Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 543
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385874

RESUMEN

The three-dimensional (3D) structure of bacterial chromosomes is crucial for understanding chromosome function. With the growing availability of high-throughput chromosome conformation capture (3C/Hi-C) data, the 3D structure reconstruction algorithms have become powerful tools to study bacterial chromosome structure and function. It is highly desired to have a recommendation on the chromosome structure reconstruction tools to facilitate the prokaryotic 3D genomics. In this work, we review existing chromosome 3D structure reconstruction algorithms and classify them based on their underlying computational models into two categories: constraint-based modeling and thermodynamics-based modeling. We briefly compare these algorithms utilizing 3C/Hi-C datasets and fluorescence microscopy data obtained from Escherichia coli and Caulobacter crescentus, as well as simulated datasets. We discuss current challenges in the 3D reconstruction algorithms for bacterial chromosomes, primarily focusing on software usability. Finally, we briefly prospect future research directions for bacterial chromosome structure reconstruction algorithms.


Asunto(s)
Bacterias , Estructuras Cromosómicas , Células Procariotas , Cromosomas Bacterianos/genética , Algoritmos , Escherichia coli/genética
2.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38717941

RESUMEN

Prokaryotes dominate the Tree of Life, but our understanding of the macroevolutionary processes generating this diversity is still limited. Habitat transitions are thought to be a key driver of prokaryote diversity. However, relatively little is known about how prokaryotes successfully transition and persist across environments, and how these processes might vary between biomes and lineages. Here, we investigate biome transitions and specialization in natural populations of a focal bacterial phylum, the Myxococcota, sampled across a range of replicated soils and freshwater and marine sediments in Cornwall (UK). By targeted deep sequencing of the protein-coding gene rpoB, we found >2,000 unique Myxococcota lineages, with the majority (77%) classified as biome specialists and with only <5% of lineages distributed across the salt barrier. Discrete character evolution models revealed that specialists in one biome rarely transitioned into specialists in another biome. Instead, evolved generalism mediated transitions between biome specialists. State-dependent diversification models found variation in speciation rates across the tree, but this variation was independent of biome association or specialization. Our findings were robust to phylogenetic uncertainty, different levels of species delineation, and different assumed amounts of unsampled diversity resulting in an incomplete phylogeny. Overall, our results are consistent with a "jack-of-all-trades" tradeoff where generalists suffer a cost in any individual environment, resulting in rapid evolution of niche specialists and shed light on how bacteria could transition between biomes.


Asunto(s)
Evolución Biológica , Myxococcales , Myxococcales/genética , Ecosistema , Filogenia , Especiación Genética
3.
Appl Environ Microbiol ; 90(4): e0005224, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38466091

RESUMEN

Pacific oysters (Magallana gigas, a.k.a. Crassostrea gigas), the most widely farmed oysters, are under threat from climate change and emerging pathogens. In part, their resilience may be affected by their microbiome, which, in turn, may be influenced by ocean warming and acidification. To understand these impacts, we exposed early-development Pacific oyster spat to different temperatures (18°C and 24°C) and pCO2 levels (800, 1,600, and 2,800 µatm) in a fully crossed design for 3 weeks. Under all conditions, the microbiome changed over time, with a large decrease in the relative abundance of potentially pathogenic ciliates (Uronema marinum) in all treatments with time. The microbiome composition differed significantly with temperature, but not acidification, indicating that Pacific oyster spat microbiomes can be altered by ocean warming but is resilient to ocean acidification in our experiments. Microbial taxa differed in relative abundance with temperature, implying different adaptive strategies and ecological specializations among microorganisms. Additionally, a small proportion (~0.2% of the total taxa) of the relatively abundant microbial taxa were core constituents (>50% occurrence among samples) across different temperatures, pCO2 levels, or time. Some taxa, including A4b bacteria and members of the family Saprospiraceae in the phyla Chloroflexi (syn. Chloroflexota) and Bacteroidetes (syn. Bacteroidota), respectively, as well as protists in the genera Labyrinthula and Aplanochytrium in the class Labyrinthulomycetes, and Pseudoperkinsus tapetis in the class Ichthyosporea were core constituents across temperatures, pCO2 levels, and time, suggesting that they play an important, albeit unknown, role in maintaining the structural and functional stability of the Pacific oyster spat microbiome in response to ocean warming and acidification. These findings highlight the flexibility of the spat microbiome to environmental changes.IMPORTANCEPacific oysters are the most economically important and widely farmed species of oyster, and their production depends on healthy oyster spat. In turn, spat health and productivity are affected by the associated microbiota; yet, studies have not scrutinized the effects of temperature and pCO2 on the prokaryotic and eukaryotic microbiomes of spat. Here, we show that both the prokaryotic and, for the first time, eukaryotic microbiome of Pacific oyster spat are surprisingly resilient to changes in acidification, but sensitive to ocean warming. The findings have potential implications for oyster survival amid climate change and underscore the need to understand temperature and pCO2 effects on the microbiome and the cascading effects on oyster health and productivity.


Asunto(s)
Crassostrea , Agua de Mar , Animales , Agua de Mar/química , Concentración de Iones de Hidrógeno , Cambio Climático , Océanos y Mares
4.
BMC Microbiol ; 24(1): 306, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152378

RESUMEN

BACKGROUND: Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. RESULTS: The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). Flagella are responsible for motility, biofilm formation and host colonization, which may explain the high Campylobacter load in the gut of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. CONCLUSION: The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.


Asunto(s)
Campylobacter jejuni , Pollos , Transcriptoma , Tricotecenos , Tricotecenos/metabolismo , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/genética , Campylobacter jejuni/crecimiento & desarrollo , Campylobacter jejuni/metabolismo , Animales , Transcriptoma/efectos de los fármacos , Pollos/microbiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/veterinaria , Alimentación Animal/microbiología
5.
Arch Microbiol ; 206(7): 297, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861039

RESUMEN

The microbe-mediated conversion of nitrate (NO3-) to ammonium (NH4+) in the nitrogen cycle has strong implications for soil health and crop productivity. The role of prokaryotes, eukaryotes and their phylogeny, physiology, and genetic regulations are essential for understanding the ecological significance of this empirical process. Several prokaryotes (bacteria and archaea), and a few eukaryotes (fungi and algae) are reported as NO3- reducers under certain conditions. This process involves enzymatic reactions which has been catalysed by nitrate reductases, nitrite reductases, and NH4+-assimilating enzymes. Earlier reports emphasised that single-cell prokaryotic or eukaryotic organisms are responsible for this process, which portrayed a prominent gap. Therefore, this study revisits the similarities and uniqueness of mechanism behind NO3- -reduction to NH4+ in both prokaryotes and eukaryotes. Moreover, phylogenetic, physiological, and genetic regulation also shed light on the evolutionary connections between two systems which could help us to better explain the NO3--reduction mechanisms over time. Reports also revealed that certain transcription factors like NtrC/NtrB and Nit2 have shown a major role in coordinating the expression of NO3- assimilation genes in response to NO3- availability. Overall, this review provides a comprehensive information about the complex fermentative and respiratory dissimilatory nitrate reduction to ammonium (DNRA) processes. Uncovering the complexity of this process across various organisms may further give insight into sustainable nitrogen management practices and might contribute to addressing global environmental challenges.


Asunto(s)
Compuestos de Amonio , Archaea , Bacterias , Nitratos , Oxidación-Reducción , Filogenia , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Archaea/genética , Archaea/metabolismo , Archaea/clasificación , Eucariontes/genética , Eucariontes/metabolismo , Células Procariotas/metabolismo , Hongos/genética , Hongos/metabolismo , Hongos/clasificación , Ciclo del Nitrógeno/genética , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-38441551

RESUMEN

The International Committee on Systematics of Prokaryotes serves to administer the rules of prokaryotic nomenclature via the International Code of Nomenclature of Prokaryotes, ensures the publication of the International Journal of Systematic and Evolutionary Microbiology, and works to represent the interests of the microbiological disciplines regarding prokaryotic nomenclature. The functions and mechanisms of operation of the International Committee on Systematics of Prokaryotes (ICSP) are defined in its Statutes, which were last revised in 2019. As members of the 2020-2023 and the 2023-2026 ICSP Executive Board and the Judicial Commission, we propose here some further revisions to help improve the clarity and functionality of the Statutes.


Asunto(s)
Ácidos Grasos , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química
7.
Artículo en Inglés | MEDLINE | ID: mdl-38289226

RESUMEN

Following a proposal to emend Appendix 9 of the International Code of Nomenclature of Prokaryotes with guidelines for the naming of genera after geographical locations, I here report the outcome of the ballot on this proposal by the members of the International Committee on Systematics of Prokaryotes and present the guidelines to be incorporated in Appendix 9.


Asunto(s)
Ácidos Grasos , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química
8.
Artículo en Inglés | MEDLINE | ID: mdl-38265282

RESUMEN

In 2014, it was reported that the bacterial genus name Rhodococcus Zopf 1891 was illegitimate due to the priority of the cyanobacterial genus name Rhodococcus Hansgirg 1884. Since that time, the consequences of this conclusion have been largely ignored, whilst changes have been made to relevant Rules of the International Code of Nomenclature of Prokaryotes, including significant changes to the way in which the Code treats the names of members of Cyanobacteriota. Given the complexity of the nomenclatural issues, we request the opinion of the Judicial Commission of the International Committee on Systematics of Prokaryotes as to whether the genus name Rhodococcus Zopf 1891 (Approved Lists 1980) is illegitimate.


Asunto(s)
Ácidos Grasos , Rhodococcus , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-38252124

RESUMEN

The International Code of Nomenclature of Prokaryotes (ICNP) now includes the categories domain and kingdom. For the purpose of the valid publication of their names under the ICNP, we consider here the two known domains, 'Bacteria' and 'Archaea', as well as a number of taxa suitable for the rank of kingdom, based on previous phylogenetic and taxonomic studies. It is proposed to subdivide the domain Bacteria into the kingdoms Bacillati, Fusobacteriati, Pseudomonadati and Thermotogati. This arrangement reflects contemporary phylogenetic hypotheses as well as previous taxonomic proposals based on cell wall structure, including 'diderms' vs. 'monoderms', Gracilicutes vs. Firmicutes, 'Negibacteria' vs. 'Unibacteria', 'Hydrobacteria' vs. 'Terrabacteria', and 'Hydrobacterida' vs. 'Terrabacterida'. The domain Archaea is proposed to include the kingdoms Methanobacteriati, Nanobdellati and Thermoproteati, reflecting the previous division into 'Euryarchaeota', 'DPANN superphylum' and 'TACK superphylum'.


Asunto(s)
Archaea , Ácidos Grasos , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Archaea/genética
10.
Plant Dis ; 108(3): 592-598, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37822097

RESUMEN

Bacterial leaf spot of cucurbits (BLS) is an emerging disease in the southeastern United States that is capable of causing widespread outbreaks under conducive conditions. Historically attributed solely to the bacterium Pseudomonas syringae pv. lachrymans, recent studies have identified additional P. syringae pathovars as causal agents of the disease. To further investigate the identity and diversity of P. syringae strains associated with BLS in the southeastern United States, 47 bacterial isolates were recovered from symptomatic cucurbits from Florida, Alabama, and Georgia. Strains were characterized using the LOPAT testing scheme, fluorescence, and pathogenicity to watermelon and squash seedlings. Thirty-eight fluorescent isolates underwent whole-genome sequencing and were further characterized with 16S rRNA, four gene multilocus sequence analysis (MLSA) phylogeny, and average nucleotide identity analysis. Thirty-four isolates were identified as members of the P. syringae species complex, including P. syringae sensu stricto (12), P. alliivorans (12), P. capsici (nine), and P. viridiflava (one). An additional four isolates were found to belong to the Pseudomonas genus outside of the syringae species complex, though they did not share 95% or greater average nucleotide identity to any validly published species and are believed to belong to three novel Pseudomonas species. These results reveal an unpredicted level of diversity of Pseudomonas strains associated with BLS in the region and show the benefits of whole-genome sequencing for strain identification. Identification of P. capsici, which is capable of causing disease at higher temperatures than P. syringae, as a causal agent of BLS may also affect management strategies in the future.


Asunto(s)
Enfermedades de las Plantas , Pseudomonas syringae , ARN Ribosómico 16S/genética , Enfermedades de las Plantas/microbiología , Georgia , Nucleótidos
11.
Plant Dis ; 108(1): 190-199, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37537791

RESUMEN

Mixed infections caused by multiple pathogenic and weakly pathogenic strains inhabiting the same host plants are common in nature and may modify pathogen dynamics. However, traditional plant pathogen studies have mostly focused on the binary interaction between a single host and a single pathogen. In this study, we have looked beyond this binary interaction and evaluated the impact of coinfection on disease dynamics on tomato using the bacterial spot pathogen Xanthomonas perforans (Xp), the co-occurring weakly pathogenic strain of X. arboricola (Xa), and the co-occurring potential weak pathogenic strain of Pseudomonas capsici (Pc). Time-series coinfection experiments monitoring disease severity and within-host population dynamics revealed higher disease severity in coinfection by three species compared with infection by Xp alone. However, coinfection by dual species, Xp and Pc, or Xa resulted in lower disease severity compared with Xp alone. Thus, coinfection outcomes depend on interacting species. Weak pathogens could exploit Xp to colonize the host plant as indicated by their higher populations in coinfection. However, Xp population dynamics were dependent on the coinfecting partner. While resource competition might be a possible explanation for lower Xp population in dual coinfection, interaction of Pc with the host was found to influence Xp population. Interestingly, Xp population was higher in the presence of three-species interaction compared with Xp and Xa coinfection, suggesting potential modulation of cooperative interactions among Xp and Xa in three-species coinfection rather than competitive interactions. Humidity played a significant role in population dynamics of the three species. Overall, this study highlighted the importance of coinfection dynamics in studying plant disease outbreaks.


Asunto(s)
Coinfección , Solanum lycopersicum
12.
Plant Dis ; 108(6): 1476-1480, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38254326

RESUMEN

Xylella fastidiosa causes bacterial leaf scorch in southern highbush (Vaccinium corymbosum interspecific hybrids) and is also associated with a distinct disease phenotype in rabbiteye blueberry (V. virgatum) cultivars in the southeastern United States. Both X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex have been reported to cause problems in southern highbush blueberry, but so far only X. fastidiosa subsp. multiplex has been reported in rabbiteye cultivars in Louisiana. In this study, we report detection of X. fastidiosa in rabbiteye blueberry plants in association with symptoms of foliar reddening and shoot dieback. High throughput sequencing of an X. fastidiosa-positive plant sample and comparative analyses identified the strain in one of these plants as being X. fastidiosa subsp. fastidiosa. We briefly discuss the implications of these findings, which may spur research into blueberry as a potential inoculum source that could enable spread to other susceptible fruit crops in South Carolina.


Asunto(s)
Arándanos Azules (Planta) , Enfermedades de las Plantas , Xylella , Xylella/genética , Xylella/aislamiento & purificación , Xylella/fisiología , Arándanos Azules (Planta)/microbiología , Enfermedades de las Plantas/microbiología , South Carolina , Hojas de la Planta/microbiología
13.
Plant Dis ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861467

RESUMEN

'Candidatus Phytoplasma brasiliense' (CPB) is a phytoplasma originally discovered in South America and is known to infect a wide variety of economically important crops. It is most prevalent in Hibiscus spp. where it causes witches broom symptoms and papaya where it causes bunchy top. Recently, CPB was documented for the first time in North America in a new host, globe sedge. In this study two qPCR assays are developed, one utilizing high resolution melt curve analysis (HRMA) based on the secA gene and the other a TaqMan assay based on the dnaK gene. The secA/HRMA and dnaK/TaqMana ssay successfully amplified isolates of CPB. Both assays were screened against available isolates of 16SrI, 16SrII and 16SrIV phytoplasmas. The secA/HRMA assay failed to amplify 16SrI, 16SrIII and 16SrIV phytoplasmas but successfully amplified 16SrII phytoplasmas. The resulting Tm products of CPB and 16SrII phytoplasmas displayed a difference of 0.5°C difference, easily distinguishing them by melt curves. The dnaK/TaqMan assay failed to amplify all non-CPB phytoplasma isolates in the study. The development of these assays provides a valuable tool that will significantly improve monitoring programs in Florida and will aid in developing a better fundamental understanding of the epidemiology of this phytoplasma.

14.
Plant Dis ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422453

RESUMEN

Bacterial spot caused by Xanthomonas phaseoli pv. manihotis (Xpm) is considered the main bacterial disease that affects cassava, causing significant losses when not properly managed. In the present study, a fast, sensitive, and easy-to-apply method to detect Xpm via colorimetric loop-mediated isothermal amplification (LAMP) was developed. In order to ensure the use of a unique to the target pathovar core region for primer design, 74 complete genomic sequences of Xpm together with different bacterial species and pathovars were used for comparative genomics. A total of 42 unique genes were used to design 27 LAMP primer sets, from which nine primers were synthesized and only one (Xpm_Lp1 primer set) showed sufficient efficiency in preliminary tests. The sensitivity, assessed by a serial dilution of the type strain (IBSBF 278) DNA, yielded high sensitivity, detecting up to 100 fg. The LAMP primers showed high specificity, not cross-reacting with other bacterial species or other pathovars tested, and amplifying only the Xpm isolates. Tests confirmed the high efficiency of the protocol using infected or inoculated macerated cassava leaves, without the need for additional sample treatment. The LAMP test developed in this study was able to detect Xpm in a fast, simple, and sensitive way, and it can be used to monitor the disease under laboratory and field conditions.

15.
Plant Dis ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853331

RESUMEN

Bacterial leaf streak (BLS) of corn caused by Xanthomonas vasicola pv. vasculorum was first reported in the United States in 2017. The biology and management of BLS are poorly understood. The objective of this work was to determine the effects of hybrid, foliar treatments, and infection conditions (timing, temperature, inoculation site) on BLS of sweet corn. Field studies were conducted to determine if hybrid or foliar disease management treatments influenced BLS development and yield. Corn leaves were inoculated in plots with X. vasicola pv. vasculorum, and noninoculated plots were used for comparison. The leaf incidence and severity of BLS differed significantly among sweet corn hybrids, suggesting different levels of susceptibility to BLS. Grain yield was significantly reduced (14.7%) by BLS for one hybrid. The corn growth stage at time of infection influenced BLS, with incidence and severity significantly greater following inoculation at stage V6 than V9. Foliar application of Kocide®, LifeGard®, and Kocide®+LifeGard® significantly reduced leaf severity compared to nontreated controls in field studies. Kocide® significantly reduced leaf incidence, but no treatments significantly increased yield vs. controls. In comparisons of inoculation methods in a growth chamber, lesion length on leaves was significantly greater on stalk-inoculated than leaf-inoculated plants. Lesions developed on leaf-inoculated plants only at inoculation sites whereas lesions developed on stalk-inoculated plants on multiple leaves. In controlled environments, lesion length on leaves was significantly greater at 21°C than 27°C and 32°C. This study expands our understanding of factors that influence development and management of BLS of sweet corn.

16.
Plant Dis ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422440

RESUMEN

Xanthomonas phaseoli pv. manihotis (Xpm) is a plant pathogenic bacterium known as the causal agent of cassava bacterial blight (CBB). CBB is the most limiting bacterial disease affecting cassava (Manihot esculenta Crantz), characterized by diverse symptoms including angular water-soaked leaf lesions, blight, wilting, stem exudates, stem cankers and dieback. CBB has been reported in most cassava-growing regions around the world, and, under conducive conditions, crop yield losses can reach up to 100% (Zárate-Chaves et al. 2021). While Xpm genetic diversity is remarkably high in South America (Bart et al. 2012) and cassava originates and was domesticated in the Amazon basin (Allem 2002), reports of CBB in the Amazonian region are missing. To fill this gap, in October 2018 we surveyed for CBB symptoms in cassava fields of the Orellana Province, located in the Amazon forest of the Republic of Ecuador. Adult cassava plants exhibiting typical angular, water-soaked leaf lesions were found in polyculture plots, i.e. intercrops of cassava with other species such as plantains and fruit trees (a.k.a. chakras). After surface disinfection with 5% sodium hypochlorite followed by 70% ethanol, white Xpm-like colonies were isolated from diseased leaf tissues of four plants on YPGA medium (yeast extract, 5 g/l; peptone, 5 g/l; glucose, 5 g/l; agar-agar, 15 g/l) supplemented with cephalexin (40 mg/l) and cycloheximide (50 mg/l). Pathogenicity tests were performed on peat-potted, 2-month-old cassava plants of the cultivar 60444. Bacterial suspensions were adjusted to an OD600 of 0.2 (2 × 108 CFU/ml) in sterile 10-mM MgCl2 and syringe infiltrated in fully-expanded leaves. In parallel, 20 µl of each bacterial suspension adjusted to an OD600 of 0.02 (2 × 107 CFU/ml) were inoculated on stems inside a hole previously punched with a sterile needle in the junction of the third-top petiole. Sterile 10-mM MgCl2 was used for mock inoculations in both leaves and stems, and experiments were replicated in three plants. Plants were incubated in a greenhouse at 28 ± 1°C with a 12-h photoperiod. Infiltrated leaves developed watersoaking 3 days post inoculation, while wilted leaves, stem exudates, and dieback were observed 21 days after stem inoculation. Control plants remained symptomless. White Xpm-like colonies were re-isolated from symptomatic leaves (Fig S1). One colony of each of the four Xpm isolates (before and after re-isolation) was assessed using diagnostic PCRs (Bernal-Galeano et al. 2018; Flores et al. 2019), using strain Xam668 as positive control. All four candidates were positive for both diagnostic tools. The sequences of the housekeeping genes atpD, dnaK, efp, glnA, gyrB and rpoD of our isolates were extracted from full genome sequences obtained through Oxford Nanopore Technologies (ONT) (GenBank OR288194 to OR288217) and compared to their homologs in four close Xanthomonas species and a reference Xpm strain (Table S1). The sequences of the tested strains aligned with that of Xpm CIO151 (GCA_004025275.1) (Arrieta-Ortiz et al. 2013) with nucleotide identity above 99.92% (Fig S2). The four strains were named CIX4169, CIX4170, CIX4171 and CIX4172, stored in the IRD Collection of Xanthomonas, where they are available upon request. To our knowledge, this is the first report of CBB in the Amazonian region and in Ecuador, where cassava is a central element for local culture and economy. Further surveys will be necessary to evaluate the distribution and prevalence of CBB in other ecozones of Ecuador where cassava is cultivated.

17.
Plant Dis ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411607

RESUMEN

In March 2021, a sample of nine-month-old, non-grafted, diseased rose (Rosa sp.) plants was sent by a grower to the Benaki Phytopathological Institute for examination. The plants exhibited symptoms of dieback with black necrosis of pruned shoots, brown discoloration of shoot and root vascular tissues, and whitish slime exudation on cutting wounds of the shoots. The symptoms resembled those caused by Ralstonia pseudosolanacearum (Tjou-Tam-Sin et al. 2016). According to the sample's information sheet, the sample had been collected in a commercial greenhouse rose crop for cut flowers with a 10% disease incidence in the area of Troizinia-Methana (Regional Unit of Islands, Greece). Microscopic examination of symptomatic shoot and root vascular tissues revealed masses of bacterial cells streaming out of them. Sections of symptomatic tissues were suspended in water and in the resulting suspension, bacteria of the R. solanacearum species complex (RSSC) were detected by an indirect immunofluorescence (IF) assay using polyclonal antibodies (Plant Research International, the Netherlands) and a qPCR assay (RS-I-F/RS-II-R primers, RSP-55T probe) (Vreeburg et al. 2016). Furthermore, colonies with typical characteristics of RSSC were isolated from vascular tissues of shoots and roots on non-selective (NA) and semi-selective (mSMSA) media (EPPO 2022), and their identification as RSSC was confirmed by the above-mentioned IF and qPCR assays. Also, the isolates were assigned to: i) biovar 3, based on their ability to metabolize three disaccharides (maltose, lactose, D(+) cellobiose) and three hexose alcohols (mannitol, sorbitol, dulcitol) producing acid (EU 2006) and ii) phylotype I, by multiplex conventional PCR (Opina et al. 1997; Fegan and Prior 2005). A representative isolate was selected for sequencing part of the genes: 16S rDNA (1464bp), mutS (729bp) and egl (795bp) with GenBank Accession Nos. OR102443, OR683617 and OR702781, respectively. Blast analysis of these sequences showed 100% identity with those of various RSSC strains (e.g. GenBank Ac. Nos. CP025741.1, CP021762.1, MF141029.1, respectively). The obtained egl sequence conforms with the characteristics of phylotype I based on the DNA barcoding tool (EPPO 2021) and is 100% identical to that of the Dutch strain PD7216 (MF141029.1) reported to be sequevar I-33 (Bergsma-Vlami et al. 2018). The pathogenicity of two isolates was tested by inoculating: i) tomato seedlings (cv. 'Belladona') at their stem between the cotyledons and the first true leaf (EU 2006) and b) rose plants (cv. 'Aqua' and 'Papa Meilland') at their shoot base (Tjou-Tam-Sin et al. 2016), with bacterial suspensions in water (108 cfu/ml). The inoculated plants were maintained at a day/night temperature about 28/20°C with tomato plants exhibiting leaf wilting (7-17 dpi) and rose plants exhibiting chlorosis and necrosis of leaves (17 dpi). The pathogen was re-isolated on mSMSA from both artificially infected plant species and identified by the IF assay described above, thus fulfilling Koch's postulates. This is the first diagnosis in Greece of: i) rose plants infected by a Ralstonia species and ii) a crop infected by R. solanacearum phylotype I that corresponds to the R. pseudosolanacearum species (EPPO 2022). Official phytosanitary measures imposed in the affected area include an annual survey of rose crops for the presence of this pathogen, aiming at an early detection and prevention of its spread in such a highly valued ornamental crop.

18.
Plant Dis ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971960

RESUMEN

Onion (Allium cepa L.) is the most produced vegetable after tomato worldwide and is grown on about 15,000 ha in Germany. In Lampertheim, Hesse in southwest Germany (49°40'02.3"N, 8°26'00.0"E) bulbs of the cultivar 'Red Baron F1' were harvested in September 2023 in an apparently healthy state. Four months later some of the onions showed rotting symptoms, which could not be assigned to a known storage disease. At first, the bulbs became glassy, later they showed soft rot. They originated from a field located in a growing region severely affected by "Syndrome Basses Richesses" (SBR). 'Candidatus Arsenophonus phytopathogenicus' as well as 'Candidatus Phytoplasma solani' are associated with this disease in sugar beet (Gatineau et al. 2002). Moreover, 'Ca. A. phytopathogenicus' was recently reported in association of bacterial wilt and yellowing in potato (Behrmann et al. 2023). Both phloem-restricted bacteria are vectored by the polyphagous planthopper Pentastiridius leporinus (Therhaag et al. 2024), which is highly abundant in this region. To examine, if the unknown symptoms in onion might be related to the presence of these pathogens, DNA of 69 bulbs showing a different degree of softening were analyzed. The samples were tested for the presence of 'Ca. Phytoplasma solani' in a TaqMan assay (Behrmann et al. 2022). All showed negative results. To demonstrate the presence of 'Ca. A. phytopathogenicus', universal and genus-specific primers for the amplification of 16S rDNA and a real-time qPCR assay amplifying an hsp20 fragment were employed (Christensen et al. 2004, Zübert and Kube 2021). Two bulbs of the five positive samples were in an apparently healthy state, the other three showed light to moderate softening symptoms. The 16S rDNA fragments from two samples were sequenced on both strands and aligned. Both fragments were homologous. One fragment of 1474 bp fragment showing 100% homology to the 16S rDNA from SBR (accession no. AY057392) was submitted to GenBank (accession no. PP400342). Other taxa of 'Ca. Arsenophonus' showed 16S rDNA homologies of less than 99.3 %. To corroborate the finding onion samples were subjected to PCR reactions employing genus-specific primers for the conserved tufB, secY and manA gene, which had been derived from multiple alignments of 'Ca. A. spp' sequence submissions (Sela et al. 1989, Lee et al. 2010). The tufB, secY and manA primers amplified fragments of about 980 bp, 640 bp and 930 bp, respectively, from all previously positive samples. Samples which had been tested negative for 'Ca. P. phytopathogenicus' remained negative. Fragments from two accessions were sequenced and the sequences from both isolates were 100 % identical. A BLAST search of the partial tufB gene (acc. no. PP950434) showed 98.57 % sequence identity to a yet unnamed Arsenophonus endosymbiont (acc. no. OZ026540) and 91.85 to 91.83 % to 'Ca. A. nasoniae' and 'Ca. A. apicola', respectively. A similar result was obtained for the partial secY sequence (acc. no. PP950433). The manA sequence (acc. no. PP942231) was identical to a partial sequence of 'Ca. A. phytopathogenicus' strain HN (acc. no. OK335757) and 97.42 % to 'Ca. A. nasoniae and about 87 % to related Arsenophonus species. The finding of 'Ca. A. phytopathogenicus' in onion is novel and might indicate an expanding host range of vector and pathogen in the regional crop rotation. As a correlation between the pathogen and the soft rot symptom is unclear at present, further investigations are needed.

19.
Plant Dis ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143817

RESUMEN

The Ralstonia solanacearum species complex (RSSC) causes vascular wilt of many crops and is considered one of the most destructive plant pathogenic bacteria worldwide. The species complex was recently resolved into a stable taxonomy of three species aligning with the previously determined phylotypes, namely R. solanacearum (phylotype II), R. pseudosolanacearum (phylotype I and III), and R. syzygii (phylotype IV). Knowing which Ralstonia species and subspecies are established in Australia is important to Australia's biosecurity and market access. The goal of this study was to analyse Australia's Ralstonia culture collections and to assign the isolates to the modern taxonomic groups. The results shed light on the identity, distribution, and pathogenicity of the Ralstonia strains in Australia. Ralstonia solanacearum, R. pseudosolanacearum phylotype I, and R. syzygii phylotype IV-11 are present in Australia but have limited geographic ranges. We identified two aberrant RSSC strains that have genetic similarity to R. syzygii based on sequevar analysis, but do not yield a phylotype IV multiplex PCR band, similar to the known aberrant strain ACH732. The aberrant strains may represent a novel species. Three new sequevars were determined, 72, 73 and 74. Several Ralstonia lineages remain undetected in Australia, providing evidence that they are absent. These include R. pseudosolanacearum phylotype III and the phylotype I mulberry infecting strains; R. solanacearum strains IIC and the Moko causing strains; and R. syzygii subsp. celebesensis, and R. syzygii subsp. syzygii. This study fulfilled Koch's postulates for the Australian strains, R. solanacearum wilted potato plants, and R. pseudosolanacearum wilted blueberry plants, the hosts from which they were initially isolated. The data supports the hypothesis that Australia has native and introduced strains of Ralstonia.

20.
Plant Dis ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026429

RESUMEN

Sesame (Sesamum indicum L.) is an annual plant known as one of the first domesticated oilseed crops. It is cultivated worldwide, mostly in Asia, Africa, and the Americas (Singh, 2006). In August 2022 and September 2023, dark angular necrotic spots on leaves and stems (100% incidence), blights, and severe defoliation were observed in a 4-acre rainfed sesame field located in the Colleton County of South Carolina, USA (Fig. S1). Bacterial streaming from cut leaf lesions was observed from diseased plants in both years. Two plants were collected for pathogen isolation in 2023. Symptomatic leaves were surface sterilized with 70% ethanol for 1 min and dried in a laminar flow hood. For each isolate, four sterile toothpicks were used to poke lesion margins and stirred in 300 µl of sterile distilled water in a 2-ml sterile microcentrifuge tube and soaked at room temperature (c. 21 °C) for 10 min. Each bacterial suspension (10 µl) was streaked on nutrient agar (NA) in a Petri dish. Convex and mucoid yellow colonies formed after a 48-h incubation at 28°C in the dark. Two isolates (S813 and S814), one from each plant, were obtained by transferring single colonies to new NA plates. Both isolates were preliminarily identified as Xanthomonas [S813: X. campestris (P = 0.53); S814: X. campestris (P = 0.77)] using a Biolog Microbial Identification System (GEN III Microplate; Identification Database v.2.8.0.15G). PCR amplification of the atpD and dnaK genes was performed for both isolates using the conditions described in Félix-Gastélum et al. (2019). The sequences of both amplicons are 100% identical for each gene between the two isolates. PCR and sequencing of the gyrB gene was also done for S813 with the primers from Young et al. (2008). The atpD (S813/S814), dnaK (S813/S814), and gyrB (S813) sequences (GenBank accessions: PP507118 to PP507120) showed the best match with 100% identity to the corresponding gene sequences [GenBank accessions: KJ491167 (100% coverage), KJ491257 (99% coverage), EU285201 (100% coverage)] of the X. euvesicatoria pv. sesami (=X. campestris pv. sesami) type strain LMG865 (Constantin et al. 2015, Parkinson et al. 2009). A neighbor joining tree with the concatenated sequences of these three genes (2,210 nt) showed that S813 and LMG 865 had the closet relationship with X. euvesicatoria pv. alfalfae (CFBP3836, Fig. S2). To fulfill Koch's postulates, three healthy sesame plants (cultivar Shirogoma) were spray inoculated separately with each suspension of S813 and S814 in sterile tap water until runoff (approx. 5×108 CFU/ml). Two sesame plants were sprayed with sterile tap water and served as negative control. All plants were maintained in a greenhouse at approximately 28/20°C (day/night) with natural photoperiod. Dark leaf spots and leaf yellowing were observed on inoculated plants 7 to 14 days after inoculation. No disease symptom was observed on the control plants. Bacteria were reisolated from leaf spots of the inoculated plants and confirmed to be X. euvesicatoria pv. sesami based on atpD and dnaK sequences. The disease was first reported in Sudan (Sabet and Dowson, 1960), after which it was reported in USA (Isakeit et al., 2012) and Mexico (Félix-Gastélum et al. 2019). To the best of our knowledge, this is the first report of this disease in South Carolina, USA. Since the interest of sesame to the farmers is increasing in the southeastern USA, it is necessary to perform further research to examine the disease distribution and its economic impact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA