Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(23): 4409-4427.e18, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368308

RESUMEN

Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Variaciones en el Número de Copia de ADN/genética , Genómica
2.
Am J Hum Genet ; 111(2): 242-258, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211585

RESUMEN

Tumor mutational burden (TMB), the total number of somatic mutations in the tumor, and copy number burden (CNB), the corresponding measure of aneuploidy, are established fundamental somatic features and emerging biomarkers for immunotherapy. However, the genetic and non-genetic influences on TMB/CNB and, critically, the manner by which they influence patient outcomes remain poorly understood. Here, we present a large germline-somatic study of TMB/CNB with >23,000 individuals across 17 cancer types, of which 12,000 also have extensive clinical, treatment, and overall survival (OS) measurements available. We report dozens of clinical associations with TMB/CNB, observing older age and male sex to have a strong effect on TMB and weaker impact on CNB. We additionally identified significant germline influences on TMB/CNB, including fine-scale European ancestry and germline polygenic risk scores (PRSs) for smoking, tanning, white blood cell counts, and educational attainment. We quantify the causal effect of exposures on somatic mutational processes using Mendelian randomization. Many of the identified features associated with TMB/CNB were additionally associated with OS for individuals treated at a single tertiary cancer center. For individuals receiving immunotherapy, we observed a complex relationship between PRSs for educational attainment, self-reported college attainment, TMB, and survival, suggesting that the influence of this biomarker may be substantially modified by socioeconomic status. While the accumulation of somatic alterations is a stochastic process, our work demonstrates that it can be shaped by host characteristics including germline genetics.


Asunto(s)
Neoplasias , Humanos , Masculino , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Inmunoterapia , Biomarcadores de Tumor/genética , Células Germinativas/patología
3.
Proc Natl Acad Sci U S A ; 121(33): e2403210121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39110727

RESUMEN

Polygenic risk scores (PRS) enhance population risk stratification and advance personalized medicine, but existing methods face several limitations, encompassing issues related to computational burden, predictive accuracy, and adaptability to a wide range of genetic architectures. To address these issues, we propose Aggregated L0Learn using Summary-level data (ALL-Sum), a fast and scalable ensemble learning method for computing PRS using summary statistics from genome-wide association studies (GWAS). ALL-Sum leverages a L0L2 penalized regression and ensemble learning across tuning parameters to flexibly model traits with diverse genetic architectures. In extensive large-scale simulations across a wide range of polygenicity and GWAS sample sizes, ALL-Sum consistently outperformed popular alternative methods in terms of prediction accuracy, runtime, and memory usage by 10%, 20-fold, and threefold, respectively, and demonstrated robustness to diverse genetic architectures. We validated the performance of ALL-Sum in real data analysis of 11 complex traits using GWAS summary statistics from nine data sources, including the Global Lipids Genetics Consortium, Breast Cancer Association Consortium, and FinnGen Biobank, with validation in the UK Biobank. Our results show that on average, ALL-Sum obtained PRS with 25% higher accuracy on average, with 15 times faster computation and half the memory than the current state-of-the-art methods, and had robust performance across a wide range of traits and diseases. Furthermore, our method demonstrates stable prediction when using linkage disequilibrium computed from different data sources. ALL-Sum is available as a user-friendly R software package with publicly available reference data for streamlined analysis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Herencia Multifactorial/genética , Estudio de Asociación del Genoma Completo/métodos , Aprendizaje Automático , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
4.
Am J Hum Genet ; 110(7): 1138-1161, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37339630

RESUMEN

Autoimmunity and cancer represent two different aspects of immune dysfunction. Autoimmunity is characterized by breakdowns in immune self-tolerance, while impaired immune surveillance can allow for tumorigenesis. The class I major histocompatibility complex (MHC-I), which displays derivatives of the cellular peptidome for immune surveillance by CD8+ T cells, serves as a common genetic link between these conditions. As melanoma-specific CD8+ T cells have been shown to target melanocyte-specific peptide antigens more often than melanoma-specific antigens, we investigated whether vitiligo- and psoriasis-predisposing MHC-I alleles conferred a melanoma-protective effect. In individuals with cutaneous melanoma from both The Cancer Genome Atlas (n = 451) and an independent validation set (n = 586), MHC-I autoimmune-allele carrier status was significantly associated with a later age of melanoma diagnosis. Furthermore, MHC-I autoimmune-allele carriers were significantly associated with decreased risk of developing melanoma in the Million Veteran Program (OR = 0.962, p = 0.024). Existing melanoma polygenic risk scores (PRSs) did not predict autoimmune-allele carrier status, suggesting these alleles provide orthogonal risk-relevant information. Mechanisms of autoimmune protection were neither associated with improved melanoma-driver mutation association nor improved gene-level conserved antigen presentation relative to common alleles. However, autoimmune alleles showed higher affinity relative to common alleles for particular windows of melanocyte-conserved antigens and loss of heterozygosity of autoimmune alleles caused the greatest reduction in presentation for several conserved antigens across individuals with loss of HLA alleles. Overall, this study presents evidence that MHC-I autoimmune-risk alleles modulate melanoma risk unaccounted for by current PRSs.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Alelos , Melanoma/genética , Melanoma/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias Cutáneas/genética , Histocompatibilidad , Antígenos de Histocompatibilidad Clase I/genética
5.
Am J Hum Genet ; 110(10): 1673-1689, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37716346

RESUMEN

Accurate polygenic scores (PGSs) facilitate the genetic prediction of complex traits and aid in the development of personalized medicine. Here, we develop a statistical method called multi-trait assisted PGS (mtPGS), which can construct accurate PGSs for a target trait of interest by leveraging multiple traits relevant to the target trait. Specifically, mtPGS borrows SNP effect size similarity information between the target trait and its relevant traits to improve the effect size estimation on the target trait, thus achieving accurate PGSs. In the process, mtPGS flexibly models the shared genetic architecture between the target and the relevant traits to achieve robust performance, while explicitly accounting for the environmental covariance among them to accommodate different study designs with various sample overlap patterns. In addition, mtPGS uses only summary statistics as input and relies on a deterministic algorithm with several algebraic techniques for scalable computation. We evaluate the performance of mtPGS through comprehensive simulations and applications to 25 traits in the UK Biobank, where in the real data mtPGS achieves an average of 0.90%-52.91% accuracy gain compared to the state-of-the-art PGS methods. Overall, mtPGS represents an accurate, fast, and robust solution for PGS construction in biobank-scale datasets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Herencia Multifactorial/genética , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Algoritmos , Proyectos de Investigación
6.
Am J Hum Genet ; 109(6): 1055-1064, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35588732

RESUMEN

Polygenic risk scores (PRSs) quantify the contribution of multiple genetic loci to an individual's likelihood of a complex trait or disease. However, existing PRSs estimate this likelihood with common genetic variants, excluding the impact of rare variants. Here, we report on a method to identify rare variants associated with outlier gene expression and integrate their impact into PRS predictions for body mass index (BMI), obesity, and bariatric surgery. Between the top and bottom 10%, we observed a 20.8% increase in risk for obesity (p = 3 × 10-14), 62.3% increase in risk for severe obesity (p = 1 × 10-6), and median 5.29 years earlier onset for bariatric surgery (p = 0.008), as a function of expression outlier-associated rare variant burden when controlling for common variant PRS. We show that these predictions were more significant than integrating the effects of rare protein-truncating variants (PTVs), observing a mean 19% increase in phenotypic variance explained with expression outlier-associated rare variants when compared with PTVs (p = 2 × 10-15). We replicated these findings by using data from the Million Veteran Program and demonstrated that PRSs across multiple traits and diseases can benefit from the inclusion of expression outlier-associated rare variants identified through population-scale transcriptome sequencing.


Asunto(s)
Herencia Multifactorial , Obesidad , Índice de Masa Corporal , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Obesidad/genética , Fenotipo , Factores de Riesgo
7.
Am J Hum Genet ; 109(10): 1742-1760, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36152628

RESUMEN

Complex traits are influenced by genetic risk factors, lifestyle, and environmental variables, so-called exposures. Some exposures, e.g., smoking or lipid levels, have common genetic modifiers identified in genome-wide association studies. Because measurements are often unfeasible, exposure polygenic risk scores (ExPRSs) offer an alternative to study the influence of exposures on various phenotypes. Here, we collected publicly available summary statistics for 28 exposures and applied four common PRS methods to generate ExPRSs in two large biobanks: the Michigan Genomics Initiative and the UK Biobank. We established ExPRSs for 27 exposures and demonstrated their applicability in phenome-wide association studies and as predictors for common chronic conditions. Especially the addition of multiple ExPRSs showed, for several chronic conditions, an improvement compared to prediction models that only included traditional, disease-focused PRSs. To facilitate follow-up studies, we share all ExPRS constructs and generated results via an online repository called ExPRSweb.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Lípidos , Herencia Multifactorial/genética , Factores de Riesgo
8.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36585786

RESUMEN

Quantifying an individual's risk for common diseases is an important goal of precision health. The polygenic risk score (PRS), which aggregates multiple risk alleles of candidate diseases, has emerged as a standard approach for identifying high-risk individuals. Although several studies have been performed to benchmark the PRS calculation tools and assess their potential to guide future clinical applications, some issues remain to be further investigated, such as lacking (i) various simulated data with different genetic effects; (ii) evaluation of machine learning models and (iii) evaluation on multiple ancestries studies. In this study, we systematically validated and compared 13 statistical methods, 5 machine learning models and 2 ensemble models using simulated data with additive and genetic interaction models, 22 common diseases with internal training sets, 4 common diseases with external summary statistics and 3 common diseases for trans-ancestry studies in UK Biobank. The statistical methods were better in simulated data from additive models and machine learning models have edges for data that include genetic interactions. Ensemble models are generally the best choice by integrating various statistical methods. LDpred2 outperformed the other standalone tools, whereas PRS-CS, lassosum and DBSLMM showed comparable performance. We also identified that disease heritability strongly affected the predictive performance of all methods. Both the number and effect sizes of risk SNPs are important; and sample size strongly influences the performance of all methods. For the trans-ancestry studies, we found that the performance of most methods became worse when training and testing sets were from different populations.


Asunto(s)
Aprendizaje Automático , Herencia Multifactorial , Humanos , Factores de Riesgo , Genómica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos
9.
Hum Genomics ; 18(1): 75, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956648

RESUMEN

BACKGROUND: Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS: We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS: These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.


Asunto(s)
Envejecimiento Cognitivo , Metilación de ADN , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Metilación de ADN/genética , Femenino , Masculino , Herencia Multifactorial/genética , Anciano , Persona de Mediana Edad , Estudios Transversales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Factores de Riesgo , Imagen por Resonancia Magnética , Envejecimiento/genética , Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Puntuación de Riesgo Genético
10.
Eur Heart J ; 45(34): 3152-3160, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848106

RESUMEN

BACKGROUND AND AIMS: A cardiovascular disease polygenic risk score (CVD-PRS) can stratify individuals into different categories of cardiovascular risk, but whether the addition of a CVD-PRS to clinical risk scores improves the identification of individuals at increased risk in a real-world clinical setting is unknown. METHODS: The Genetics and the Vascular Health Check Study (GENVASC) was embedded within the UK National Health Service Health Check (NHSHC) programme which invites individuals between 40-74 years of age without known CVD to attend an assessment in a UK general practice where CVD risk factors are measured and a CVD risk score (QRISK2) is calculated. Between 2012-2020, 44,141 individuals (55.7% females, 15.8% non-white) who attended an NHSHC in 147 participating practices across two counties in England were recruited and followed. When 195 individuals (cases) had suffered a major CVD event (CVD death, myocardial infarction or acute coronary syndrome, coronary revascularisation, stroke), 396 propensity-matched controls with a similar risk profile were identified, and a nested case-control genetic study undertaken to see if the addition of a CVD-PRS to QRISK2 in the form of an integrated risk tool (IRT) combined with QRISK2 would have identified more individuals at the time of their NHSHC as at high risk (QRISK2 10-year CVD risk of ≥10%), compared with QRISK2 alone. RESULTS: The distribution of the standardised CVD-PRS was significantly different in cases compared with controls (cases mean score .32; controls, -.18, P = 8.28×10-9). QRISK2 identified 61.5% (95% confidence interval [CI]: 54.3%-68.4%) of individuals who subsequently developed a major CVD event as being at high risk at their NHSHC, while the combination of QRISK2 and IRT identified 68.7% (95% CI: 61.7%-75.2%), a relative increase of 11.7% (P = 1×10-4). The odds ratio (OR) of being up-classified was 2.41 (95% CI: 1.03-5.64, P = .031) for cases compared with controls. In individuals aged 40-54 years, QRISK2 identified 26.0% (95% CI: 16.5%-37.6%) of those who developed a major CVD event, while the combination of QRISK2 and IRT identified 38.4% (95% CI: 27.2%-50.5%), indicating a stronger relative increase of 47.7% in the younger age group (P = .001). The combination of QRISK2 and IRT increased the proportion of additional cases identified similarly in women as in men, and in non-white ethnicities compared with white ethnicity. The findings were similar when the CVD-PRS was added to the atherosclerotic cardiovascular disease pooled cohort equations (ASCVD-PCE) or SCORE2 clinical scores. CONCLUSIONS: In a clinical setting, the addition of genetic information to clinical risk assessment significantly improved the identification of individuals who went on to have a major CVD event as being at high risk, especially among younger individuals. The findings provide important real-world evidence of the potential value of implementing a CVD-PRS into health systems.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Persona de Mediana Edad , Femenino , Masculino , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/epidemiología , Medición de Riesgo/métodos , Anciano , Adulto , Estudios de Casos y Controles , Factores de Riesgo , Factores de Riesgo de Enfermedad Cardiaca , Herencia Multifactorial/genética , Puntuación de Riesgo Genético
11.
Diabetologia ; 67(10): 2289-2303, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39078488

RESUMEN

AIMS/HYPOTHESIS: Metabolic risk factors and plasma biomarkers for diabetes have previously been shown to change prior to a clinical diabetes diagnosis. However, these markers only cover a small subset of molecular biomarkers linked to the disease. In this study, we aimed to profile a more comprehensive set of molecular biomarkers and explore their temporal association with incident diabetes. METHODS: We performed a targeted analysis of 54 proteins and 171 metabolites and lipoprotein particles measured in three sequential samples spanning up to 11 years of follow-up in 324 individuals with incident diabetes and 359 individuals without diabetes in the Danish Blood Donor Study (DBDS) matched for sex and birth year distribution. We used linear mixed-effects models to identify temporal changes before a diabetes diagnosis, either for any incident diabetes diagnosis or for type 1 and type 2 diabetes mellitus diagnoses specifically. We further performed linear and non-linear feature selection, adding 28 polygenic risk scores to the biomarker pool. We tested the time-to-event prediction gain of the biomarkers with the highest variable importance, compared with selected clinical covariates and plasma glucose. RESULTS: We identified two proteins and 16 metabolites and lipoprotein particles whose levels changed temporally before diabetes diagnosis and for which the estimated marginal means were significant after FDR adjustment. Sixteen of these have not previously been described. Additionally, 75 biomarkers were consistently higher or lower in the years before a diabetes diagnosis. We identified a single temporal biomarker for type 1 diabetes, IL-17A/F, a cytokine that is associated with multiple other autoimmune diseases. Inclusion of 12 biomarkers improved the 10-year prediction of a diabetes diagnosis (i.e. the area under the receiver operating curve increased from 0.79 to 0.84), compared with clinical information and plasma glucose alone. CONCLUSIONS/INTERPRETATION: Systemic molecular changes manifest in plasma several years before a diabetes diagnosis. A particular subset of biomarkers shows distinct, time-dependent patterns, offering potential as predictive markers for diabetes onset. Notably, these biomarkers show shared and distinct patterns between type 1 diabetes and type 2 diabetes. After independent replication, our findings may be used to develop new clinical prediction models.


Asunto(s)
Biomarcadores , Donantes de Sangre , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Femenino , Estudios de Casos y Controles , Dinamarca/epidemiología , Biomarcadores/sangre , Adulto , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Persona de Mediana Edad , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/diagnóstico , Estudios Longitudinales , Glucemia/metabolismo , Glucemia/análisis , Factores de Riesgo
12.
Genet Epidemiol ; 47(4): 303-313, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36821788

RESUMEN

Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease-specific genome-wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non-UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 1/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Modelos Genéticos , Factores de Riesgo , Herencia Multifactorial/genética
13.
Lab Invest ; 104(4): 100325, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38220043

RESUMEN

Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.


Asunto(s)
Formaldehído , Puntuación de Riesgo Genético , Humanos , Genotipo , Fijación del Tejido/métodos , ADN/genética , Adhesión en Parafina/métodos
14.
Trends Genet ; 37(11): 995-1011, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34243982

RESUMEN

Accurate genetic prediction of complex traits can facilitate disease screening, improve early intervention, and aid in the development of personalized medicine. Genetic prediction of complex traits requires the development of statistical methods that can properly model polygenic architecture and construct a polygenic score (PGS). We present a comprehensive review of 46 methods for PGS construction. We connect the majority of these methods through a multiple linear regression framework which can be instrumental for understanding their prediction performance for traits with distinct genetic architectures. We discuss the practical considerations of PGS analysis as well as challenges and future directions of PGS method development. We hope our review serves as a useful reference both for statistical geneticists who develop PGS methods and for data analysts who perform PGS analysis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Estudio de Asociación del Genoma Completo/métodos , Herencia Multifactorial/genética , Fenotipo
15.
Am J Hum Genet ; 108(6): 1001-1011, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33964208

RESUMEN

The accuracy of polygenic risk scores (PRSs) to predict complex diseases increases with the training sample size. PRSs are generally derived based on summary statistics from large meta-analyses of multiple genome-wide association studies (GWASs). However, it is now common for researchers to have access to large individual-level data as well, such as the UK Biobank data. To the best of our knowledge, it has not yet been explored how best to combine both types of data (summary statistics and individual-level data) to optimize polygenic prediction. The most widely used approach to combine data is the meta-analysis of GWAS summary statistics (meta-GWAS), but we show that it does not always provide the most accurate PRS. Through simulations and using 12 real case-control and quantitative traits from both iPSYCH and UK Biobank along with external GWAS summary statistics, we compare meta-GWAS with two alternative data-combining approaches, stacked clumping and thresholding (SCT) and meta-PRS. We find that, when large individual-level data are available, the linear combination of PRSs (meta-PRS) is both a simple alternative to meta-GWAS and often more accurate.


Asunto(s)
Enfermedad/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Modelos Estadísticos , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Humanos , Fenotipo
16.
Am J Hum Genet ; 108(3): 431-445, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600772

RESUMEN

Whether or not populations diverge with respect to the genetic contribution to risk of specific complex diseases is relevant to understanding the evolution of susceptibility and origins of health disparities. Here, we describe a large-scale whole-genome sequencing study of inflammatory bowel disease encompassing 1,774 affected individuals and 1,644 healthy control Americans with African ancestry (African Americans). Although no new loci for inflammatory bowel disease are discovered at genome-wide significance levels, we identify numerous instances of differential effect sizes in combination with divergent allele frequencies. For example, the major effect at PTGER4 fine maps to a single credible interval of 22 SNPs corresponding to one of four independent associations at the locus in European ancestry individuals but with an elevated odds ratio for Crohn disease in African Americans. A rare variant aggregate analysis implicates Ca2+-binding neuro-immunomodulator CALB2 in ulcerative colitis. Highly significant overall overlap of common variant risk for inflammatory bowel disease susceptibility between individuals with African and European ancestries was observed, with 41 of 241 previously known lead variants replicated and overall correlations in effect sizes of 0.68 for combined inflammatory bowel disease. Nevertheless, subtle differences influence the performance of polygenic risk scores, and we show that ancestry-appropriate weights significantly improve polygenic prediction in the highest percentiles of risk. The median amount of variance explained per locus remains the same in African and European cohorts, providing evidence for compensation of effect sizes as allele frequencies diverge, as expected under a highly polygenic model of disease.


Asunto(s)
Calbindina 2/genética , Predisposición Genética a la Enfermedad , Enfermedades Inflamatorias del Intestino/genética , Subtipo EP4 de Receptores de Prostaglandina E/genética , Negro o Afroamericano/genética , Anciano , Anciano de 80 o más Años , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/patología , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Inflamatorias del Intestino/patología , Masculino , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética , Secuenciación Completa del Genoma
17.
Gastroenterology ; 164(5): 812-827, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841490

RESUMEN

Current colorectal cancer (CRC) screening recommendations take a "one-size-fits-all" approach using age as the major criterion to initiate screening. Precision screening that incorporates factors beyond age to risk stratify individuals could improve on current approaches and optimally use available resources with benefits for patients, providers, and health care systems. Prediction models could identify high-risk groups who would benefit from more intensive screening, while low-risk groups could be recommended less intensive screening incorporating noninvasive screening modalities. In addition to age, prediction models incorporate well-established risk factors such as genetics (eg, family CRC history, germline, and polygenic risk scores), lifestyle (eg, smoking, alcohol, diet, and physical inactivity), sex, and race and ethnicity among others. Although several risk prediction models have been validated, few have been systematically studied for risk-adapted population CRC screening. In order to envisage clinical implementation of precision screening in the future, it will be critical to develop reliable and accurate prediction models that apply to all individuals in a population; prospectively study risk-adapted CRC screening on the population level; garner acceptance from patients and providers; and assess feasibility, resources, cost, and cost-effectiveness of these new paradigms. This review evaluates the current state of risk prediction modeling and provides a roadmap for future implementation of precision CRC screening.


Asunto(s)
Neoplasias Colorrectales , Detección Precoz del Cáncer , Humanos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Factores de Riesgo , Estilo de Vida , Medición de Riesgo , Colonoscopía , Tamizaje Masivo
18.
BMC Med ; 22(1): 440, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379935

RESUMEN

BACKGROUND: The majority of men referred with a raised PSA for suspected prostate cancer will receive unnecessary tertiary investigations including MRI and biopsy. Here, we compared different types of biomarkers to refine tertiary referrals and when different definitions of clinically significant cancer were used. METHODS: Data and samples from 798 men referred for a raised PSA (≥ 3 ng/mL) and investigated through an MRI-guided biopsy pathway were accessed for this study. Bloods were acquired pre-biopsy for liquid biomarkers and germline DNA. Variables explored included PSA + Age (base model), free/total PSA (FTPSA), Prostate Health Index (phi), PSA density (PSAd), polygenic risk score (PRS) and MRI (≥ LIKERT 3). Different diagnostic endpoints for significant cancer (≥ grade group 2 [GG2], ≥ GG3, ≥ Cambridge Prognostic Group 2 [CPG2], ≥ CPG3) were tested. The added value of each biomarker to the base model was evaluated using logistic regression models, AUC and decision curve analysis (DCA) plots. RESULTS: The median age and PSA was 65 years and 7.13 ng/mL respectively. Depending on definition of clinical significance, ≥ grade group 2 (GG2) was detected in 57.0% (455/798), ≥ GG3 in 27.5% (220/798), ≥ CPG2 in 61.6% (492/798) and ≥ CPG3 in 42.6% (340/798). In the pre-MRI context, the PSA + Age (base model) AUC for prediction of ≥ GG2, ≥ GG3, ≥ CPG2 and ≥ CPG3 was 0.66, 0.68, 0.70 and 0.75 respectively. Adding phi and PSAd to base model improved performance across all diagnostic endpoints but was notably better when the composite CPG prognostic score was used: AUC 0.82, 0.82, 0.83, 0.82 and AUC 0.74, 0.73, 0.79, 0.79 respectively. In contrast, neither FTPSA or PRS scores improved performance especially in detection of ≥ GG3 and ≥ CPG3 disease. Combining biomarkers did not alter results. Models using phi and PSAd post-MRI also improved performances but again benefit varied with diagnostic endpoint. In DCA analysis, models which incorporated PSAd and phi in particular were effective at reducing use of MRI and/or biopsies especially for ≥ CPG3 disease. CONCLUSION: Incorporating phi or PSAd can refine and tier who is referred for tertiary imaging and/or biopsy after a raised PSA test. Incremental value however varied depending on the definition of clinical significance and was particularly useful when composite prognostic endpoints are used.


Asunto(s)
Biomarcadores de Tumor , Detección Precoz del Cáncer , Antígeno Prostático Específico , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico , Anciano , Persona de Mediana Edad , Detección Precoz del Cáncer/métodos , Antígeno Prostático Específico/sangre , Biomarcadores de Tumor/sangre , Derivación y Consulta , Imagen por Resonancia Magnética/métodos
19.
Br Med Bull ; 149(1): 60-71, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38282031

RESUMEN

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder and is clinically characterized by the presence of motor (bradykinesia, rigidity, rest tremor and postural instability) and non-motor symptoms (cognitive impairment, autonomic dysfunction, sleep disorders, depression and hyposmia). The aetiology of PD is unknown except for a small but significant contribution of monogenic forms. SOURCES OF DATA: No new data were generated or analyzed in support of this review. AREAS OF AGREEMENT: Up to 15% of PD patients carry pathogenic variants in PD-associated genes. Some of these genes are associated with mendelian inheritance, while others act as risk factors. Genetic background influences age of onset, disease course, prognosis and therapeutic response. AREAS OF CONTROVERSY: Genetic testing is not routinely offered in the clinical setting, but it may have relevant implications, especially in terms of prognosis, response to therapies and inclusion in clinical trials. Widely adopted clinical guidelines on genetic testing are still lacking and open to debate. Some new genetic associations are still awaiting confirmation, and selecting the appropriate genes to be included in diagnostic panels represents a difficult task. Finally, it is still under study whether (and to which degree) specific genetic forms may influence the outcome of PD therapies. GROWING POINTS: Polygenic Risk Scores (PRS) may represent a useful tool to genetically stratify the population in terms of disease risk, prognosis and therapeutic outcomes. AREAS TIMELY FOR DEVELOPING RESEARCH: The application of PRS and integrated multi-omics in PD promises to improve the personalized care of patients.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Temblor , Factores de Riesgo
20.
Genet Med ; : 101285, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39360752

RESUMEN

INTRODUCTION: Genomic screening to identify individuals with Lynch Syndrome (LS) and those with a high polygenic risk score (PRS) promises to personalize Colorectal Cancer (CRC) screening. Understanding its clinical and economic impact is needed to inform screening guidelines and reimbursement policies. METHODS: We developed a Markov model to simulate individuals over a lifetime. We compared LS+PRS genomic screening to standard of care (SOC) for a cohort of US adults at age 30. The Markov model included health states of "no CRC", CRC stages (A-D) and death. We estimated incidence, mortality, and discounted economic outcomes of the population under different interventions. RESULTS: Screening 1000 individuals for LS+PRS resulted in 1.36 fewer CRC cases and 0.65 fewer deaths compared to SOC. The incremental cost-effectiveness ratio (ICER) was $124,415 per quality-adjusted life-year (QALY); screening had a 69% probability of being cost-effective using a willingness to pay threshold of $150,000/QALY. Setting the PRS threshold at the 90th percentile of the LS+PRS screening program to define individuals at high risk was most likely to be cost-effective compared to 95th, 85th, and 80th percentiles. CONCLUSION: Population-level LS+PRS screening is marginally cost-effective and a threshold of 90th percentile is more likely to be cost-effective than other thresholds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA