Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 720
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(29): e2309757121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990940

RESUMEN

Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.


Asunto(s)
Genoma Bacteriano , Fenotipo , Color , Bacterias/genética , Bacterias/metabolismo , Proteobacteria/genética , Proteobacteria/metabolismo , Filogenia , Metagenoma , Estudio de Asociación del Genoma Completo , Bacteroidetes/genética , Bacteroidetes/metabolismo
2.
Nano Lett ; 24(22): 6689-6695, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781267

RESUMEN

Highly ambitious initiatives aspire to propel a miniature spacecraft to a neighboring star within a human generation, leveraging the radiation pressure of lasers for propulsion. One major challenge for this enormous feat is to build a meter-scale, ultralow mass lightsail with broadband reflectivity. In this work, we present the design and fabrication of a lightsail composed of two distinct dielectric layers with photonic crystal/metasurface structure covering a 4" wafer. We achieved broadband reflection of >70% spanning over the full Doppler-shifted laser wavelength range during spacecraft acceleration with a low total mass in the range of a few grams when scaled up to meter size. Furthermore, we find new paths to reliably fabricate these subwavelength structures over macroscopic areas and then systematically characterize their optical performance, confirming their suitability for future lightsail applications. Our innovative device and precise nanofabrication approaches represent a significant leap toward interstellar exploration.

3.
Nano Lett ; 24(5): 1808-1815, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38198566

RESUMEN

The novel depth-sensing system presented here revolutionizes structured light (SL) technology by employing metasurfaces and photonic crystal surface-emitting lasers (PCSELs) for efficient facial recognition in monocular depth-sensing. Unlike conventional dot projectors relying on diffractive optical elements (DOEs) and collimators, our system projects approximately 45,700 infrared dots from a compact 297-µm-dimention metasurface, drastically more spots (1.43 times) and smaller (233 times) than the DOE-based dot projector in an iPhone. With a measured field-of-view (FOV) of 158° and a 0.611° dot sampling angle, the system is lens-free and lightweight and boasts lower power consumption than vertical-cavity surface-emitting laser (VCSEL) arrays, resulting in a 5-10 times reduction in power. Utilizing a GaAs-based metasurface and a simplified optical architecture, this innovation not only addresses the drawbacks of traditional SL depth-sensing but also opens avenues for compact integration into wearable devices, offering remarkable advantages in size, power efficiency, and potential for widespread adoption.

4.
Nano Lett ; 24(5): 1635-1641, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38277778

RESUMEN

We present an on-chip filter with a broad tailorable working wavelength and a single-mode operation. This is realized through the application of topological photonic crystal nanobeam filters employing synthesis parameter dimensions. By introducing the translation of air holes as a new synthetic parameter dimension, we obtained nanobeams with tunable Zak phases. Leveraging the bulk-edge correspondence, we identify the existence of topological cavity modes and establish a correlation between the cavity's interface morphology and working wavelength. Through experiments, we demonstrate filters with adjustable filtering wavelengths ranging from 1301 to 1570 nm. Our work illustrates the use of the synthetic translation dimension in the design of on-chip filters, and it holds potential for applications in other devices such as microcavities.

5.
Nano Lett ; 24(3): 943-949, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38198687

RESUMEN

Spatiotemporal optical vortices (STOVs) with swirling phase singularities in space and time hold great promise for a wide range of applications across diverse fields. However, current approaches to generate STOVs lack integrability and rely on bulky free-space optical components. Here, we demonstrate routine STOV generation by harnessing the topological darkness phenomenon of a photonic crystal slab. Complete polarization conversion enforced by symmetry enables topological darkness to arise from photonic bands of guided resonances, imprinting vortex singularities onto an ultrashort reflected pulse. Utilizing time-resolved spatial mapping, we provide the first observation of STOV generation using a photonic crystal slab, revealing the imprinted STOV structure manifested as a curved vortex line in the pulse profile in space and time. Our work establishes photonic crystal slabs as a versatile and accessible platform for engineering STOVs and harnessing the topological darkness in nanophotonics.

6.
Small ; : e2403549, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301925

RESUMEN

It is important to develop low infrared (IR) emissive coating with tunable structure color to improve the infrared-visible stealth performance of military equipment. In this work, uniform ZnO spheres are used as building units to construct photonic structures with both bright adjustable structure color and low IR emissivity due to the relatively high refractive index and low IR emissivity of ZnO. The vivid tunable structural colors are provided by the photonic bandgap of ZnO photonic crystals (PCs) or the quasi-bandgap of amorphous photonic crystals (APCs), respectively. Both ZnO PCs and APCs exhibited low IR emissivity in 3-5 µm. The IR emissivity of 255 nm ZnO PC is 0.483 and the IR emissivity of 255 nm ZnO APC is 0.492 at 25 °C. With the increase of temperature, the IR emissivity of further decreased to 0.295 and 0.312 at 300 °C. These structures can be applied to a variety of surfaces, and all these structures have good thermal and light stability as well. This work may open a simple and effective way to fabricate materials with good infrared-visible stealth performance, expanding the application of ZnO PCs and APCs coatings in the camouflage area.

7.
Small ; 20(3): e2306524, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37697691

RESUMEN

Photonic crystal hydrogels (PCHs), with smart stimulus-responsive abilities, have been widely exploited as colorimetric sensors for years. However, the current fabrication technologies are mostly applicable to produce PCHs with simple geometries at the sub-millimeter scale, limiting the introduction of structural design into PCH sensors as well as the accompanied advanced applications. This paper reports the microfabrication of three-dimensional (3D) PCHs with the help of supramolecular agarose PCH as a sacrificial scaffold by two-photon lithography (TPL). The supramolecular PCHs, formulated with SiO2 colloidal nanoparticles and agarose aqueous solutions, show bright structural color and are degradable upon short-time dimethyl sulfoxide treatment. Leveraging the supramolecular PCH as a sacrificial scaffold, PCHs with precise 3D geometries can be fabricated in an economical and efficient way. This work demonstrates the application of such a strategy in the creation of structural-designed PCH mechanical microsensors that have not been explored before.

8.
Small ; : e2405243, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291889

RESUMEN

The ability to reversibly exhibit structural color patterns has positioned photonic crystals (PCs) at the forefront of anti-counterfeiting. However, the security offered by the mere reversible display is susceptible to illicit alteration and disclosure. Herein, inspired by the electronic message captcha, bilayer photonic crystal (BPC) systems with integrated decryption and verification modules, are realized by combining inverse opal (IO) and double inverse opal (DIO) with polyacrylate polymers. When the informationized BPC is immersed in ethanol or water, the DIO layer displayed encrypted information due to the solvent-induced ordered rearrangement of polystyrene (PS) microspheres. The verification step is established based on the different structural colors of the IO layer pattern, which result from the deformation or recovery of the macroporous skeleton induced by solvent evaporation. Moreover, through the evaporation-induced random self-assembly of PS@SiO2 and SiO2 microspheres, unclonable structurally colored identifying codes are created in the IO layer, ensuring the uniqueness upon the verification. The decrypted code in the DIO layer is valid only when the IO layer displays the pattern with the predetermined structural color; otherwise, it is a pseudo-code. This structural color-based "decryption-verification" approach offers innovative anti-counterfeiting applications in nanophotonics.

9.
Small ; 20(30): e2311308, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38368251

RESUMEN

Thermochromic photonic crystal (PC) is a promising material for anti-counterfeiting applications, but there are still challenges to further improve the anti-counterfeiting performance and the practicability in usage. Here, a disposable thermally triggered PC anti-counterfeiting tag with irreversible response and multi-step color changes is developed based on the thermochromic Silica/(Polyethylene glycol-Ethoxylated trimethylolpropane triacrylate) (SiO2/(PEG-ETPTA)) double-layer film. The fast and irreversible thermal response come from the quick melting and infiltration of PEG-ETPTA into the PCs upon heating. The multi-step color change at different temperatures originated from the regioselective control of the UV curing degree of the PEG-ETPTA layer and the resulting thermochromic temperature of the double-layer film. Therefore, the invisible PC pattern on the tag can be revealed part by part upon heating and became invisible again after overheating, which offered diversified visual effects and enhanced anti-counterfeiting performances.

10.
Small ; 20(42): e2402575, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38860359

RESUMEN

Effective and rapid heat transfer is critical to improving electronic components' performance and operational stability, particularly for highly integrated and miniaturized devices in complex scenarios. However, current thermal manipulation approaches, including the recent advancement in thermal metamaterials, cannot realize fast and unidirectional heat flow control. In addition, any defects in thermal conductive materials cause a significant decrease in thermal conductivity, severely degrading heat transfer performance. Here, the utilization of silicon-based valley photonic crystals (VPCs) is proposed and numerically demonstrated to facilitate ultrafast, unidirectional heat transfer through thermal radiation on a microscale. Utilizing the infrared wavelength region, the approach achieves a significant thermal rectification effect, ensuring continuous heat flow along designed paths with high transmission efficiency. Remarkably, the process is unaffected by temperature gradients due to the unidirectional property, maintaining transmission directionality. Furthermore, the VPCs' inherent robustness affords defect-immune heat transfer, overcoming the limitations of traditional conduction methods that inevitably cause device heating, performance degradation, and energy waste. The design is fully CMOS compatible, thus will find broad applications, particularly for integrated optoelectronic devices.

11.
Small ; : e2405426, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324308

RESUMEN

The traditional fabrication of opal-structured photonic crystals is constrained by the rate of solvent evaporation, a process that is not only time-consuming but also labor-intensive. This study introduces a paradigm shift by incorporating silica nanoparticles (SiNPs) with high zeta potentials and hydrogen bonding capabilities into an elastomeric matrix, resulting in a novel non-close-packed structure. This innovation circumvents the limitations of conventional methods by enabling the rapid formation of photonic inks (PI) into vibrant and luminous photonic elastomers (PEs) within seconds. These PEs demonstrate remarkable mechanochromic properties, exhibiting dynamic color changes across the visible spectrum in response to tensile and compressive deformations. Furthermore, the presence of hydroxyl groups endows the PEs with superior water-responsiveness, which can be finely tuned through the ink formulation. The elimination of solvent evaporation dependency facilitates the fabrication of macroscopic photonic crystal devices with complex geometries using digital light processing (DLP)-based 3D printing. This approach ensures exceptional optical performance and high customization potential. The resulting PEs hold significant promise for applications in smart wearables, soft robotics, and advanced human-machine interface technologies.

12.
Nanotechnology ; 35(41)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38991516

RESUMEN

In this study, we present a nanosized biosensor based on the photobiological properties of one-dimensional (1D) topological photonic crystals (PCs). A topological structure had been designed by combining two PC structures (PC 1 and PC 2) comprised of functional material layers, Si and SiO2. These two, PC 1 and PC 2, differ in terms of the thickness and arrangement of these dielectric materials. We carried out a comparison between two distinct topological PCs: one using random PCs, and the other featuring a mirror heterostructure. Tuberculosis may be diagnosed by inserting a sensor layer into 1D topological PCs. The sensing process is based on the refractive indexes of the analytes in the sensor layer. When the 1D-topological heterostructure-based PC and its mirror-image structures are stacked together, the sensor becomes more efficient for analyte detection than the conventional PCs. The random-based topological PC outperformed the heterostructure-based topological PC in analyte sensing. Photonic media witness notable blue shifts due to the analytes' variations in refractive index. The numerical results of the sensor are computed using the transfer matrix approach. Effective results are achieved by optimizing the thicknesses of the sensor layer and dielectric layers; number of periods and incident angle. In normal incident light, the developed sensor shows a high sensitivity of 1500 nm RIU-1with a very low limit of detection in the order of 2.2 × 10-06RIU and a high-quality factor of 30 659.54.

13.
J Nanobiotechnology ; 22(1): 618, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39395993

RESUMEN

Diabetes is a global chronic disease that seriously endangers human health and characterized by abnormally high blood glucose levels in the body. Diabetic wounds are common complications which associate with impaired healing process. Biomarkers monitoring of diabetic wounds is of great importance in the diabetes management. However, actual monitoring of biomarkers still largely relies on the complex process and additional sophisticated analytical instruments. In this work, we prepared hydrogels composed of different modules, which were designed to monitor different physiological indicators in diabetic wounds, including glucose levels, pH, and temperature. Glucose monitoring was achieved based on the combination of photonic crystal (PC) structure and glucose-responsive hydrogels. The obtained photonic crystal hydrogels (PCHs) allowed visual monitoring of glucose levels in physiological ranges by readout of intuitive structural color changes of PCHs during glucose-induced swelling and shrinkage. Interestingly, the glucose response of double network PCHs was completed in 15 min, which was twice as fast as single network PCHs, due to the higher volume fraction of glucose-responsive motifs. Moreover, pH sensing was achieved by incorporation of acid-base indicator dyes into hydrogels; and temperature monitoring was obtained by integration of thermochromic powders in hydrogels. These hydrogel modules effectively monitored the physiological levels and dynamic changes of three physiological biomarkers, both in vitro and in vivo during diabetic wound healing process. The multifunctional hydrogels with visual monitoring of biomarkers have great potential in wound-related monitoring and treatment.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Hidrogeles , Cicatrización de Heridas , Hidrogeles/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Concentración de Iones de Hidrógeno , Glucemia/análisis , Ratones , Glucosa , Masculino , Temperatura , Fotones , Humanos , Biomarcadores/sangre , Ratas
14.
Proc Natl Acad Sci U S A ; 118(12)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723051

RESUMEN

Core concepts in singular optics, especially the polarization singularities, have rapidly penetrated the surging fields of topological and non-Hermitian photonics. For open photonic structures with non-Hermitian degeneracies in particular, polarization singularities would inevitably encounter another sweeping concept of Berry phase. Several investigations have discussed, in an inexplicit way, connections between both concepts, hinting at that nonzero topological charges for far-field polarizations on a loop are inextricably linked to its nontrivial Berry phase when degeneracies are enclosed. In this work, we reexamine the seminal photonic crystal slab that supports the fundamental two-level non-Hermitian degeneracies. Regardless of the invariance of nontrivial Berry phase (concerning near-field Bloch modes defined on the momentum torus) for different loops enclosing both degeneracies, we demonstrate that the associated far polarization fields (defined on the momentum sphere) exhibit topologically inequivalent patterns that are characterized by variant topological charges, including even the trivial scenario of zero charge. Moreover, the charge carried by the Fermi arc actually is not well defined, which could be different on opposite bands. It is further revealed that for both bands, the seemingly complex evolutions of polarizations are bounded by the global charge conservation, with extra points of circular polarizations playing indispensable roles. This indicates that although not directly associated with any local charges, the invariant Berry phase is directly linked to the globally conserved charge, physical principles underlying which have all been further clarified by a two-level Hamiltonian with an extra chirality term. Our work can potentially trigger extra explorations beyond photonics connecting Berry phase and singularities.

15.
Proc Natl Acad Sci U S A ; 118(12)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33731479

RESUMEN

The negatively charged silicon monovacancy [Formula: see text] in 4H silicon carbide (SiC) is a spin-active point defect that has the potential to act as a qubit in solid-state quantum information applications. Photonic crystal cavities (PCCs) can augment the optical emission of the [Formula: see text], yet fine-tuning the defect-cavity interaction remains challenging. We report on two postfabrication processes that result in enhancement of the [Formula: see text] optical emission from our PCCs, an indication of improved coupling between the cavity and ensemble of silicon vacancies. Below-bandgap irradiation at 785-nm and 532-nm wavelengths carried out at times ranging from a few minutes to several hours results in stable enhancement of emission, believed to result from changing the relative ratio of [Formula: see text] ("dark state") to [Formula: see text] ("bright state"). The much faster change effected by 532-nm irradiation may result from cooperative charge-state conversion due to proximal defects. Thermal annealing at 100 °C, carried out over 20 min, also results in emission enhancements and may be explained by the relatively low-activation energy diffusion of carbon interstitials [Formula: see text], subsequently recombining with other defects to create additional [Formula: see text]s. These PCC-enabled experiments reveal insights into defect modifications and interactions within a controlled, designated volume and indicate pathways to improved defect-cavity interactions.

16.
Proc Natl Acad Sci U S A ; 118(16)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33853945

RESUMEN

State-of-the-art nanostructured chiral photonic crystals (CPCs), metamaterials, and metasurfaces have shown giant optical rotatory power but are generally passive and beset with large optical losses and with inadequate performance due to limited size/interaction length and narrow operation bandwidth. In this work, we demonstrate by detailed theoretical modeling and experiments that a fully developed CPC, one for which the number of unit cells N is high enough that it acquires the full potentials of an ideal (N → ∞) crystal, will overcome the aforementioned limitations, leading to a new generation of versatile high-performance polarization manipulation optics. Such high-N CPCs are realized by field-assisted self-assembly of cholesteric liquid crystals to unprecedented thicknesses not possible with any other means. Characterization studies show that high-N CPCs exhibit broad transmission maxima accompanied by giant rotatory power, thereby enabling large (>π) polarization rotation with near-unity transmission over a large operation bandwidth. Polarization rotation is demonstrated to be independent of input polarization orientation and applies equally well on continuous-wave or ultrafast (picosecond to femtosecond) pulsed lasers of simple or complex (radial, azimuthal) vector fields. Liquid crystal-based CPCs also allow very wide tuning of the operation spectral range and dynamic polarization switching and control possibilities by virtue of several stimuli-induced index or birefringence changing mechanisms.

17.
Sensors (Basel) ; 24(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39124096

RESUMEN

In order to achieve a high-precision synchronous detection of two different refractive index (RI) analytes, a D-type surface plasmon resonance (SPR) photonic crystal fiber (PCF) RI sensor based on two channels is designed in this paper. The sensor uses a D-shaped planar region of the PCF and a large circular air hole below the core as the sensing channels. Surface plasmon resonance is induced by applying a coating of gold film on the surface. The full-vector finite-element method (FEM) is used to optimize the structural parameters of the optical fiber, and the sensing characteristics are studied, including wavelength sensitivity, RI resolution, full width at half maximum (FWHM), figure of merit (FOM), and signal-to-noise ratio (SNR). The results show that the channel 1 (Ch 1) can achieve RI detection of 1.36-1.39 in the wavelength range of 1500-2600 nm, and the channel 2 (Ch 2) can achieve RI detection of 1.46-1.57 in the wavelength range of 2100-3000 nm. The two sensing channels can detect independently or simultaneously measure two analytes with different RIs. The maximum wavelength sensitivity of the sensor can reach 30,000 nm/RIU in Channel 1 and 9900 nm/RIU in Channel 2. The RI resolutions of the two channels are 3.54 × 10-6 RIU and 10.88 × 10-6 RIU, respectively. Therefore, the sensor realizes dual-channel high- and low-RI synchronous detection in the ultra-long wavelength band from near-infrared to mid-infrared and achieves an ultra-wide RI detection range and ultra-high wavelength sensitivity. The sensor has a wide application prospect in the fields of chemical detection, biomedical sensing, and water environment monitoring.

18.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931493

RESUMEN

The advent of nanotechnology has motivated a revolution in the development of miniaturized sensors. Such sensors can be used for radiation detection, temperature sensing, radio-frequency sensing, strain sensing, and more. At the nanoscale, integrating the materials of interest into sensing platforms can be a common issue. One promising platform is photonic crystal fibers, which can draw in optically sensitive nanoparticles or have its optical properties changed by specialized nanomaterials. However, testing these sensors at scale is limited by the the need for specialized equipment to integrate these photonic crystal fibers into optical fiber systems. Having a method to enable rapid prototyping of new nanoparticle-based sensors in photonic crystal fibers would open up the field to a wider range of laboratories that could not have initially studied these materials in such a way before. This manuscript discusses the improved processes for cleaving, drawing, and rapidly integrating nanoparticle-based photonic crystal fibers into optical system setups. The method proposed in this manuscript achieved the following innovations: cleaving at a quality needed for nanoparticle integration could be done more reliably (≈100% acceptable cleaving yield versus ≈50% conventionally), nanoparticles could be drawn at scale through photonic crystal fibers in a safe manner (a method to draw multiple photonic crystal fibers at scale versus one fiber at a time), and the new photonic crystal fiber mount was able to be finely adjusted when increasing the optical coupling before inserting it into an optical system (before, expensive fusion splicing was the only other method).

19.
Sensors (Basel) ; 24(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39275493

RESUMEN

A novel highly sensitive D-shaped photonic crystal fiber-based surface plasmon resonance (PCF-SPR) sensor for dual parameters of refractive index and temperature detecting is proposed. A PCF cladding polishing provides a D-shape design with a gold (Au) film coating for refractive index (RI) sensing (Core 1) and a composite film of silver (Ag) and polydimethylsiloxane (PDMS) for temperature sensing (Core 2). Comsol Multiphysics 5.5 is used to design and simulate the proposed sensor by the finite element method (FEM). The proposed sensor numerically provides results with maximum wavelength sensitivities (WSs) of 51,200 and 56,700 nm/RIU for Core 1 and 2 as RI sensing while amplitude sensitivities are -98.9 and -147.6 RIU-1 with spectral resolution of 1.95 × 10-6 and 1.76 × 10-6 RIU, respectively. Notably, wavelength sensitivity of 17.4 nm/°C is obtained between -20 and -10 °C with resolution of 5.74 × 10-3 °C for Core 2 as temperature sensing. This sensor can efficiently work in the analyte and temperature ranges of 1.33-1.43 RI and -20-100 °C. Due to its high sensitivity and wide detection ranges, both in T and RI sensing, it is a promising candidate for a variety of applications, including chemical, medical, and environmental detection.

20.
Sensors (Basel) ; 24(18)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39338861

RESUMEN

A novel surface plasmon resonance (SPR) refractive index (RI) sensor based on the D-type dual-mode photonic crystal fiber (PCF) is proposed. The sensor employs a side-polished few-mode PCF that facilitates the transmission of the fundamental and second-order modes, with an integrated microfluidic channel positioned directly above the fiber core. This design minimizes the distance to the analyte and maximizes the interaction between the optical field and the analyte, thereby enhancing the SPR effect and resonance loss for improved sensing performance. Au-TiO2 dual-layer material was coated on the surface of a microfluidic channel to enhance the penetration depth of the core evanescent field and tune the resonance wavelength to the near-infrared band, meeting the special needs of chemical and biomedical detection fields. The finite element method was utilized to systematically investigate the coupling characteristics between various modes and surface plasmon polariton (SPP) modes, as well as the impact of structural parameters on the sensor performance. The results indicate that the LP11b_y mode exhibits greater wavelength sensitivity than the HE11_y mode, with a maximum sensitivity of 33,000 nm/RIU and an average sensitivity of 8272.7 nm/RIU in the RI sensing range of 1.25-1.36, which is higher than the maximum sensitivity of 16,000 nm/RIU and average sensitivity of 5666.7 nm/RIU for the HE11b_y mode. It is believed that the proposed PCF-SPR sensor features both high sensitivity and high resolution, which will become a critical device for wide RI detection in mid-infrared fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA