Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 94(9): 4265-4276, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35615895

RESUMEN

The constantly emerging severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants of concerns (VOCs) with mutations in the receptor-binding domain (RBD) spread rapidly and has become a severe public health problem worldwide. Effective vaccines and optimized booster vaccination strategies are thus highly required. Here, the gene encoding six different RBD (Alpha, Beta, Gamma, Kappa, Delta, and Epsilon variants) along with the Fc fragment of human IgG1 (RBD-Fc) was cloned into plant expression vector and produced in Nicotiana benthamiana by transient expression. Further, the immunogenicity of plant-produced variant RBD-Fc fusion proteins were tested in cynomolgus monkeys. Each group of cynomolgus monkeys was immunized three times intramuscularly with variant RBD-Fc vaccines at Day 0, 21, 42, and neutralizing antibody responses were evaluated against ancestral (Wuhan), Alpha, Beta, Gamma, and Delta variants. The results showed that three doses of the RBD-Fc vaccine significantly enhanced the immune response against all tested SARS-CoV-2 variants. In particular, the vaccines based on Delta and Epsilon mutant RBD elicit broadly neutralizing antibodies against ancestral (Wuhan), Alpha, and Delta SARS-CoV-2 variants whereas Beta and Gamma RBD-Fc vaccines elicit neutralizing antibodies against their respective SARS-CoV-2 strains. The Delta and Epsilon RBD-Fc based vaccines displayed cross-reactive immunogenicity and might be applied as a booster vaccine to induce broadly neutralizing antibodies. These proof-of-concept results will be helpful for the development of plant-derived RBD-Fc-based vaccines against SARS-CoV-2 and its variants.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19 , Proteínas Portadoras , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Nicotiana/genética
2.
Mol Cell Probes ; 63: 101815, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35364264

RESUMEN

The potency of human and veterinary rabies vaccines is measured based on the National Institute of Health (NIH) potency test that is laborious, time-consuming, variable, and requires sacrifice of large numbers of mice. ELISA-based methods quantifying rabies glycoprotein (rGP) are being developed as potential alternatives to the NIH potency test for release of rabies vaccines. The aim of the current study was focused on the evaluation of in vitro- and in vivo-based assays in order to assess their concurrence for adequate and reliable assessment of immunogenicity and protective potency of a plant-derived recombinant rGP. The recombinant rGP of strain ERA.KK was engineered, expressed and purified from Nicotiana benthamiana plants. The recombinant rGP excluded the transmembrane and intracytoplasmic domains. It was purified by chromatography (≥90%) from the plant biomass, characterized, and mainly presented as high molecular weight forms, most likely soluble aggregates, of the rGP ectodomain. It was well-recognized and quantified by an ELISA, which utilizes two mouse monoclonal antibodies, D1-25 and 1112-1, and which should only recognize the native trimeric form of the rGP. However, in mice, the recombinant rGP did not induce the production of anti-rabies virus neutralizing antibodies and did not confer protection after intracerebral viral challenge. Similar immunogenicity was observed in guinea pigs and rabbits. Our results demonstrate that use of the ELISA method described here is not predictive of performance in vivo. These data highlight the critical need to develop in vitro potency assays that reliably define the antigen content that can induce a protective response.


Asunto(s)
Vacunas Antirrábicas , Rabia , Animales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática/métodos , Glicoproteínas/genética , Cobayas , Ratones , Conejos , Rabia/prevención & control , Vacunas Antirrábicas/química , Proteínas Recombinantes
3.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36555326

RESUMEN

Capsid protein of Hepatitis E virus (HEV) is capable of self-assembly into virus-like particles (VLPs) when expressed in Nicotiana benthamiana plants. Such VLPs could be used as carriers of antigens for vaccine development. In this study, we obtained VLPs based on truncated coat protein of HEV bearing the M2e peptide of Influenza A virus or receptor-binding domain of SARS-CoV-2 spike glycoprotein (RBD). We optimized the immunogenic epitopes' presentation by inserting them into the protruding domain of HEV ORF2 at position Tyr485. The fusion proteins were expressed in Nicotiana benthamiana plants using self-replicating potato virus X (PVX)-based vector. The fusion protein HEV/M2, targeted to the cytosol, was expressed at the level of about 300-400 µg per gram of fresh leaf tissue and appeared to be soluble. The fusion protein was purified using metal affinity chromatography under native conditions with the final yield about 200 µg per gram of fresh leaf tissue. The fusion protein HEV/RBD, targeted to the endoplasmic reticulum, was expressed at about 80-100 µg per gram of fresh leaf tissue; the yield after purification was up to 20 µg per gram of fresh leaf tissue. The recombinant proteins HEV/M2 and HEV/RBD formed nanosized virus-like particles that could be recognized by antibodies against inserted epitopes. The ELISA assay showed that antibodies of COVID-19 patients can bind plant-produced HEV/RBD virus-like particles. This study shows that HEV capsid protein is a promising carrier for presentation of foreign antigen.


Asunto(s)
Partículas Similares a Virus Artificiales , Proteínas de la Cápside , Virus de la Hepatitis E , Humanos , Proteínas de la Cápside/metabolismo , COVID-19 , Epítopos , Proteínas Recombinantes , SARS-CoV-2/metabolismo , Nicotiana , Presentación de Antígeno , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/biosíntesis
4.
Plant Biotechnol J ; 17(9): 1751-1759, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30791210

RESUMEN

Porcine circovirus type 2 (PCV-2) is the main causative agent associated with a group of diseases collectively known as porcine circovirus-associated disease (PCAD). There is a significant economic strain on the global swine industry due to PCAD and the production of commercial PCV-2 vaccines is expensive. Plant expression systems are increasingly regarded as a viable technology to produce recombinant proteins for use as pharmaceutical agents and vaccines. However, successful production and purification of PCV-2 capsid protein (CP) from plants is an essential first step towards the goal of a plant-produced PCV-2 vaccine candidate. In this study, the PCV-2 CP was transiently expressed in Nicotiana benthamiana plants via agroinfiltration and PCV-2 CP was successfully purified using sucrose gradient ultracentrifugation. The CP self-assembled into virus-like particles (VLPs) resembling native virions and up to 6.5 mg of VLPs could be purified from 1 kg of leaf wet weight. Mice immunized with the plant-produced PCV-2 VLPs elicited specific antibody responses to PCV-2 CP. This is the first report describing the expression of PCV-2 CP in plants, the confirmation of its assembly into VLPs and the demonstration of their use to elicit a strong immune response in a mammalian model.


Asunto(s)
Proteínas de la Cápside/inmunología , Circovirus , Inmunogenicidad Vacunal , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/biosíntesis , Ratones , Plantas Modificadas Genéticamente , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Porcinos , Nicotiana/genética , Nicotiana/metabolismo
6.
Plant Cell Rep ; 38(7): 825-833, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31139894

RESUMEN

Recently, plants have emerged as a lucrative alternative system for the production of recombinant proteins, as recombinant proteins produced in plants are safer and cheaper than those produced in bacteria and animal cell-based production systems. To obtain high yields in plants, recombinant proteins are produced in chloroplasts using different strategies. The first strategy is based on chloroplast transformation, followed by gene expression and translation in chloroplasts. This has proven to be a powerful approach for the production of proteins at high levels. The second approach is based on nuclear transformation, followed by post-translational import of proteins from the cytosol into chloroplasts. In the nuclear transformation approach, foreign genes are stably integrated into the nuclear genome or transiently expressed in the nucleus by non-integrating T-DNA. Although this approach also has great potential for protein production at high levels, it has not been thoroughly investigated. In this review, we focus on nuclear transformation-based protein expression and its subsequent sequestration in chloroplasts, and summarize the different strategies used for high-level production of recombinant proteins. We also discuss future directions for further improvements in protein production in chloroplasts through nuclear transformation-based gene expression.


Asunto(s)
Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transformación Genética/genética
7.
Pharm Biol ; 57(1): 669-675, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31549887

RESUMEN

Context: The co-delivery of adjuvant and antigen has shown to be more effective for targeting the immune response than antigen alone. Therefore, designing an efficient bicistronic system is more assuring for production of both elements in the same tobacco cells as a plant model system. Objective: Comparing the efficient transient co-expression of hepatitis B surface antigen (HBsAg) and mouse granulocyte macrophage colony stimulating factor (mGM-CSF) in tobacco leaves by designing either mono or bicistronic cassettes. Materials and methods: Four expression cassettes containing tobacco etch virus (TEV) leader sequence were constructed with and without above genes in different orders. The cassettes were transferred into tobacco, Nicotiana tabacum L. (Solanaceae), leaves by agroinfiltration technique. The expression levels were compared using ELISA and western blotting and bioactivity of cytokine was assessed by in vitro proliferation of mouse GM-CSF-responsive progenitor cells. Results: Agroinfiltrated leaves contained recombinant HBsAg protein at 20-50 ng/mg and mGM-CSF at 0.2-4 ng/mg in both nonglycosylated and glycosylated forms. The highest expression obtained in HBsAg and mGM-CSF monocistronic co-agroinfiltrated leaves. The expression of mGM-CSF was 1.1 and 0.2 ng/mg in two different orders of bicistronic cassettes. The growth frequency of GM progenitors was approximately 1/187 cells for standard rGM-CSF and 3.2 times less activity for the plant produced. Discussion and conclusions: The recombinant mGM-CSF was produced less in bicistronic cassette than other forms; however, co-presenting of both vaccine candidate and adjuvant is confirmed and could be promising for amelioration of plant expression system as a means for vaccine production.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/genética , Factor Estimulante de Colonias de Macrófagos/genética , Ingeniería de Proteínas , Adyuvantes Inmunológicos , Animales , Células de la Médula Ósea/patología , Línea Celular , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Antígenos de Superficie de la Hepatitis B/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Ratones Endogámicos BALB C , Plantas Modificadas Genéticamente , Proteínas Recombinantes , Nicotiana/genética
8.
Plant Biotechnol J ; 16(2): 628-637, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28733985

RESUMEN

High-risk human papillomaviruses (HPVs) cause cervical cancer, and while there are good prophylactic vaccines on the market, these are ineffective against established infections, creating a clear need for therapeutic vaccines. The HPV E7 protein is one of the essential oncoproteins for the onset and maintenance of malignancy and is therefore an ideal therapeutic vaccine target. We fused the HPV-16 E7 protein to the Limulus polyphemus antilipopolysaccharide factor (LALF32-51 ), a small hydrophobic peptide that can penetrate cell membranes and that has immunomodulatory properties. LALF32-51 -E7 was transiently expressed in Nicotiana benthamiana, and we previously determined that it accumulated better when targeted to chloroplasts compared to being localized in the cytoplasm. Subsequently, we aimed to prove whether LALF32-51 -E7 was indeed associated with the chloroplasts by determining its subcellular localization. The LALF32-51 -E7 gene was fused to one encoding enhanced GFP to generate a LG fusion protein, and localization was determined by confocal laser scanning microscopy and transmission electron microscopy (TEM). The fluorescence observed from chloroplast-targeted LG was distinctively different from that of the cytoplasmic LG. Small spherical structures resembling protein bodies (PBs) were seen that clearly localized with the chloroplasts. Larger but less abundant PB-like structures were also seen for the cytoplasmic LG. PB-like structure formation was confirmed for both LG and LALF32-51 -E7 by TEM. LALF32-51 -E7 was indeed targeted to the chloroplasts by the chloroplast transit peptide used in this study, and it formed aggregated PB-like structures. This study could open a new avenue for the use of LALF32-51 as a PB-inducing peptide.


Asunto(s)
Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Cloroplastos/efectos de los fármacos , Papillomavirus Humano 16/inmunología , Papillomavirus Humano 16/metabolismo , Hojas de la Planta/genética , Nicotiana/genética
9.
Plant Mol Biol ; 91(4-5): 497-512, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27116001

RESUMEN

Dengue fever is a disease in many parts of the tropics and subtropics and about half the world's population is at risk of infection according to the World Health Organization. Dengue is caused by any of the four related dengue virus serotypes DEN-1, -2, -3 and -4, which are transmitted to people by Aedes aegypti mosquitoes. Currently there is only one vaccine (Dengvaxia(®)) available (limited to a few countries) on the market since 2015 after half a century's intensive efforts. Affordable and accessible vaccines against dengue are hence still urgently needed. The dengue envelop protein domain III (EDIII), which is capable of eliciting serotype-specific neutralizing antibodies, has become the focus for subunit vaccine development. To contribute to the development of an accessible and affordable dengue vaccine, in the current study we have used plant-based vaccine production systems to generate a dengue subunit vaccine candidate in tobacco. Chloroplast genome engineering was applied to express serotype-specific recombinant EDIII proteins in tobacco chloroplasts using both constitutive and ethanol-inducible expression systems. Expression of a tetravalent antigen fusion construct combining EDIII polypeptides from all four serotypes was also attempted. Transplastomic EDIII-expressing tobacco lines were obtained and homoplasmy was verified by Southern blot analysis. Northern blot analyses showed expression of EDIII antigen-encoding genes. EDIII protein accumulation levels varied for the different recombinant EDIII proteins and the different expression systems, and reached between 0.8 and 1.6 % of total cellular protein. Our study demonstrates the suitability of the chloroplast compartment as a production site for an EDIII-based vaccine candidate against dengue fever and presents a Gateway(®) plastid transformation vector for inducible transgene expression.


Asunto(s)
Antígenos Virales/biosíntesis , Cloroplastos/genética , Virus del Dengue/inmunología , Técnicas Genéticas , Nicotiana/genética , Secuencia de Aminoácidos , Antígenos Virales/química , Antígenos Virales/metabolismo , Etanol/farmacología , Vectores Genéticos/metabolismo , Plantas Modificadas Genéticamente , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Regeneración , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
10.
Plant Biotechnol J ; 14(1): 153-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25865255

RESUMEN

The rat ErbB2 (rErbB2) protein is a 185-kDa glycoprotein belonging to the epidermal growth factor-related proteins (ErbB) of receptor tyrosine kinases. Overexpression and mutations of ErbB proteins lead to several malignancies including breast, lung, pancreatic, bladder and ovary carcinomas. ErbB2 is immunogenic and is an ideal candidate for cancer immunotherapy. We investigated the possibility of expressing the extracellular (EC) domain of rErbB2 (653 amino acids, aa) in Nicotiana benthamiana plants, testing the influence of the 23 aa transmembrane (TM) sequence on protein accumulation. Synthetic variants of the rErbB2 gene portion encoding the EC domain, optimized with a human codon usage and either linked to the full TM domain (rErbB2_TM, 676 aa), to a portion of it (rErbB2-pTM, 662 aa), or deprived of it (rErbB2_noTM, 653 aa) were cloned in the pEAQ-HT expression vector as 6X His tag fusions. All rErbB2 variants (72-74.5 kDa) were transiently expressed, but the TM was detrimental for rErbB2 EC accumulation. rERbB2_noTM was the most expressed protein; it was solubilized and purified with Nickel affinity resin. When crude soluble extracts expressing rErbB2_noTM were administered to BALB/c mice, specific rErbB2 immune responses were triggered. A potent antitumour activity was induced when vaccinated mice were challenged with syngeneic transplantable ErbB2(+) mammary carcinoma cells. To our knowledge, this is the first report of expression of rErbB2 in plants and of its efficacy in inducing a protective antitumour immune response, opening interesting perspectives for further immunological testing.


Asunto(s)
Inmunidad , Neoplasias Mamarias Animales/inmunología , Nicotiana/genética , Receptor ErbB-2/biosíntesis , Receptor ErbB-2/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Antineoplásicos/farmacología , Línea Celular Tumoral , Femenino , Humanos , Inmunidad/efectos de los fármacos , Inmunización , Ratones Endogámicos C57BL , Plantas Modificadas Genéticamente , Dominios Proteicos , Ratas , Receptor ErbB-2/química , Receptor ErbB-2/aislamiento & purificación , Solubilidad , Nicotiana/inmunología
11.
Plant Biotechnol J ; 13(8): 1136-59, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26387510

RESUMEN

Despite progress in the prevention and treatment of infectious diseases, they continue to present a major threat to public health. The frequency of emerging and reemerging infections and the risk of bioterrorism warrant significant efforts towards the development of prophylactic and therapeutic countermeasures. Vaccines are the mainstay of infectious disease prophylaxis. Traditional vaccines, however, are failing to satisfy the global demand because of limited scalability of production systems, long production timelines and product safety concerns. Subunit vaccines are a highly promising alternative to traditional vaccines. Subunit vaccines, as well as monoclonal antibodies and other therapeutic proteins, can be produced in heterologous expression systems based on bacteria, yeast, insect cells or mammalian cells, in shorter times and at higher quantities, and are efficacious and safe. However, current recombinant systems have certain limitations associated with production capacity and cost. Plants are emerging as a promising platform for recombinant protein production due to time and cost efficiency, scalability, lack of harboured mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modification. So far, a variety of subunit vaccines, monoclonal antibodies and therapeutic proteins (antivirals) have been produced in plants as candidate countermeasures against emerging, reemerging and bioterrorism-related infections. Many of these have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, we overview ongoing efforts to producing such plant-based countermeasures.


Asunto(s)
Bioterrorismo , Enfermedades Transmisibles/tratamiento farmacológico , Plantas/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/uso terapéutico
12.
Biotechnol Rep (Amst) ; 41: e00826, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38234330

RESUMEN

Respiratory syncytial virus (RSV) is a highly infectious respiratory virus that causes serious illness, particularly in young children, elderly people, and those with immunocompromised individuals. RSV infection is the leading cause of infant hospitalization and can lead to serious complications such as pneumonia and bronchiolitis. Currently, there is an RSV vaccine approved exclusively for the elderly population, but no approved vaccine specifically designed for infants or any other age groups. Therefore, it is crucial to continue the development of an RSV vaccine specifically tailored for these populations. In this study, the immunogenicity of the two plant-produced RSV-F Fc fusion proteins (Native construct and structural stabilized construct) were examined to assess them as potential vaccine candidates for RSV. The RSV-F Fc fusion proteins were transiently expressed in Nicotiana benthamiana and purified using protein A affinity column chromatography. The recombinant RSV-F Fc fusion protein was recognized by the monoclonal antibody Motavizumab specific against RSV-F protein. Moreover, the immunogenicity of the two purified RSV-F Fc proteins were evaluated in mice by formulating with different adjuvants. According to our results, the plant-produced RSV-F Fc fusion protein is immunogenic in mice. These preliminary findings, demonstrate the immunogenicity of plant-based RSV-F Fc fusion protein, however, further preclinical studies such as antigen dose and adjuvant optimization, safety, toxicity, and challenge studies in animal models are necessary in order to prove the vaccine efficacy.

13.
Plants (Basel) ; 13(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38498408

RESUMEN

Substrate channeling could be very useful for plant metabolic engineering; hence, we propose that functionalized supramolecular self-assembly scaffolds can act as enzymatic hubs able to perform reactions in close contiguity. Virus nanoparticles (VNPs) offer an opportunity in this context, and we present a functionalization strategy to display different enzymes on the outer surface of three different VNPs produced in plants. Tomato bushy stunt virus (TBSV) and Potato virus X (PVX) plant viruses were functionalized by the genetic fusion of the E-coil peptide coding sequence to their respective coat proteins genes, while the enzyme lichenase was tagged with the K-coil peptide. Immobilized E-coil VNPs were able to interact in vitro with the plant-produced functionalized lichenase, and catalysis was demonstrated by employing a lichenase assay. To prove this concept in planta, the Hepatitis B core (HBc) virus-like particles (VLPs) were similarly functionalized by genetic fusion with the E-coil sequence, while acyl-activating enzyme 1, olivetolic acid synthase, and olivetolic acid cyclase enzymes were tagged with the K-coil. The transient co-expression of the K-coil-enzymes together with E-coil-VLPs allowed the establishment of the heterologous cannabinoid precursor biosynthetic pathway. Noteworthy, a significantly higher yield of olivetolic acid glucoside was achieved when the scaffold E-coil-VLPs were employed.

14.
Biotechnol Rep (Amst) ; 44: e00856, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39376902

RESUMEN

Host cell proteins (HCPs) are process-related impurities found in biopharmaceutical products that can impair their safety and efficacy. While ELISA has traditionally been employed to quantify HCPs, LC-MS emerges as a powerful alternative for precise identification of individual HCPs. In this study, we used LC-MS for profiling HCPs from Nicotiana benthamiana-derived biopharmaceuticals. Our approach involved rigorous false discovery rate control to ensure data integrity and reliability. Comprehensive analysis revealed a systematic reduction of HCPs following purification, demonstrating the efficiency of purification processes in removing non-essential proteins. Furthermore, LC-MS enabled the identification of potential contaminants, refining purification strategies and improving product purity and integrity. Our findings highlight the potential of LC-MS as an analytical tool for HCPs analysis in biopharmaceutical development and manufacturing. By providing detailed insights into HCPs profiles and contaminants, LC-MS facilitates informed decision-making in downstream processing steps, benefiting product quality, patient safety, and the biopharmaceutical sector.

15.
N Biotechnol ; 83: 142-154, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39142626

RESUMEN

Multifunctional anti-HIV Fc-fusion proteins aim to tackle HIV efficiently through multiple modes of action. Although results have been promising, these recombinant proteins are hard to produce. This study explored the production and characterization of anti-HIV Fc-fusion proteins in plant-based systems, specifically Nicotiana benthamiana plants and tobacco BY-2 cell suspension. Fc-fusion protein expression in plants was optimized by incorporating codon optimization, ER retention signals, and hydrophobin fusion elements. Successful transient protein expression was achieved in N. benthamiana, with notable improvements in expression levels achieved through N-terminal hydrophobin fusion and ER retention signals. Stable expression in tobacco BY-2 resulted in varying accumulation levels being at highest 2.2.mg/g DW. The inclusion of hydrophobin significantly enhanced accumulation, providing potential benefits for downstream processing. Mass spectrometry analysis confirmed the presence of the ER retention signal and of N-glycans. Functional characterization revealed strong binding to CD64 and CD16a receptors, the latter being important for antibody-dependent cellular cytotoxicity (ADCC). Interaction with HIV antigens indicated potential neutralization capabilities. In conclusion, this research highlights the potential of plant-based systems for producing functional anti-HIV Fc-fusion proteins, offering a promising avenue for the development of these novel HIV therapies.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas , Nicotiana , Proteínas Recombinantes de Fusión , Nicotiana/metabolismo , Nicotiana/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Fragmentos Fc de Inmunoglobulinas/metabolismo , Fragmentos Fc de Inmunoglobulinas/biosíntesis , Fragmentos Fc de Inmunoglobulinas/genética , Humanos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/metabolismo , Plantas Modificadas Genéticamente
16.
Biotechnol Rep (Amst) ; 42: e00841, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38707206

RESUMEN

Cobra (Naja kaouthia) venom contains many toxins including α-neurotoxin (αNTX) and phospholipase A2 (PLA2), which can cause neurodegeneration, respiratory failure, and even death. The traditional antivenom derived from animal serum faces many challenges and limitations. Heavy-chain-only antibodies (HCAb), fusing VHH with human IgG Fc region, offer advantages in tissue penetration, antigen binding, and extended half-life. This research involved the construction and transient expression of two types of VHH-FC which are specific to α-Neurotoxin (VHH-αNTX-FC) and Phospholipase A2 (VHH-PLA2-FC) in Nicotiana benthamiana leaves. The recombinant HCAbs were incubated for up to six days to optimize expression levels followed by purification by affinity chromatography and characterization using LC/Q-TOF mass spectrometry (MS). Purified proteins demonstrated over 92 % sequence coverage and an average mass of around 82 kDa with a high-mannose N-glycan profile. An antigen binding assay showed that the VHH-αNTX-Fc has a greater ability to bind to crude venom than VHH-PLA2-Fc.

17.
Front Immunol ; 14: 1188431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435073

RESUMEN

The development of an efficacious vaccine against norovirus is of paramount importance given its potential to reduce the global burden of norovirus-associated morbidity and mortality. Here, we report a detailed immunological analysis of a phase I, double-blind, placebo-controlled clinical trial performed on 60 healthy adults, ages 18 to 40. Total serum immunoglobulin and serum IgA against vaccine strains and cross-reactive serum IgG against non-vaccine strains were measured by enzyme immunoassays, whereas cell-mediated immune responses were quantified using intracellular cytokine staining by flow cytometry. A significant increase in humoral and cellular responses, e.g., IgA and CD4+ polypositive T cells, was triggered by the GI.4 Chiba 407 (1987) and GII.4 Aomori 2 (2006) VLP-based norovirus vaccine candidate rNV-2v, which is formulated without adjuvant. No booster effect was observed after the second administration in the pre-exposed adult study population. Furthermore, a cross-reactive immune response was elicited, as shown by IgG titers against GI.3 (2002), GII.2 OC08154 (2008), GII.4 (1999), GII.4 Sydney (2012), GII.4 Washington (2018), GII.6 Maryland (2018), and GII.17 Kawasaki 308 (2015). Due to viral infection via mucosal gut tissue and the high variety of potentially relevant norovirus strains, a focus should be on IgA and cross-protective humoral and cell-mediated responses in the development of a broadly protective, multi-valent norovirus vaccine. Clinical trial registration: https://clinicaltrials.gov, identifier NCT05508178. EudraCT number: 2019-003226-25.


Asunto(s)
Adyuvantes Inmunológicos , Norovirus , Adulto , Humanos , Vacunas Combinadas , Adyuvantes Farmacéuticos , Inmunoglobulina A , Inmunoglobulina G
18.
Vaccines (Basel) ; 11(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679998

RESUMEN

Contraceptive vaccines are designed to stimulate autoimmune responses to molecules involved in the reproductive process. A mouse-specific peptide from zona pellucida 3 (mZP3) has been proposed as a target epitope. Here, we employed a plant expression system for the production of glycosylated mZP3 and evaluated the immunogenicity of plant-produced mZP3-based antigens in a female BALB/c mouse model. In the mZP3-1 antigen, mZP3 fused with a T-cell epitope of tetanus toxoid, a histidine tag, and a SEKDEL sequence. A fusion antigen (GFP-mZP3-1) and a polypeptide antigen containing three repeats of mZP3 (mZP3-3) were also examined. Glycosylation of mZP3 should be achieved by targeting proteins to the endoplasmic reticulum. Agrobacterium-mediated transient expression of antigens resulted in successful production of mZP3 in Nicotiana benthamiana. Compared with mZP3-1, GFP-mZP3-1 and mZP3-3 increased the production of the mZP3 peptide by more than 20 and 25 times, respectively. The glycosylation of the proteins was indicated by their size and their binding to a carbohydrate-binding protein. Both plant-produced GFP-mZP3-1 and mZP3-3 antigens were immunogenic in mice; however, mZP3-3 generated significantly higher levels of serum antibodies against mZP3. Induced antibodies recognized native zona pellucida of wild mouse, and specific binding of antibodies to the oocytes was observed in immunohistochemical studies. Therefore, these preliminary results indicated that the plants can be an efficient system for the production of immunogenic mZP3 peptide, which may affect the fertility of wild mice.

19.
Biotechnol Rep (Amst) ; 37: e00779, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36533163

RESUMEN

SARS-CoV-2 causes devastating impact on the human population and has become a major public health concern. The frequent emergence of SARS-CoV-2 variants of concern urges the development of safe and efficacious vaccine against SARS-CoV-2 variants. We developed a candidate vaccine Baiya SARS-CoV-2 Vax 1, based on SARS-CoV-2 receptor-binding domain (RBD) by fusing with the Fc region of human IgG. The RBD-Fc fusion was produced in Nicotiana benthamiana. Previously, we reported that this plant-produced vaccine is effective in inducing immune response in both mice and non-human primates. Here, the efficacy of our vaccine candidate was tested in Syrian hamster challenge model. Hamsters immunized with two intramuscular doses of Baiya SARS-CoV-2 Vax 1 induced neutralizing antibodies against SARS-CoV-2 and protected from SARS-CoV-2 challenge with reduced viral load in the lungs. These preliminary results demonstrate the ability of plant-produced subunit vaccine Baiya SARS-CoV-2 Vax 1 to provide protection against SARS-CoV-2 infection in hamsters.

20.
Vaccine ; 41(17): 2781-2792, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36963999

RESUMEN

Cost-effective, and accessible vaccines are needed for mass immunization to control the ongoing coronavirus disease 2019 (COVID-19), especially in low- and middle-income countries (LMIC).A plant-based vaccine is an attractive technology platform since the recombinant proteins can be easily produced at large scale and low cost. For the recombinant subunit-based vaccines, effective adjuvants are crucial to enhance the magnitude and breadth of immune responses elicited by the vaccine. In this study, we report a preclinical evaluation of the immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052 (TLR7/8 agonist)-Alum adjuvant. This vaccine formulation, named Baiya SARS-CoV-2 Vax 2, induced significant levels of RBD-specific IgG and neutralizing antibody responses in mice. A viral challenge study using humanized K18-hACE2 mice has shown that animals vaccinated with two doses of Baiya SARS-CoV-2 Vax 2 established immune protection against SARS-CoV-2. A study in nonhuman primates (cynomolgus monkeys) indicated that immunization with two doses of Baiya SARS-CoV-2 Vax 2 was safe, well tolerated, and induced neutralizing antibodies against the prototype virus and other viral variants (Alpha, Beta, Gamma, Delta, and Omicron subvariants). The toxicity of Baiya SARS-CoV-2 Vax 2 was further investigated in Jcl:SD rats, which demonstrated that a single dose and repeated doses of Baiya SARS-CoV-2 Vax 2 were well tolerated and no mortality or unanticipated findings were observed. Overall, these preclinical findings support further clinical development of Baiya SARS-CoV-2 Vax 2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Ratas , Ratas Sprague-Dawley , COVID-19/prevención & control , Hidróxido de Aluminio , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Macaca fascicularis , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética , Inmunogenicidad Vacunal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA