistance of electron transfer and hindered the electronic migration between the electrodes, resulting in a decrease in photocurrent. The greater the adsorbed amount on the SBA, the lower the photocurrent produced.  Under optimized conditions the photocurrent response of MCH/SBA/CdSe@SnS2/FTO was inversely proportional to the SMZ concentration in the range 0.1 to 100 pM, with a detection limit (3 S/N) of 0.025 pM (at 0 V vs. Hg/HgCl). The recoveries ranged from 95.8 to 104% with relative standard deviations (RSDs) < 6.3% (n = 3) in actual water sample. This PEC aptasensor which shows considerable potential in SMZ detection applications has high selectivity, reproducibility, and good stability.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Nanocompuestos , Compuestos de Selenio , Sulfametazina , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Titanio/química , Compuestos de Selenio/química , Nanocompuestos/química
9.
Mikrochim Acta ; 189(8): 303, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915284

RESUMEN

A self-powered photoelectrochemical (PEC) aptasensor was constructed to sensitively detect 17ß-estradiol (E2). Firstly, a reasonable AgInS2@Co/Ni-UiO-66@Carbon Nanodots (CDs) photoelectrode with excellent photoelectrochemical performance was built by a simple two-step preparation method. The Co and Ni doping markedly improved the activity of UiO-66; the matched energy level of AgInS2 and Co/Ni-UiO-66 promoted the separation of electron-hole pairs, and the coupling of CDs further enhanced the conductivity and light utilization. Therefore, a steady anode-photocurrent signal output was obtained in 0.0 V bias voltage, providing a reliable photoelectric translating platform for assembling a self-powered PEC aptasensor. The E2-aptamer was adopted as a recognition unit to enhance the selectivity and sensitivity of the proposed aptasensor. The specific recognition reaction between E2 and aptamer administering to a raised photocurrent signal and the concentration of E2 was quantified by counting the fluctuation of the anode-photocurrent signal. The linear response range of the PEC aptasensor was 1.0 × 10-5-10 nmol/L, and the detection limit (S/N = 3) was lower than 3.0 fmol/L under optimal conditions. The fabricated aptasensor exhibited admirable selectivity, high sensitivity, rapid response, and wide linear range, demonstrating an extensive application prospect for environmental endocrine disruptor detection.


Asunto(s)
Aptámeros de Nucleótidos , Disruptores Endocrinos , Ácidos Ftálicos , Electrodos , Disruptores Endocrinos/análisis , Estructuras Metalorgánicas
10.
Mikrochim Acta ; 189(2): 56, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35006398

RESUMEN

Carbon-coated cadmium sulfide rose-like nanostructures (CdS@C NRs) were prepared via a facile solvothermal approach and used as the photoelectrochemical (PEC) sensing platform for the integration of functional biomolecules. Based on this, a novel "signal-off" PEC aptasensor mediated by enzymatic amplification was proposed for the sensitive and selective detection of 17ß-estradiol (E2). In the presence of E2, alkaline phosphatase-modified aptamer (ALP-apta) were released from the electrode surface through the specific recognition with E2, which caused the negative effect on PEC response due to the decrease of ascorbic acid (AA) produced by the ALP in situ enzymatic catalysis. The developed PEC aptasensor for detection of E2 exhibited a wide linear range of 1.0-250 nM, with the low detection limit of 0.37 nM. This work provides novel insight into the design of potential phoelectroactive materials and the application of signal amplification strategy in environmental analysis field.


Asunto(s)
Compuestos de Cadmio/química , Carbono , Enzimas/metabolismo , Estradiol/química , Nanoestructuras/química , Procesos Fotoquímicos , Sulfuros/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Enzimas/química , Microscopía Electrónica de Rastreo
11.
Anal Bioanal Chem ; 413(25): 6279-6288, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34373932

RESUMEN

Herein, a novel signal-on photoelectrochemical (PEC) biosensor with nearly zero background noise (ZBN) was first fabricated to determine the presence of organophosphorus pesticide based on in situ formation of DNA-templated Ag2S photoactive materials, accompanied by hybridization chain reaction (HCR) signal amplification. The capture probe (S1) on the gold nanoparticle-modified electrode can hybridize with the aptamer molecule to generate a simple PEC biosensor. In the presence of a target molecule, the aptamer molecule is released on the double-stranded DNA (dsDNA)-modified PEC biosensor. Meanwhile, the capture probe remains on the electrode and can open the DNA hairpins (H1, H2) which are rich in cytosine, to trigger the HCR reaction. The rich "C" strands are uncovered after formation of a long dsDNA polymer strand, which can assemble multiple silver ions (Ag+) by means of by C-Ag+-C chelation. Then, a large number of Ag2S can be generated by challenging with S2- solution, producing a satisfactory photocurrent signal. The photoactive material is formed in situ, which eliminates the laborious operation. Moreover, the signal can be highly amplified with nearly zero background noise and HCR signal amplification. Under optimal conditions, the ZBN aptasensor exhibited high sensitivity and selectivity, with a low detection limit of 2 pg mL-1 for malathion. Importantly, the sensing platform can also be applied to determine the presence of malathion in real samples. In this assay, a novel signal-on photoelectrochemical biosensor with nearly zero background noise was first fabricated to determine the presence of organophosphorus pesticide based on in situ formation of DNA-templated Ag2S photoactive materials, accompanied by hybridization chain reaction signal amplification.


Asunto(s)
Técnicas Biosensibles , ADN/química , Técnicas Electroquímicas , Malatión/química , Plaguicidas/química , Procesos Fotoquímicos , Contaminación de Alimentos/análisis , Jugos de Frutas y Vegetales/análisis , Malus/química , Compuestos Organofosforados , Compuestos de Plata/química
12.
Anal Bioanal Chem ; 413(1): 193-203, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33119785

RESUMEN

Herein, a photoelectrochemical (PEC) aptasensing platform was designed by integrating surface oxygen vacancy (OV) defects, Ti3+ self-doping, the heterojunction, and resonance energy transfer (RET) effect into one platform for the detection of diclofenac sodium (DCF). Briefly, OV defects were introduced on TiO2 nanospheres with simultaneous Ti3+ self-doping, followed by a well-separated deposition of FeVO4 nanoparticles on TiO2 to obtain a Ti3+-O-TiO2/FeVO4 heterojunction. The surface modification of OVs, Ti3+ doping, and deposition of FeVO4 were confirmed by SEM, XPS, EPR, DRS, and PEC measurements. The surface OVs and doping of Ti3+ species created a new donor (defect) energy level under the conduction band of TiO2, which minimized the bandgap and thereby improved the visible light absorption of TiO2. Moreover, the capture of photo-excited electrons by surface OVs could hinder the electron-hole recombination. Due to the intimate surface contact and perfect energy matching between TiO2 and FeVO4, the formation of heterojunction decreased the bandgap and facilitated the electron-hole separation of TiO2. All these above events contributed to the enhancement of the PEC signals, which were then quenched by the RET effect between Ti3+-O-TiO2/FeVO4 and Au nanoparticle (AuNP)-labeled cDNA that had been attached to its complementary DCF aptamer on Ti3+-O-TiO2/FeVO4|ITO. The addition of target-DCF detached AuNP-labeled cDNA from the electrode to recover the photocurrent, resulting in a "signal-on" PEC aptasensor that exhibited a 0.1-500-nM linear range and a detection limit of 0.069 nM for DCF, attributed to the excellent amplification of the proposed aptasensing platform.


Asunto(s)
Antiinflamatorios no Esteroideos/análisis , Diclofenaco/análisis , Técnicas Electroquímicas/instrumentación , Hierro/química , Procesos Fotoquímicos , Titanio/química , Vanadatos/química , Técnicas Biosensibles/instrumentación , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Propiedades de Superficie
13.
Anal Bioanal Chem ; 412(4): 841-848, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31897553

RESUMEN

A sensitive photoelectrochemical (PEC) aptasensor was constructed for prostate-specific antigen (PSA) detection using an enhanced photocurrent response strategy. The p-n heterostructure CdS-Cu2O nanorod arrays were prepared on Ti mesh (CdS-Cu2O NAs/TM) by a simple hydrothermal method and successive ionic-layer adsorption reactions. Compared with the original CdS/TM, the synergistic effect of p-n type CdS-Cu2O NAs/TM and the internal electric field realizes the effective separation of photoinduced electron-hole pairs and improves the PEC performance. In order to construct the aptasensor, an amino-modified aptamer was immobilized on CdS-Cu2O NAs/TM to serve as a recognition unit for PSA. After the introduction of PSA, PSA was specifically captured by the aptamer on the PEC aptasensor, which can be oxidized by photogenerated holes to prevent electron-hole recombination and increase photocurrent. Under optimal conditions, the constructed PEC aptasensor has a linear range of 0.1-100 ng·mL-1 and a detection limit as low as 0.026 ng·mL-1. The results of aptasensor detection of human serum indicate that it has broad application prospects in biosensors and photoelectrochemical analysis.


Asunto(s)
Aptámeros de Nucleótidos/química , Compuestos de Cadmio/química , Cobre/química , Nanotubos/química , Antígeno Prostático Específico/sangre , Sulfuros/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Humanos , Límite de Detección , Nanotubos/ultraestructura
14.
Anal Bioanal Chem ; 410(25): 6529-6538, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30027318

RESUMEN

A highly sensitive and selective photoelectrochemical (PEC) aptasensor was constructed for carcinoembryonic antigen (CEA) detection based on ZnO flower-rods (ZnO FRs) modified with g-C3N4-Au nanoparticle (AuNP) nanohybrids. The nanohybrids of g-C3N4-AuNPs can improve the visible light absorbance of ZnO FRs and enhance the PEC property. We designed a sandwichlike structure formed with DNA hybridization of NH2-probe1, CEA aptamer, and CuS-NH2-probe2 to detect CEA. The p-type semiconductor CuS nanocrystals (NCs) at the terminational part of sandwichlike structure work as electron traps to capture photogenerated electrons and consequently lead to a magnified photocurrent change. The results indicate that the photocurrent is increased when CEA antigen (Ag) is introduced. Since the sandwichlike structure is destroyed, CuS NCs are restricted to capture photogenerated electron. The PEC aptasensor for CEA determination is ranged from 0.01 ng·mL-1 to 2.5 ng·mL-1 with a detection of 1.9 pg·mL-1. The proposed aptasensor exhibits satisfactory PEC performances with rapid detection, great sensitivity and specificity. Specially, this PEC aptasensor shows a reliable result for the determination of CEA in invalid human serum compared with the ELISA method. The designed aptasensor may provide a new idea for a versatile PEC platform to determine various molecules. Graphical abstract ᅟ.


Asunto(s)
Aptámeros de Nucleótidos/química , Antígeno Carcinoembrionario/análisis , Oro/química , Luz , Nanopartículas del Metal/química , Óxido de Zinc/química , Estabilidad de Medicamentos , Técnicas Electroquímicas/métodos , Límite de Detección , Difracción de Rayos X
15.
Bioelectrochemistry ; 161: 108828, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39317125

RESUMEN

In this study, a signal-on photoelectrochemical (PEC) aptasensor for the ultrasensitive determination of kanamycin (KANA) was constructed using WO3/CdS heterojunction as photoactive material. Firstly, WO3/CdS heterojunction with excellent photoelectric response was successfully prepared by simple co-precipitation method, resulting in a strong and stable initial photocurrent. In addition, amino modified aptamers were immobilized on the electrode surface by glutaraldehyde as biological recognition components. In the presence of the target KANA, it is specifically recognized and captured by the aptamers. More importantly, KANA can act as a signal amplifier to enhance the photocurrent due to the oxidation of KANA by photogenerated holes. Therefore, a signal-on PEC aptasensor based on WO3/CdS heterojunction with high selectivity was obtained for the detection of KANA. Under optimized experimental conditions, the PEC aptasensor demonstrated a wide linear range of 10 pM to 400 nM, with a detection limit of 6.77 pM. Meanwhile, the designed PEC aptasensor had been successfully utilized for the analytical examination of milk, fish, serum, and water samples.

16.
Biosens Bioelectron ; 257: 116324, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669844

RESUMEN

Exploring efficient photoactive material presents an intriguing opportunity to enhance the analytical performance of photoelectrochemical (PEC) sensor in the environmental analysis. In this work, a sandwich-structured multi-interface Co9S8@ZnIn2S4/CdSe QDs dual Z-Scheme heterojunction, derived from metal-organic framework (MOF), was synthesized as a sensing platform for chlorpyrifos detection, by integrating with enzyme-induced in situ insoluble precipitates strategy. The meticulously designed Co9S8@ZnIn2S4/CdSe QDs exhibited enhanced charge separation efficiency and was proved to be a highly effective sensing platform for the immobilization of biomolecules, attributing to the intrinsic dual Z-Scheme heterojunction and the distinctive hollow structure. The proposed PEC sensing platform combined with enzyme-induced in situ precipitate signal amplification strategy achieved superior performance for sensing of chlorpyrifos (CPF), showing in wide linear range (1.0 pg mL-1-100 ng mL-1), with a limit of detection (0.6 pg mL-1), excellent selectivity, and stability. This work offers valuable insights for the design of novel advanced photoactive materials aimed at detecting environmental pollutants with low level concentration.


Asunto(s)
Técnicas Biosensibles , Cloropirifos , Técnicas Electroquímicas , Límite de Detección , Estructuras Metalorgánicas , Puntos Cuánticos , Cloropirifos/análisis , Estructuras Metalorgánicas/química , Técnicas Electroquímicas/métodos , Puntos Cuánticos/química , Compuestos de Cadmio/química , Compuestos de Selenio/química , Cobalto/química , Insecticidas/análisis
17.
Food Chem ; 441: 138333, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38185050

RESUMEN

A sensitive signal-on photoelectrochemical aptasensor for antibiotic determination was constructed based on the energy level matching between ferrocene and CuInS2. P-type CuInS2 microflower was complexed with reduced graphene oxide (CuInS2/rGO) to get photocathode current with good photoelectric conversion efficiency and stability. Then, hairpin DNA (HP) was covalently bonded to the electrode surface. A triple helix DNA (THMS) was used as a molecular switch. After the specific recognition between target and THMS in homogeneous solution, ferrocene labeled probe (Fc-T2) was released. Finally, Fc-T2 was captured by the HP, which leaded the obvious increase of photocurrent for the energy level matching between ferrocene and CuInS2. The increase of the photocurrent signal was proportional to the concentration of target amoxicillin (AMOX), the linear range was 100 fM-100 nM with detection limit of 19.57 fM. Meanwhile, the method has been successfully applied for milk and lake water samples analysis with satisfactory results.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Compuestos Ferrosos , Antibacterianos , Amoxicilina , Técnicas Biosensibles/métodos , Metalocenos/química , Técnicas Electroquímicas/métodos , ADN/química , Aptámeros de Nucleótidos/química , Límite de Detección
18.
Biosens Bioelectron ; 251: 116121, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373373

RESUMEN

Bis(2-ethylhexyl)phthalate (DEHP), an endocrine disruptor, shows carcinogenic, teratogenic, mutagenic and estrogenic effects. It is easy to release from plastic materials and migrate to soil environment, causing serious pollution and posing a great threat to human health. In our work, a photoelectrochemical (PEC) sensing platform for DEHP detection was constructed using BiOI/ZnO nanoarrays (NRs) as the transducer species and the DEHP aptamers as the biological recognition elements. ZnO NRs with three-dimensional and large diameter area were prepared by hydrothermal method to increase the light absorption capacity. Coupling BiOI in a narrow band gap with ZnO NRs strengthened visible-light absorption, while promoting charge carrier separation and transportation. This was attributed to the generation of an internal electric field between BiOI and ZnO NRs, exhibiting obvious photocurrent response. The as-developed PEC sensing platform demonstrated great sensing performance for detection of DEHP. Furthermore, the photocurrent varied and the logarithm of DEHP concentration showed a linear relationship from 1.0 × 10-11 to 5.0 × 10-7 mol/L, and the limit of detection was estimated to be 3.8 × 10-12 mol/L. In the meantime, while evaluating its usage in real soil samples, satisfying outcomes were realized. Thus, the as-proposed PEC sensing platform provided a potential device to monitor DEHP in the environment.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Dietilhexil Ftalato , Óxido de Zinc , Humanos , Técnicas Biosensibles/métodos , Suelo
19.
J Agric Food Chem ; 72(1): 874-882, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38156660

RESUMEN

The sensitive and accurate detection of ochratoxin A (OTA) is crucial for public health due to its high toxicity. Herein, using Au nanoparticle (NP)-attached CdS/UiO-66-NH2 heterostructures as photoactive materials, a photoelectrochemical (PEC) aptasensor was presented for the ultrasensitive assay of OTA based on a competitive displacement reaction triggering the trans-cleavage ability of CRISPR/Cas12a. In this sensing strategy, methylene blue-labeled single-stranded DNA (MB-ssDNA) was immobilized on the Au NPs/CdS/UiO-66-NH2 electrode to accelerate the separation of the photogenerated carrier, thus producing a significantly increased PEC response. In the presence of OTA, it specifically bound with the aptamer (Apt) and resulted in the release of the activation chain, triggering the trans-cleavage characteristics of CRISPR/Cas12a. MB-ssDNA was cut randomly on the electrode surface to convert the PEC signal from the "on" to the "off" state, thereby achieving a quantitative and accurate detection of OTA. The CRISPR/Cas12a-derived PEC aptasensor exhibited excellent sensitivity and specificity, with a linear range from 100 to 50 ng/mL and a detection limit of 38 fg/mL. Overall, the proposed aptasensor could provide a rapid, accurate, and sensitive method for the determination of OTA in actual samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , Oro/química , Sistemas CRISPR-Cas , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , ADN de Cadena Simple , Límite de Detección , Técnicas Electroquímicas/métodos
20.
Talanta ; 282: 126997, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39378766

RESUMEN

Dibutyl phthalate (DBP), a common and outstanding plasticizer, exhibits estrogenic, mutagenic, carcinogenic, and teratogenic properties. It is easily liberated from plastic materials and pollutes aquatic ecosystems, endangering human health. Therefore, highly sensitive and selective DBP detection methods are necessary. In this work, a free-of-electronic sacrificial agent photoelectrochemical (PEC) aptasensor for DBP detection was constructed using a novel Z-scheme Bi-doped BiOI/Bi2S3 (Bi-BIS) p-n heterojunction. The Bi-BIS composites had higher visible-light absorption, charge transfer, and separation efficiency. This is attributed to the synergistic effect of the formation of Z-scheme p-n heterojunction between BiOI and Bi2S3, the plasma resonance effect of metallic Bi and photosensitization of Bi2S3, thus exhibiting large and stable photocurrent response in the absence of electron sacrificial agent, that was 10.4 and 6.4 times higher than that of BiOI and Bi2S3, respectively. Then, a DBP PEC aptasensor was constructed by modifying the DBP aptamer on the surface of the ITO/Bi-BIS electrode. The aptasensor demonstrated a broad linear range (2-500 pM) and a low detection limit (0.184 pM). What's more, because there is no interference from electronic sacrificial agent, the aptasensor exhibited excellent selectivity in real water samples. Therefore, the proposed PEC has considerable potential for DBP monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA