Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Ecol Lett ; 27(4): e14414, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622965

RESUMEN

Animals assimilate macronutrients and mineral nutrients in specific quantities and ratios to maximise fitness. To achieve this, animals must ingest different foods that contain the needed nutrients or facilitate the digestion of those nutrients. We explored how these multidimensional considerations affect the desert isopods (Hemilepistus reaumuri) curious food selection, using field and laboratory experiments. Wild isopods consumed three-fold more macronutrient-poor biological soil crust (BSC) than plant litter. Isopods tightly regulated macronutrient and calcium intake, but not phosphorus when eating the two natural foods and when artificial calcium and phosphorus sources substituted the BSC. Despite the equivalent calcium ingestion, isopods performed better when eating BSC compared to artificial foods. Isopods that consumed BSC sterilised by gamma-radiation ate more but grew slower than isopods that ate live BSC, implying that ingested microorganisms facilitate litter digestion. Our work highlights the need to reveal the multifaceted considerations that affect food-selection when exploring trophic-interactions.


Asunto(s)
Polvo , Isópodos , Animales , Calcio , Dieta/veterinaria , Nutrientes
2.
New Phytol ; 241(1): 142-153, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932883

RESUMEN

Plant litter is known to affect soil, community, and ecosystem properties. However, we know little about the capacity of litter to modulate grassland responses to climate change. Using a 7-yr litter removal experiment in a semiarid grassland, here we examined how litter removal interacts with a 2-yr drought to affect soil environments, plant community composition, and ecosystem function. Litter loss exacerbates the negative impacts of drought on grasslands. Litter removal increased soil temperature but reduced soil moisture and nitrogen mineralization, which substantially increased the negative impacts of drought on primary productivity and the abundance of perennial rhizomatous graminoids. Moreover, complete litter removal shifted plant community composition from grass-dominated to forb-dominated and reduced species and functional group asynchrony, resulting in lower ecosystem temporal stability. Our results suggest that ecological processes that lead to reduction in litter, such as burning, grazing, and haying, may render ecosystems more vulnerable and impair the capacity of grasslands to withstand drought events.


Asunto(s)
Ecosistema , Pradera , Sequías , Plantas , Suelo
3.
Glob Chang Biol ; 30(6): e17349, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822665

RESUMEN

Priming of soil organic matter (SOM) decomposition by microorganisms is a key phenomenon of global carbon (C) cycling. Soil pH is a main factor defining priming effects (PEs) because it (i) controls microbial community composition and activities, including enzyme activities, (ii) defines SOM stabilization and destabilization mechanisms, and (iii) regulates intensities of many biogeochemical processes. In this critical review, we focus on prerequisites and mechanisms of PE depending on pH and assess the global change consequences for PE. The highest PEs were common in soils with pH between 5.5 and 7.5, whereas low molecular weight organic compounds triggered PE mainly in slightly acidic soils. Positive PEs up to 20 times of SOM decomposition before C input were common at pH around 6.5. Negative PEs were common at soil pH below 4.5 or above 7 reflecting a suboptimal environment for microorganisms and specific SOM stabilization mechanisms at low and high pH. Short-term soil acidification (in rhizosphere, after fertilizer application) affects PE by: mineral-SOM complexation, SOM oxidation by iron reduction, enzymatic depolymerization, and pH-dependent changes in nutrient availability. Biological processes of microbial metabolism shift over the short-term, whereas long-term microbial community adaptations to slow acidification are common. The nitrogen fertilization induced soil acidification and land use intensification strongly decrease pH and thus boost the PE. Concluding, soil pH is one of the strongest but up to now disregarded factors of PE, defining SOM decomposition through short-term metabolic adaptation of microbial groups and long-term shift of microbial communities.


Asunto(s)
Microbiología del Suelo , Suelo , Suelo/química , Concentración de Iones de Hidrógeno , Ciclo del Carbono , Carbono/análisis , Carbono/metabolismo
4.
J Environ Manage ; 366: 121694, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971066

RESUMEN

The total organic carbon (OC) from plant litter in riparian zones is an important nutrient source for aquatic organisms and plays a crucial role in the nutrient cycling of river ecosystems. Nevertheless, the total amount of OC in dammed rivers gradually decreases, and the restoration methods are rarely researched. A hypothesis was proposed that the periodic inundation altered the process of OC release from plant litter. To explore the impact of periodic inundation on OC release from litter in the riparian zone, litter bags in situ tests were conducted in the Yalong River. Three inundation treatments were conducted for the test samples, which were NS (never submerged by water), PIS (periodic submerged), and PMS (permanent submerged). Results indicated that the amount of OC released from litters in PIS treatment was about 1.1 times that in PMS treatment, and about 2.1 times that in NS treatment. The average release rate coefficient k of PIS treatment (at mean water level) was the highest (12.8 × 10-4 d-1), followed by PMS treatment (11.0 × 10-4 d-1), and NS treatment (5.6 × 10-4 d-1), which demonstrated that the periodic inundation was critical for OC release. The mean water level was a demarcation line where there was a significant difference in the release of OC in the riparian zone (p < 0.05). Flow velocity alone could account for 84% of the variation in OC release rate, while the flow velocity and inundation duration together could achieve an explanatory degree of 86%. This research can provide a valuable scientific basis for the protection and restoration of river ecosystems, especially for the recovery of OC concentration in dammed rivers.

5.
New Phytol ; 238(3): 1033-1044, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36751890

RESUMEN

Understanding how plants adapt to spatially heterogeneous phosphorus (P) supply is important to elucidate the effect of environmental changes on ecosystem productivity. Plant P supply is concurrently controlled by plant internal conservation and external acquisition. However, it is unclear how climate, soil, and microbes influence the contributions and interactions of the internal and external pathways for plant P supply. Here, we measured P and nitrogen (N) resorption efficiency, litter and soil acid phosphatase (AP) catalytic parameters (Vmax(s) and Km ), and soil physicochemical properties at four sites spanning from cold temperate to tropical forests. We found that the relative P limitation to plants was generally higher in tropical forests than temperate forests, but varied greatly among species and within sites. In P-impoverished habitats, plants resorbed more P than N during litterfall to maintain their N : P stoichiometric balance. In addition, once ecosystems shifted from N-limited to P-limited, litter- and soil-specific AP catalytic efficiency (Vmax(s) /Km ) increased rapidly, thereby enhancing organic P mineralization. Our findings suggested that ecosystems develop a coupled aboveground-belowground strategy to maintain P supply and N : P stoichiometric balance under P-limitation. We also highlighted that N cycle moderates P cycles and together shape plant P acquisition in forest ecosystems.


Asunto(s)
Ecosistema , Fósforo , Fósforo/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Bosques , Plantas/metabolismo , Suelo/química , Fosfatasa Ácida/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo
6.
Mol Ecol ; 32(8): 2005-2021, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36650921

RESUMEN

Understanding how genetic differences among soil microorganisms regulate spatial patterns in litter decay remains a persistent challenge in ecology. Despite fine root litter accounting for ~50% of total litter production in forest ecosystems, far less is known about the microbial decay of fine roots relative to aboveground litter. Here, we evaluated whether fine root decay occurred more rapidly where fungal communities have a greater genetic potential for litter decay. Additionally, we tested if linkages between decay and fungal genes can be adequately captured by delineating saprotrophic and ectomycorrhizal fungal functional groups based on whether they have genes encoding certain ligninolytic class II peroxidase enzymes, which oxidize lignin and polyphenolic compounds. To address these ideas, we used a litterbag study paired with fungal DNA barcoding to characterize fine root decay rates and fungal community composition at the landscape scale in northern temperate forests, and we estimated the genetic potential of fungal communities for litter decay using publicly available genomes. Fine root decay occurred more rapidly where fungal communities had a greater genetic potential for decay, especially of cellulose and hemicellulose. Fine root decay was positively correlated with ligninolytic saprotrophic fungi and negatively correlated with ECM fungi with ligninolytic peroxidases, likely because these saprotrophic and ectomycorrhizal functional groups had the highest and lowest genetic potentials for plant cell wall degradation, respectively. These fungal variables overwhelmed direct environmental controls, suggesting fungal community composition and genetic variation are primary controls over fine root decay in temperate forests at regional scales.


Asunto(s)
Micobioma , Micorrizas , Ecosistema , Bosques , Micorrizas/fisiología , Plantas , Microbiología del Suelo , Hongos/genética , Suelo , Árboles/microbiología
7.
Environ Res ; 224: 115575, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36842702

RESUMEN

Plant litter input is an important driver of soil/sediment organic carbon (SOC) turnover. A large number of studies have targeted litter-derived C input tracing at a global level. However, little is known about how litter carbon (C) input via various plant tissues affects SOC accumulation and mineralization. Here, we conducted laboratory incubation to investigate the effects of leaf litter and stem litter input on SOC dynamics using the natural 13C isotope technique. A 122-day laboratory incubation period showed that litter input facilitated SOC accumulation. Leaf and stem litter inputs increased soil total organic carbon content by 37.6% and 15.5%, respectively. Leaf litter input had a higher contribution to SOC accumulation than stem litter input. Throughout the incubation period, the δ13C values of stem litter and leaf litter increased by 1.5‰ and 3.3‰, respectively, while δ13CO2 derived from stem litter and δ13CO2 derived from leaf litter decreased by 4.2‰ and 6.1‰, respectively, suggesting that the magnitude of δ13C in litter and δ13CO2 shifts varied, depending on litter tissues. The cumulative CO2-C emissions of leaf litter input treatments were 27.56%-42.47% higher than those of the stem litter input treatments, and thus leaf litter input promoted SOC mineralization more than stem litter input. Moreover, the proportion of increased CO2-C emissions to cumulative CO2-C emissions (57.18%-92.12%) was greater than the proportion of litter C input to total C (18.7%-36.8%), indicating that litter input could stimulate native SOC mineralization, which offsets litter-derived C in the soil. Overall, litter input caused a net increase in SOC accumulation, but it also accelerated the loss of native SOC. These findings provide a reliable basis for assessing SOC stability and net C sink capacity in wetlands.


Asunto(s)
Carbono , Suelo , Humedales , Dióxido de Carbono , Hojas de la Planta
8.
New Phytol ; 235(5): 2022-2033, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35579884

RESUMEN

Plant litter decomposition is a key process for carbon (C) turnover in terrestrial ecosystems. Sunlight has been shown to cause and accelerate C release in semiarid ecosystems, yet the dose-response relationships for these effects have not been evaluated. We conducted a two-phase experiment where plant litter of three species was subjected to a broad range of cumulative solar radiation (CSR) exposures under field conditions. We then evaluated the relationships between CSR exposure and abiotic mass loss, litter quality and the subsequent biotic decomposition and microbial activity in litter. Dose-response relationships demonstrated that CSR exposure was modestly correlated with abiotic mass loss but highly significantly correlated with lignin degradation, saccharification, microbial activity and biotic decay of plant litter across all species. Moreover, a comparison of these dose-response relationships suggested that small reductions in litter lignin due to exposure to sunlight may have large consequences for biotic decay. These results provide strong support for a model that postulates a critical role for lignin photodegradation in the mechanism of photofacilitation and demonstrate that, under natural field conditions, biotic degradation of plant litter is linearly related with the dose of solar radiation received by the material before coming into contact with decomposer microorganisms.


Asunto(s)
Ecosistema , Exposición a la Radiación , Lignina/metabolismo , Fotólisis , Hojas de la Planta/metabolismo , Plantas/metabolismo
9.
J Environ Manage ; 320: 115877, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35932747

RESUMEN

Plant litter can greatly alter community compositional dynamics and variability of intraspecific interactions in grasslands, and thus the overall ecosystem structure and functions. However, whether plant activity can be driven by plant litter to modify plant community heterogeneity remains poorly explored. We investigate the responses of plant community heterogeneity to litter addition as well as their associated mechanisms. Here we conducted a three-year field experiment in a Tibetan alpine meadow to explore the effects of multiple plant litter addition (five mass levels and three species) on plant communities. We found that the effect of litter manipulation on plant community heterogeneity was mainly driven by litter mass rather than litter species. Higher litter mass manipulation significantly enhanced plant community heterogeneity, which was mainly determined by the niche breadth of forbs and the distribution patterns of functional composition rather than plant diversity. Our findings provide significant insights for understanding the effects of plant litter on grassland ecosystem dynamics to maintain the structure and function of ecosystems. Furthermore, this study suggests that reasonable management practices (e.g., moderate grazing in non-growing seasons) may be pivotal in achieving sustainability of grassland systems through plant litter dynamics.


Asunto(s)
Ecosistema , Pradera , Plantas , Suelo
10.
Int J Syst Evol Microbiol ; 70(2): 971-976, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31724934

RESUMEN

A novel zoosporic actinomycete, designated strain A-T 5661T, was isolated from plant litter collected in Thailand. Strain A-T 5661T developed large multilocular sporangia containing motile sporangiospores at the ends of sporangiophores on substrate mycelium. The results of our polyphasic taxonomic study demonstrated that the strain had characteristics typical of members of the genus Cryptosporangium. The 16S rRNA gene sequence and phylogenetic analyses indicated that strain A-T 5661T shared the sequence similarity ≤98.5 % with all members of the genus Cryptosporangium. The values of DNA-DNA relatedness that distinguished this novel strain from its closest related species were below 70 %. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The whole-cell sugars were acofriose, arabinose, galactose, glucose, mannose, xylose and ribose. The predominant menaquinones were MK-9(H8) and MK-9(H6) with minor amounts of MK-9(H4) and MK-9(H2). The predominant fatty acids were iso-C16 : 0, C18 : 1ω9c and anteiso-C17 : 0. The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides and unidentified polar lipids. The G+C content of the genomic DNA was 71.6 mol%. Based on comparative analysis of phenotypic, chemotaxonomic and genotypic data, the novel zoosporic actinomycete A-T 5661T (=TBRC 8127T=NBRC 113237T) is proposed to be the type strain of a novel species, Cryptosporangium phraense sp. nov.


Asunto(s)
Actinobacteria/clasificación , Filogenia , Hojas de la Planta/microbiología , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tailandia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Ecol Lett ; 22(6): 946-953, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30891910

RESUMEN

Fine root decomposition constitutes a critical yet poorly understood flux of carbon and nutrients in terrestrial ecosystems. Here, we present the first large-scale synthesis of species trait effects on the early stages of fine root decomposition at both global and local scales. Based on decomposition rates for 279 plant species across 105 studies and 176 sites, we found that mycorrhizal association and woodiness are the best categorical traits for predicting rates of fine root decomposition. Consistent positive effects of nitrogen and phosphorus concentrations and negative effects of lignin concentration emerged on decomposition rates within sites. Similar relationships were present across sites, along with positive effects of temperature and moisture. Calcium was not consistently related to decomposition rate at either scale. While the chemical drivers of fine root decomposition parallel those of leaf decomposition, our results indicate that the best plant functional groups for predicting fine root decomposition differ from those predicting leaf decomposition.


Asunto(s)
Clima , Micorrizas , Carbono , Micorrizas/crecimiento & desarrollo , Nitrógeno , Hojas de la Planta , Raíces de Plantas , Suelo
12.
Proc Natl Acad Sci U S A ; 113(16): 4392-7, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27044070

RESUMEN

A mechanistic understanding of the controls on carbon storage and losses is essential for our capacity to predict and mitigate human impacts on the global carbon cycle. Plant litter decomposition is an important first step for carbon and nutrient turnover, and litter inputs and losses are essential in determining soil organic matter pools and the carbon balance in terrestrial ecosystems. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in arid lands; however, the global significance of this process as a control on carbon cycling in terrestrial ecosystems is not known. Here we show that, across a wide range of plant species, photodegradation enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility to plant litter carbohydrates for microbial enzymes. Photodegradation of plant litter, driven by UV radiation, and especially visible (blue-green) light, reduced the structural and chemical bottleneck imposed by lignin in secondary cell walls. In leaf litter from woody species, specific interactions with UV radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized effect of sunlight exposure on subsequent microbial activity, mediated by increased accessibility to cell wall polysaccharides, suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release, and the carbon balance in a broad range of terrestrial ecosystems.


Asunto(s)
Lignina/química , Procesos Fotoquímicos , Humanos
13.
Ecology ; 99(6): 1441-1452, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29663355

RESUMEN

Microbial decomposers mediate the return of CO2 to the atmosphere by producing extracellular enzymes to degrade complex plant polymers, making plant carbon available for metabolism. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. We analyzed mass loss, litter chemistry, microbial biomass, extracellular enzyme activities, and enzyme temperature sensitivities in grassland litter transplanted along a Mediterranean climate gradient in southern California. Microbial community composition was manipulated by caging litter within bags made of nylon membrane that prevent microbial immigration. To test whether grassland microbes were constrained by climate history, half of the bags were inoculated with local microbial communities native to each gradient site. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbial communities were not restricted in their ability to decompose litter under different climate conditions across the gradient, although microbial communities across our gradient may be restricted in their ability to degrade different types of litter. We did find some evidence that local microbial communities were optimized based on climate, but local microbial taxa that proliferated after inoculation into litterbags did not enhance litter decomposition. Our results suggest that microbial community composition does not constrain C-cycling rates under climate change in our system, but optimization to particular resource environments may act as more general constraints on microbial communities.


Asunto(s)
Ciclo del Carbono , Ecosistema , Biomasa , California , Cambio Climático , Hojas de la Planta/química , Plantas/clasificación , Microbiología del Suelo
14.
Ecology ; 99(6): 1480-1489, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29676019

RESUMEN

Pollination is critical for plant fitness and population dynamics, yet little attention is paid to the role of flowering and plant-pollinator interactions in structuring plant communities, including community responses to environmental change. Changes in arbuscular mycorrhizal fungi (AMF), nutrient abundances, and plant litter all affect plant access to different resources, and are known regulators of community structure. Each factor can also affect flowering and plant-pollinator interactions, potentially contributing to changes in community structure. To test whether AMF, nutrients, and litter influenced the relationship between pollination and community structure, we conducted a 5-yr field experiment applying fungicide, adding fertilizer, and removing plant litter in native grassland. We measured the distribution of flowers and floral visits among species in year three and linked these measures to changes in plant composition and species richness between years three and five. We hypothesized that an uneven distribution of flowers and visits among species would lead to greater community change, but that the treatments would disrupt this relationship by altering sexual allocation and recruitment. Consistent with our hypothesis, communities with uneven flower distributions exhibited greater changes in community composition and richness under ambient conditions. However, AMF suppression neutralized this relationship and regulated the other treatment effects, highlighting the potential importance of AMF for stabilizing recruitment dynamics. Combined, AMF suppression and nutrient addition caused species losses when few species flowered, likely by compounding stresses for those species. The treatment effects on the relationship between flowering and community composition were more nuanced, but were likely driven by increased competition and altered flowering among species. By contrast, community composition was more stable when visitation rates were uneven among species, irrespective of any treatments. This suggests that some species require high visitation rates to maintain their populations due to greater dependence on sexual reproduction. Combined, these results highlight the importance of flowering and floral visitation to the dynamics of grassland communities. They also suggest that altered recruitment dynamics is a major, yet understudied, mechanism by which environmental change affects communities. Consequently, understanding the effects of environmental change on plant communities will require study of both plant growth and sexual reproduction.


Asunto(s)
Micorrizas , Flores , Plantas/microbiología , Polinización , Reproducción
15.
New Phytol ; 214(3): 1092-1102, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28205289

RESUMEN

Plant litter decomposition is a key regulator of nutrient recycling. In a given environment, decomposition of litter from a focal species depends on its litter quality and on the efficiency of local decomposers. Both may be strongly modified by functional traits of neighboring species, but the consequences for decomposition of litter from the focal species remain unknown. We tested whether decomposition of a focal plant's litter is influenced by the functional-trait dissimilarity to the neighboring plants. We cultivated two grass species (Brachypodium pinnatum and Elytrigia repens) in experimental mesocosms with functionally similar and dissimilar neighborhoods, and reciprocally transplanted litter. For both species, litter quality increased in functionally dissimilar neighborhoods, partly as a result of changes in functional traits involved in plant-plant interactions. Furthermore, functional dissimilarity increased overall decomposer efficiency in one species, probably via complementarity effects. Our results suggest a novel mechanism of biodiversity effects on ecosystem functioning in grasslands: interspecific functional diversity within plant communities can enhance intraspecific contributions to litter decomposition. Thus, plant species might better perform in diverse communities by benefiting from higher remineralization rates of their own litter.


Asunto(s)
Hojas de la Planta/fisiología , Poaceae/fisiología , Bacterias/metabolismo , Biomasa , Brachypodium/fisiología , Modelos Teóricos , Carácter Cuantitativo Heredable , Especificidad de la Especie
16.
Ecology ; 97(10): 2834-2843, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27859104

RESUMEN

Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m-2 ·yr-1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem.


Asunto(s)
Nitrógeno , Suelo , China , Ecosistema , Hojas de la Planta
17.
Microb Ecol ; 72(2): 263-76, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27193000

RESUMEN

Ongoing climate change is expected to affect the diversity and activity of aquatic microbes, which play a key role in plant litter decomposition in forest streams. We used a before-after control-impact (BACI) design to study the effects of warming on a forest stream reach. The stream reach was divided by a longitudinal barrier, and during 1 year (ambient year) both stream halves were at ambient temperature, while in the second year (warmed year) the temperature in one stream half was increased by ca. 3 °C above ambient temperature (experimental half). Fine-mesh bags containing oak (Quercus robur L.) leaves were immersed in both stream halves for up to 60 days in spring and autumn of the ambient and warmed years. We assessed leaf-associated microbial diversity by denaturing gradient gel electrophoresis and identification of fungal conidial morphotypes and microbial activity by quantifying leaf mass loss and productivity of fungi and bacteria. In the ambient year, no differences were found in leaf decomposition rates and microbial productivities either between seasons or stream halves. In the warmed year, phosphorus concentration in the stream water, leaf decomposition rates, and productivity of bacteria were higher in spring than in autumn. They did not differ between stream halves, except for leaf decomposition, which was higher in the experimental half in spring. Fungal and bacterial communities differed between seasons in both years. Seasonal changes in stream water variables had a greater impact on the activity and diversity of microbial decomposers than a warming regime simulating a predicted global warming scenario.


Asunto(s)
Bacterias/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Hojas de la Planta/microbiología , Estaciones del Año , Biodegradación Ambiental , Biodiversidad , Dermatoglifia del ADN , ADN Bacteriano/aislamiento & purificación , ADN de Hongos/aislamiento & purificación , Quercus , Temperatura
18.
Glob Chang Biol ; 21(8): 3036-48, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25930662

RESUMEN

Ecosystem carbon (C) accrual and storage can be enhanced by removing large herbivores as well as by the fertilizing effect of atmospheric nitrogen (N) deposition. These drivers are unlikely to operate independently, yet their combined effect on aboveground and belowground C storage remains largely unexplored. We sampled inside and outside 19 upland grazing exclosures, established for up to 80 years, across an N deposition gradient (5-24 kg N ha(-1) yr(-1) ) and found that herbivore removal increased aboveground plant C stocks, particularly in moss, shrubs and litter. Soil C storage increased with atmospheric N deposition, and this was moderated by the presence or absence of herbivores. In exclosures receiving above 11 kg N ha(-1) year(-1) , herbivore removal resulted in increased soil C stocks. This effect was typically greater for exclosures dominated by dwarf shrubs (Calluna vulgaris) than by grasses (Molinia caerulea). The same pattern was observed for ecosystem C storage. We used our data to predict C storage for a scenario of removing all large herbivores from UK heathlands. Predictions were made considering herbivore removal only (ignoring N deposition) and the combined effects of herbivore removal and current N deposition rates. Predictions including N deposition resulted in a smaller increase in UK heathland C storage than predictions using herbivore removal only. This finding was driven by the fact that the majority of UK heathlands receive low N deposition rates at which herbivore removal has little effect on C storage. Our findings demonstrate the crucial link between herbivory by large mammals and atmospheric N deposition, and this interaction needs to be considered in models of biogeochemical cycling.


Asunto(s)
Agricultura , Carbono/análisis , Herbivoria , Nitrógeno/análisis , Agricultura/métodos , Animales , Calluna/química , Poaceae/química , Suelo/química , Reino Unido
19.
New Phytol ; 203(3): 873-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24842000

RESUMEN

Litter decomposition is a key ecosystem process, yet our understanding of the drivers in chemical changes in leaves during decay is limited. Our aim was to determine the comparative differences (chemical divergence or convergence) between sites and the drivers of decay pathways. We used the litterbag method ('in situ' litterfall and standardized 'control' leaves) in Australian tropical rainforests and near-infrared spectrometry to show the chemical pathways during decomposition (c. 360 d; 12 control sites; 17 in situ sites). Chemical convergence/divergence was determined from spectral dissimilarity and quantile regression along a mass loss moving average. The influence of environment (climate and soil) and litter quality on decay pathways was determined between sites using correlation analysis. Throughout the region, litter composition in both treatments converged chemically during decay. However, divergent chemical pathways were shown for some samples/sites (especially with high initial lignin, phenolics and carbon (C), poor soil phosphorus (P), sodium (Na) and more seasonal moisture), and the diversity of decay residues increased with mass loss despite overall chemical convergence. Our study suggests that there is general chemical convergence of leaf litter during early decay, but also that divergent chemical pathways occur in locations that experience more intense seasonal drying, and contain species or conditions that promote poor-quality litter.


Asunto(s)
Hojas de la Planta/química , Clima Tropical , Australia , Modelos Lineales , Bosque Lluvioso , Estadísticas no Paramétricas
20.
Sci Total Environ ; 948: 174820, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032742

RESUMEN

The environmental risks of migration of heavy metals (HMs) following applications of sewage sludge (SS) to forest soils are garnering increased attention. Plant litter at the forest floor may modify HM migration pathways through impacts on soil aggregates and water/soil erosion; however, HM migration responses to plant litter are poorly understood. The aim of this study was to determine the effects of plant litter cover on HMs migration, and water and soil erosion following the application of SS to subtropical forest soils. Effects of addition of SS along and SS plus plant litter at 0.75 or 1.5 kg m-2 on the migration of cadmium, chromium, copper, nickel, lead, and zinc in surface runoff, soil interflow, and sediments were quantified across nine simulated rainfall events in a laboratory experiment and following natural intense rain events in a field experiment. Addition of SS elevated HM concentrations in surface runoff by 38.7 to 98.5 %, in soil interflow by 48.3 to 312.5 %, and in sediment by 28.5 to 149.4 %, and increased the production of sediment aggregates <0.05 mm that led to greater cumulative migrations of HMs in surface runoff and sediment; sediment accounted for 89.5 % of HM migrations. Addition of plant litter reduced cumulative migration of HMs by 87.1-97.27 %; however, the higher rate of plant litter led to a decrease in surface runoff and sediment yield, and an increase in soil interflow. Addition of plant litter shifted the main pathway of HM migration from sediment to surface runoff and soil interflow. The potential ecological HM risk index was "low" for each treatment. We found consistency in HM concentrations and migrations via surface runoff between the field and laboratory experiments. Overall, the addition of plant litter with SS mitigated soil erosion and reduced total migration of HMs, resulting in a 88.7-97.3 % decrease in the ecological risk index of the six HMs. We conclude that the addition of plant litter may provide a management strategy for the mitigation of HM risks to environmental safety for the disposal of SS in subtropical forest systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA