Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Physiol Biochem ; 57(5): 331-344, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37724045

RESUMEN

BACKGROUND/AIMS: Recombinant adeno-associated viruses (rAAV) are an important tool for lung targeted gene therapy. Substitution of tyrosine with phenylalanine residues (Y-F) in the capsid have been shown to protect the AAV vector from ubiquitin/proteasome degradation, increasing transduction efficiency. We tested the mutant Y733F-AAV8 vector for mucus diffusion, as well as the safety and efficacy of pigment epithelium-derived factor (PEDF) gene transfer to the lung. METHODS: For this purpose, Y733F-AAV8-PEDF (1010 viral genome) was administered intratracheally to C57BL/6 mice. Lung mechanics, morphometry, and inflammation were evaluated 7, 14, 21, and 28 days after injection. RESULTS: The tyrosine-mutant AAV8 vector was efficient at penetrating mucus in ex vivo assays and at transferring the gene to lung cells after in vivo instillation. Increased levels of transgene mRNA were observed 28 days after vector administration. Overexpression of PEDF did not affect in vivo lung parameters. CONCLUSION: These findings provide a basis for further development of Y733F-AAV8-based gene therapies for safe and effective delivery of PEDF, which has anti-angiogenic, anti-inflammatory and anti-fibrotic activities and might be a promising therapy for lung inflammatory disorders.


Asunto(s)
Proteínas del Ojo , Técnicas de Transferencia de Gen , Serpinas , Animales , Ratones , Proteínas del Ojo/genética , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/genética , Serpinas/genética
2.
Exp Eye Res ; 202: 108305, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33080300

RESUMEN

The biosafety and efficiency of transplanting retinal pigment epithelial (RPE) cells derived from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been evaluated in phase I and phase II clinical trials. For further large-scale application, cryopreserved RPE cells must be used; thus, it is highly important to investigate the influence of cryopreservation and thawing on the biological characteristics of hESC-RPE cells and their post-transplantation vision-restoring function. Here, via immunofluorescence, qPCR, transmission electron microscopy, transepithelial electrical resistance, and enzyme-linked immunosorbent assays (ELISAs), we showed that cryopreserved hESC-RPE cells retained the specific gene expression profile, morphology, ultrastructure, and maturity-related functions of induced RPE cells. Additionally, cryopreserved hESC-RPE cells exhibited a polarized monolayer, tight junction, and gap junction structure and an in vitro nanoparticle phagocytosis capability similar to those of induced hESC-RPE cells. However, the level of pigment epithelium-derived factor (PEDF) secretion was significantly decreased in cryopreserved hESC-RPE cells. Royal College of Surgeons rats with cryopreserved hESC-RPE cells engrafted into the subretinal space exhibited a significant decrease in the b-wave amplitude compared with rats engrafted with induced hESC-RPE cells at 4 weeks post transplantation. However, the difference disappeared at 8 weeks and 12 weeks post operation. No significant difference in the outer nuclear layer (ONL) thickness was observed between the two groups. Our data showed that even after cryopreservation and thawing, cryopreserved hESC-RPE cells are still qualified as a donor cell source for cell-based therapy of retinal degenerative diseases.


Asunto(s)
Células Madre Embrionarias Humanas/fisiología , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/fisiología , Trasplante de Células Madre , Línea Celular , Polaridad Celular , Células Cultivadas , Criopreservación , Impedancia Eléctrica , Células Madre Embrionarias Humanas/ultraestructura , Humanos , Microscopía Electrónica de Transmisión , Degeneración Retiniana/metabolismo , Degeneración Retiniana/fisiopatología , Epitelio Pigmentado de la Retina/ultraestructura
3.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948073

RESUMEN

PURPOSE: NK-5962 is a key component of photoelectric dye-coupled polyethylene film, designated Okayama University type-retinal prosthesis (OUReP™). Previously, we found that NK-5962 solution could reduce the number of apoptotic photoreceptors in the eyes of the Royal College of Surgeons (RCS) rats by intravitreal injection under a 12 h light/dark cycle. This study aimed to explore possible molecular mechanisms underlying the anti-apoptotic effect of NK-5962 in the retina of RCS rats. METHODS: RCS rats received intravitreal injections of NK-5962 solution in the left eye at the age of 3 and 4 weeks, before the age of 5 weeks when the speed in the apoptotic degeneration of photoreceptors reaches its peak. The vehicle-treated right eyes served as controls. All rats were housed under a 12 h light/dark cycle, and the retinas were dissected out at the age of 5 weeks for RNA sequence (RNA-seq) analysis. For the functional annotation of differentially expressed genes (DEGs), the Metascape and DAVID databases were used. RESULTS: In total, 55 up-regulated DEGs, and one down-regulated gene (LYVE1) were found to be common among samples treated with NK-5962. These DEGs were analyzed using Gene Ontology (GO) term enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses. We focused on the up-regulated DEGs that were enriched in extracellular matrix organization, extracellular exosome, and PI3K-Akt signaling pathways. These terms and pathways may relate to mechanisms to protect photoreceptor cells. Moreover, our analyses suggest that SERPINF1, which encodes pigment epithelium-derived factor (PEDF), is one of the key regulatory genes involved in the anti-apoptotic effect of NK-5962 in RCS rat retinas. CONCLUSIONS: Our findings suggest that photoelectric dye NK-5962 may delay apoptotic death of photoreceptor cells in RCS rats by up-regulating genes related to extracellular matrix organization, extracellular exosome, and PI3K-Akt signaling pathways. Overall, our RNA-seq and bioinformatics analyses provide insights in the transcriptome responses in the dystrophic RCS rat retinas that were induced by NK-5962 intravitreal injection and offer potential target genes for developing new therapeutic strategies for patients with retinitis pigmentosa.


Asunto(s)
Compuestos de Anilina/uso terapéutico , RNA-Seq , Retina/metabolismo , Retinitis Pigmentosa/tratamiento farmacológico , Tiazoles/uso terapéutico , Compuestos de Anilina/administración & dosificación , Animales , Apoptosis , Biología Computacional , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Proteínas del Ojo/fisiología , Regulación de la Expresión Génica , Ontología de Genes , Inyecciones Intravítreas , Masculino , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/fisiología , Ratas , Retina/fisiopatología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/fisiopatología , Serpinas/genética , Serpinas/fisiología , Tiazoles/administración & dosificación , Prótesis Visuales
4.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498962

RESUMEN

Pigment epithelium derived factor (PEDF) is a multifunctional secretory soluble glycoprotein that belongs to the serine protease inhibitor (serpin) family. It was reported to have neurotrophic, anti-angiogenic and anti-tumorigenic activity. Recently, PEDF was found in testicular peritubular cells and it was assumed to be involved in the avascular nature of seminiferous tubules. The aim of this study was to determine the cellular origin, expression levels and target cells of PEDF in testicular tissue of immature and adult mice under physiological conditions, and to explore its possible role in the process of spermatogenesis in vitro. Using immunofluorescence staining, we showed that PEDF was localized in spermatogenic cells at different stages of development as well as in the somatic cells of the testis. Its protein levels in testicular homogenates and Sertoli cells supernatant showed a significant decrease with age. PEDF receptor (PEDF-R) was localized within the seminiferous tubule cells and in the interstitial cells compartment. Its RNA expression levels showed an increase with age until 8 weeks followed by a decrease. RNA levels of PEDF-R showed the opposite trend of the protein. Addition of PEDF to cultures of isolated cells from the seminiferous tubules did not changed their proliferation rate, however, a significant increase was observed in number of meiotic/post meiotic cells at 1000 ng/mL of PEDF; indicating an in vitro differentiation effect. This study may suggest a role for PEDF in the process of spermatogenesis.


Asunto(s)
Proteínas del Ojo/genética , Factores de Crecimiento Nervioso/genética , Serpinas/genética , Espermatogénesis , Espermatogonias/metabolismo , Testículo/metabolismo , Animales , Regulación de la Expresión Génica , Masculino , Ratones , Túbulos Seminíferos/metabolismo , Espermatogonias/fisiología
5.
Mol Biol Rep ; 47(6): 4413-4425, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32385771

RESUMEN

Ocular neovascularization is a defining feature of several blinding diseases. We have previously described the effectiveness of long-term pigment epithelium-derived factor (PEDF) expression in the retina of diabetic mice in ameliorating some diabetic retinopathy hallmarks. In this study, we aimed to investigate if the antiangiogenic potential of PEDF overexpression was enhanced in combination with placental growth factor (PlGF) silencing. Human RPE cells were transfected with a self-replicating episomal vector (pEPito) for PEDF overexpression and/or a siRNA targeting PlGF gene. Conditioned media from PEDF overexpression, from PlGF inhibition and from their combination thereof were used to culture human umbilical vein endothelial cells, and their proliferation rate, migration capacity, apoptosis and ability to form tube-like structures were analyzed in vitro. We here demonstrate that pEPito-driven PEDF overexpression in combination with PlGF silencing in RPE cells does not affect their viability and results in an enhanced antiangiogenic activity in vitro. We observed a significant decrease in the migration and proliferation of endothelial cells, and an increase in apoptosis induction as well as a significant inhibitory effect on tube formation. Our findings demonstrate that simultaneous PEDF overexpression and PlGF silencing strongly impairs angiogenesis compared with the single approaches, providing a rationale for combining these therapies as a new treatment for retinal neovascularization.


Asunto(s)
Proteínas del Ojo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Placentario/metabolismo , Neovascularización Retiniana/metabolismo , Serpinas/metabolismo , Animales , Secreciones Corporales/metabolismo , Células Cultivadas , Medios de Cultivo Condicionados , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Proteínas del Ojo/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Factores de Crecimiento Nervioso/genética , Factor de Crecimiento Placentario/genética , Retina/metabolismo , Retina/patología , Neovascularización Retiniana/patología , Serpinas/genética , Factor A de Crecimiento Endotelial Vascular/genética
6.
Environ Res ; 186: 109506, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32315827

RESUMEN

Although the harmful effects of arsenic exposure on the cardiovascular system have received great attention, there is still no effective treatment. Vascular endothelial dysfunction (VED) is the initial step of cardiovascular diseases, where pigment epithelium-derived factor (PEDF) plays an important role in maintaining endothelial function. Here, we explored the protective role of PEDF in VED induced by arsenic, and its underlying molecular mechanism, designing an in vivo rat model of arsenic exposure recovery and in vitro endothelial EA. hy926 cell-based assays. The edema of aortic endothelial cells in rats significantly improved during recovery from arsenite exposure compared with rats exposed to 10 and 50 mg/L arsenite continuously. In addition, serum levels of nitric oxide (NO), von Willebrand factor, and nitric oxide synthase (inducible and total activities) in rats, which were greatly affected by arsenite exposure, returned to levels similar to those in the control group after recovery with distilled water. The recovery from arsenite exposure was associated with increased levels of PEDF; decreased protein levels of Fas, FasL, P53, and phospho-p38; and inhibited apoptosis in aortic endothelial cells in vivo. Recombinant human PEDF treatment (100 nM) prevented the toxic effects of arsenite (50 µM) on endothelial cells in vitro by increasing NO content, decreasing reactive oxygen species (ROS) levels, and inhibiting apoptosis, as well as increasing cell viability and decreasing levels of P53 and phospho-p38. Our findings suggest that PEDF protects endothelial cells from arsenic-induced VED by increasing NO release and inhibiting apoptosis, where P53 and p38MAPK are its main targets.


Asunto(s)
Arsénico , Serpinas , Animales , Arsénico/toxicidad , Células Cultivadas , Células Endoteliales , Proteínas del Ojo , Humanos , Factores de Crecimiento Nervioso , Ratas
7.
Int J Mol Sci ; 21(17)2020 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-32842471

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of blindness in the industrialized world. AMD is associated with dysfunction and atrophy of the retinal pigment epithelium (RPE), which provides critical support for photoreceptor survival and function. RPE transplantation is a promising avenue towards a potentially curative treatment for early stage AMD patients, with encouraging reports from animal trials supporting recent progression toward clinical treatments. Mature RPE cells have been reported to be superior, but a detailed investigation of the specific changes in the expression pattern of key RPE genes during maturation is lacking. To understand the effect of maturity on RPE, we investigated transcript levels of 19 key RPE genes using ARPE-19 cell line and human embryonic stem cell-derived RPE cultures. Mature RPE cultures upregulated PEDF, IGF-1, CNTF and BDNF-genes that code for trophic factors known to enhance the survival and function of photoreceptors. Moreover, the mRNA levels of these genes are maximized after 42 days of maturation in culture and lost upon dissociation to single cells. Our findings will help to inform future animal and human RPE transplantation efforts.


Asunto(s)
Regulación de la Expresión Génica , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/fisiología , Factor Neurotrófico Derivado del Encéfalo/genética , Técnicas de Cultivo de Célula , Línea Celular , Células Cultivadas , Factor Neurotrófico Ciliar/genética , Proteínas del Ojo/genética , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factores de Crecimiento Nervioso/genética , Serpinas/genética , Factores de Tiempo , Regulación hacia Arriba
8.
Adv Exp Med Biol ; 1185: 445-449, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884652

RESUMEN

Pigment epithelium-derived factor (PEDF) is involved in signal transduction cascades necessary for protection of the retina. The interaction between PEDF and retinal cells elicits neuroprotective effects in vitro and in vivo. The direct substrates and signaling mechanisms involved in the survival response derived from such interaction are beginning to be revealed. It is of interest to elucidate cell death pathways that are crucial for the retinoprotective response of PEDF for the identification of targets that interfere with retina degeneration with potential therapeutic value. Here we review the molecular pathways triggered by PEDF that are involved in retinal survival activity.


Asunto(s)
Proteínas del Ojo/fisiología , Factores de Crecimiento Nervioso/fisiología , Neuroprotección , Retina/fisiología , Serpinas/fisiología , Transducción de Señal , Células Cultivadas , Humanos , Retina/fisiopatología
9.
Adv Exp Med Biol ; 1074: 457-464, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721976

RESUMEN

Oxidative stress has been implicated in neurodegenerative diseases, such as age-related macular degeneration. Hydrogen peroxide and sodium iodate can mediate oxidative injury. Sodium iodate induces a selective retinal degeneration targeting the RPE. We describe a method of chronic sodium iodate-mediated injury on RPE cells that may serve to evaluate protective factors against oxidative stress. Cytotoxicity and cell viability curves of ARPE-19 cells with sodium iodate were generated. The antioxidant pigment epithelium-derived factor decreased sodium iodate-mediated cytotoxicity without affecting ARPE-19 cell viability. A cell culture system to evaluate protection against oxidative stress injury with PEDF is discussed.


Asunto(s)
Antioxidantes/farmacología , Proteínas del Ojo/farmacología , Factores de Crecimiento Nervioso/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Serpinas/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Células Epiteliales/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/toxicidad , Yodatos/toxicidad , Degeneración Macular/patología , Estrés Oxidativo , Proteínas Recombinantes/farmacología , Epitelio Pigmentado de la Retina/citología
10.
Apoptosis ; 21(1): 60-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26519036

RESUMEN

Pigment epithelial-derived factor (PEDF) is a potent anti-angiogenic factor whose effects are partially mediated through the induction of endothelial cell apoptosis. However, the underlying mechanism for PEDF and the functional PEDF peptides 34-mer and 44-mer to inhibit angiogenesis in the heart has not been fully established. In the present study, by constructing adult Sprague-Dawley rat models of acute myocardial infarction (AMI) and in vitro myocardial angiogenesis, we showed that PEDF and 34-mer markedly inhibits angiogenesis by selectively inducing tip cells apoptosis rather than quiescent cells. Peptide 44-mer on the other hand exhibits no such effects. Next, we identified Fas death pathway as essential downstream regulators of PEDF and 34-mer activities in inhibiting angiogenesis. By using peroxisome proliferator-activated receptor γ (PPAR-γ) siRNA and PPAR-γ inhibitor, GW9662, we found the effects of PEDF and 34-mer were extensively blocked. These data suggest that PEDF and 34-mer inhibit angiogenesis via inducing tip cells apoptosis at least by means of up-regulating PPAR-γ to increase surface FasL in the ischemic heart, which might be a novel mechanism to understanding cardiac angiogenesis after AMI.


Asunto(s)
Proteínas del Ojo/farmacología , Proteína Ligando Fas/genética , Infarto del Miocardio/genética , Neovascularización Fisiológica/efectos de los fármacos , Factores de Crecimiento Nervioso/farmacología , PPAR gamma/genética , Péptidos/farmacología , Serpinas/farmacología , Secuencia de Aminoácidos , Anilidas/farmacología , Animales , Apoptosis/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteína Ligando Fas/agonistas , Proteína Ligando Fas/metabolismo , Regulación de la Expresión Génica , Corazón/efectos de los fármacos , Corazón/fisiopatología , Datos de Secuencia Molecular , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Péptidos/síntesis química , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Serpinas/genética , Serpinas/metabolismo , Transducción de Señal
11.
Int J Mol Sci ; 18(1)2016 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-28035992

RESUMEN

This review focuses on the osteogenic differentiation of mesenchymal stem cells (MSC), bone formation and turn-over in good and ill skeletal fates. The interacting molecular pathways which control bone remodeling in physiological conditions during a lifelong process are described. Then, alterations of the molecular pathways regulating osteogenesis are addressed. In the aging process, as well as in glucocorticoid-induced osteoporosis, bone loss is caused not only by an unbalanced bone resorption activity, but also by an impairment of MSCs' commitment towards the osteogenic lineage, in favour of adipogenesis. Mutations affecting the expression of key genes involved in the control of bone development occur in several heritable bone disorders. A few examples are described in order to illustrate the pathological consequences of perturbation in different steps of osteogenic commitment, osteoblast maturation, and matrix mineralization, respectively. The involvement of abnormal MSC differentiation in cancer is then discussed. Finally, a brief overview of clinical applications of MSCs in bone regeneration and repair is presented.


Asunto(s)
Enfermedades Óseas/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteogénesis , Animales , Enfermedades Óseas/patología , Enfermedades Óseas/terapia , Regeneración Ósea , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo
12.
Int J Mol Sci ; 17(12)2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27973457

RESUMEN

The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome has been linked to sterile inflammation, which is involved in ischemic injury in myocardial cells. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted glycoprotein with many biological activities, such as anti-inflammatory, antioxidant and anti-angiogenic properties. However, it is not known whether and how PEDF acts to regulate the activation of the NLRP3 inflammasome in cardiomyocytes. In the present study, we used the neonatal cardiomyocytes models of ischemia-like conditions to evaluate the mitochondrial fission and the activation of the NLRP3 inflammasome. We also determined the mechanism by which PEDF inhibits hypoxia-induced activation of the NLRP3 inflammasome. We found that PEDF decreased the activation of the NLRP3 inflammasome in neonatal cardiomyocytes through pigment epithelial-derived factor receptor/calcium-independent phospholipase A2 (PEDFR/iPLA2). Meanwhile, PEDF reduced Drp1-induced mitochondrial fission and mitochondrial fission-induced mitochondrial DNA (mtDNA), as well as mitochondrial reactive oxygen species (mtROS) release into cytosol through PEDFR/iPLA2. We also found that PEDF inhibited mitochondrial fission-induced NLRP3 inflammasome activation. Furthermore, previous research has found that endogenous cytosolic mtDNA and mtROS can serve as activators of NLRP3 inflammasome activity. Therefore, we hypothesized that PEDF can protect against hypoxia-induced activation of the NLRP3 inflammasome by inhibiting mitochondrial fission though PEDFR/iPLA2.


Asunto(s)
Proteínas del Ojo/farmacología , Inflamasomas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factores de Crecimiento Nervioso/farmacología , Fosfolipasas A2/metabolismo , Receptores de Neuropéptido/metabolismo , Serpinas/farmacología , Animales , Animales Recién Nacidos , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , ADN Mitocondrial/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Dinámicas Mitocondriales/efectos de los fármacos , Modelos Biológicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
13.
Ocul Surf ; 32: 13-25, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38191093

RESUMEN

PURPOSE: Corneal fibrosis and neovascularization (CNV) after ocular trauma impairs vision. This study tested therapeutic potential of tissue-targeted adeno-associated virus5 (AAV5) mediated decorin (DCN) and pigment epithelium-derived factor (PEDF) combination genes in vivo. METHODS: Corneal fibrosis and CNV were induced in New Zealand White rabbits via chemical trauma. Gene therapy in stroma was delivered 30-min after chemical-trauma via topical AAV5-DCN and AAV5-PEDF application using a cloning cylinder. Clinical eye examinations and multimodal imaging in live rabbits were performed periodically and corneal tissues were collected 9-day and 15-day post euthanasia. Histological, cellular, and molecular and apoptosis assays were used for efficacy, tolerability, and mechanistic studies. RESULTS: The AAV5-DCN and AAV5-PEDF combination gene therapy significantly reduced corneal fibrosis (p < 0.01 or p < 0.001) and CNV (p < 0.001) in therapy-given (chemical-trauma and AAV5-DCN + AAV5-PEDF) rabbit eyes compared to the no-therapy given eyes (chemical-trauma and AAV5-naked vector). Histopathological analyses demonstrated significantly reduced fibrotic α-smooth muscle actin and endothelial lectin expression in therapy-given corneas compared to no-therapy corneas on day-9 (p < 0.001) and day-15 (p < 0.001). Further, therapy-given corneas showed significantly increased Fas-ligand mRNA levels (p < 0.001) and apoptotic cell death in neovessels (p < 0.001) compared to no-therapy corneas. AAV5 delivered 2.69 × 107 copies of DCN and 2.31 × 107 copies of PEDF genes per µg of DNA. AAV5 vector and delivered DCN and PEDF genes found tolerable to the rabbit eyes and caused no significant toxicity to the cornea. CONCLUSION: The combination AAV5-DCN and AAV5-PEDF topical gene therapy effectively reduces corneal fibrosis and CNV with high tolerability in vivo in rabbits. Additional studies are warranted.


Asunto(s)
Neovascularización de la Córnea , Fibrosis , Terapia Genética , Factores de Crecimiento Nervioso , Serpinas , Animales , Conejos , Córnea/patología , Córnea/metabolismo , Neovascularización de la Córnea/terapia , Neovascularización de la Córnea/genética , Neovascularización de la Córnea/patología , Neovascularización de la Córnea/metabolismo , Decorina/genética , Decorina/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Fibrosis/terapia , Terapia Genética/métodos , Vectores Genéticos , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Serpinas/genética , Serpinas/metabolismo
14.
Bone Rep ; 18: 101690, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425194

RESUMEN

SERPINF1 gene variants lead to a severe type of osteogenesis imperfecta (OI) attributed to defects in the matrix mineralization. We present 18 patients with SERPINF1 gene variants leading to severe progressive deforming OI, the largest series in the world to date. These patients were normal at birth and had the first fracture between 2 months to 9 years; progression of deformities was seen in 12 adolescents who became nonambulatory. Radiologically, compression fractures with kyphoscoliosis, protrusio acetabuli, and lytic lesions in the metaphysis and pelvis were seen in older children with classical popcorn appearance in the distal femoral metaphysis in three. By exome sequencing and targeted sequencing, we identified ten variants. One was unreported and novel; three other novel variants in this series were reported earlier. The recurrent deletion inframe mutation p.phe277del was found in 5 patients from three families. Alkaline phosphatase was elevated in all children on the first visit. Bone mineral density was low in all patients and showed improvement at two years in seven children on regular pamidronate therapy. For others, the 2 year BMD data were not available. The Z scores for four of the seven children showed worsening at the 2-year follow-up.

15.
Front Neurosci ; 17: 1302124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164244

RESUMEN

The inner ear is a complex and precise auditory perception system responsible for receiving and converting sound signals into neural signals, enabling us to perceive and understand sound. However, the occurrence and development of inner ear diseases and auditory disorders, such as sensorineural hearing loss, remain a global problem. In recent years, there has been increasing research on the treatment of inner ear diseases and auditory regeneration. Among these treatments, pigment epithelium-derived factor (PEDF), as a multifunctional secretory protein, exhibits diverse biological activities and functions through various mechanisms, and has shown potential applications in the inner ear. This minireview comprehensively evaluates the performance of PEDF in sensorineural hearing loss in inner ear and its potential targets and therapeutic prospects.

16.
Eur J Med Genet ; 66(11): 104867, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37839784

RESUMEN

Osteogenesis imperfecta (OI) type VI is an extremely rare form of OI caused by biallelic variants in the SERPINF1 gene, which codes for the pigment-epithelium derived factor (PEDF). We report on four patients (three adults and one adolescent) with a severe deforming form of OI. All patients presented no abnormalities at birth, frequent long bone and vertebrae fractures (mainly during childhood), marked short stature, severe bone deformities, chronic mild to moderate pain, and severe limitation of mobility, with three being completely wheelchair bound. Blue sclera and dentinogenesis imperfecta were absent, although some patients presented tooth, ophthalmological, and/or cardiac features. Radiographic findings included, among others, thin diaphysis and popcorn calcifications, both of which are non-specific to this type of OI. The novel homozygous variants c.816_819del (p.Met272Ilefs*8) and c.283+2T > G in SERPINF1 were identified in three and one patient, respectively. The three patients carrying the frameshift variant were born in nearby regions suggesting a founder effect. Describing the long-term outcomes of four patients with OI type VI, this cohort adds relevant data on the clinical features and prognosis of this type of OI.


Asunto(s)
Osteogénesis Imperfecta , Serpinas , Adolescente , Adulto , Humanos , Recién Nacido , Colágeno Tipo I/genética , Mutación del Sistema de Lectura , Homocigoto , Osteogénesis Imperfecta/genética , Serpinas/genética
17.
J Biomol Struct Dyn ; 41(10): 4575-4591, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35510592

RESUMEN

Pigment epithelium-derived factor (PEDF) is a member of the serine proteinase inhibitor (serpin) with antiangiogenic, anti-tumorigenic, antioxidant, anti-atherosclerosis, antithrombotic, anti-inflammatory, and neuroprotective properties. The PEDF can bind to low-density lipoprotein receptor-related protein 6 (LRP6), laminin (LR), vascular endothelial growth factor receptor 1 (VEGFR1), vascular endothelial growth factor receptor 2 (VEGFR2), and ATP synthase ß-subunit receptors. In this study, we aimed to investigate the structural basis of the interaction between PEDF and its receptors using bioinformatics approaches to identify the critical amino acids for designing anticancer peptides. The human ATP synthase ß-subunit was predicted by homology modeling. The molecular docking, molecular dynamics (MD) simulation, and Molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) were used to study this protein-receptor complex. The molecular docking showed PEDF could bind to the Laminin and VEGFR2 much stronger than ATP synthase ß-subunit, VEGFR1, and LRP6. The PEDF could effectively interact with various receptors during the simulation. The N-terminal of PEDF has an important role in the interaction with the receptors. The MM/PBSA showed the electrostatic (ΔEElec) and van der Waals interactions (ΔEVdW) contributed positively to the binding process of the complexes. The critical amino acids in the binding interaction of PEDF to its receptors in the MD simulation were determined. The interaction mode of 34-mer PEDF to laminin, VEGFR2, and LRP6 were different from VEGFR1, ATP synthase ß-subunit. The 34-mer PEDF has an important role in the interaction with different receptors and these critical amino acids can be used for designing peptides for future therapeutic aims.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias , Serpinas , Humanos , Serpinas/metabolismo , Serpinas/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Simulación del Acoplamiento Molecular , Laminina , Péptidos , Aminoácidos , Adenosina Trifosfato
18.
Front Endocrinol (Lausanne) ; 14: 1116136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139333

RESUMEN

Retinal neovascular, neurodegenerative, and inflammatory diseases represented by diabetic retinopathy are the main types of blinding eye disorders that continually cause the increased burden worldwide. Pigment epithelium-derived factor (PEDF) is an endogenous factor with multiple effects including neurotrophic activity, anti-angiogenesis, anti-tumorigenesis, and anti-inflammatory activity. PEDF activity depends on the interaction with the proteins on the cell surface. At present, seven independent receptors, including adipose triglyceride lipase, laminin receptor, lipoprotein receptor-related protein, plexin domain-containing 1, plexin domain-containing 2, F1-ATP synthase, and vascular endothelial growth factor receptor 2, have been demonstrated and confirmed to be high affinity receptors for PEDF. Understanding the interactions between PEDF and PEDF receptors, their roles in normal cellular metabolism and the response the initiate in disease will be accommodating for elucidating the ways in which inflammation, angiogenesis, and neurodegeneration exacerbate disease pathology. In this review, we firstly introduce PEDF receptors comprehensively, focusing particularly on their expression pattern, ligands, related diseases, and signal transduction pathways, respectively. We also discuss the interactive ways of PEDF and receptors to expand the prospective understanding of PEDF receptors in the diagnosis and treatment of retinal diseases.


Asunto(s)
Enfermedades de la Retina , Serpinas , Humanos , Proteínas del Ojo/metabolismo , Estudios Prospectivos , Enfermedades de la Retina/tratamiento farmacológico , Serpinas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Front Oncol ; 12: 818182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35174090

RESUMEN

Organ tropism of metastatic cells is not well understood. To determine the key factors involved in the selection of a specific organ upon metastasis, we established metastatic cell lines and analyzed their homing to specific tissues. Toward this, 143B osteosarcoma cells were injected intracardially until the kidney-metastasizing sub-cell line Bkid was established, which significantly differed from the parental 143B cells. The candidate genes responsible for kidney metastasis were validated, and SerpinF1/Pigment epithelium derived factor (PEDF) was identified as the primary target. Bkid cells with PEDF knockdown injected intracardially did not metastasize to the kidneys. In contrast, PEDF overexpressing 143B cells injected into femur metastasized to the lungs and kidneys. PEDF triggered mesenchymal-to-epithelial transition (MET) in vitro as well as in vivo. Based on these results, we hypothesized that the MET might be a potential barrier to extravasation. PEDF overexpression in various osteosarcoma cell lines increased their extravasation to the kidneys and lungs. Moreover, when cultured close to the renal endothelial cell line TKD2, Bkid cells disturbed the TKD2 layer and hindered wound healing via the PEDF-laminin receptor (lamR) axis. Furthermore, novel interactions were observed among PEDF, lamR, lysyl oxidase-like 1 (Loxl1), and SNAI3 (Snail-like transcription factor) during endothelial-to-mesenchymal transition (EndoMT). Collectively, our results show that PEDF induces cancer cell extravasation by increasing the permeability of kidney and lung vasculature acting via lamR and its downstream genes. We also speculate that PEDF promotes extravasation via inhibiting EndoMT, and this warrants investigation in future studies.

20.
Front Physiol ; 13: 1045613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467689

RESUMEN

Retinal and choroidal inflammatory lesions increase the levels of the pro-inflammatory cytokine interleukin-6 (IL-6). Pigment epithelium-derived factor (PEDF) has anti-inflammatory properties, but it is not known if it can prevent the production of IL-6 by the retinal pigment epithelium. To investigate the anti-inflammatory effects of PEDF in the RPE, we used human ARPE-19 cells stimulated with human recombinant tumor necrosis factor-alpha (TNF-α) to induce overexpression of the IL6 gene. We found that the viability of ARPE-19 cells decreased by 22% with TNF-α at 10 ng/ml, being drastically decreased at ≥50 ng/ml. TNF-α at 5-100 ng/ml elevated the production and secretion of IL-6 protein, as measured by ELISA. To challenge the TNF-α-mediated stimulation of IL-6, we used recombinant human PEDF protein. PEDF at 100 nM recovered the TNF-α-mediated loss of cell viability and repressed IL-6 gene expression as determined by RT-PCR. PEDF at 10-100 nM attenuated the IL-6 protein secretion in a dose dependent fashion (IC50 = 65 nM), being abolished with 100 nM PEDF. To map the region that confers the IL-6 blocking effect to the PEDF polypeptide, we used chemically synthesized peptides designed from its biologically active domains, pro-death 34-mer, and pro-survival 44-mer and 17-mer (H105A), to challenge the IL-6 overproduction. The pro-survival peptides recovered the TNF-α-mediated cell viability loss, and inhibited IL-6 secretion, while the 34-mer did not have an effect, suggesting a role for the pro-survival domain in blocking TNF-α-mediated cell death and IL-6 stimulation. Our findings position PEDF as a novel antagonistic agent of IL-6 production in RPE cells, underscoring its use for the management of retinal disease-related inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA