Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Cell Sci ; 137(20)2024 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-38738286

RESUMEN

Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.


Asunto(s)
Cromatina , Entropía , Células Madre Pluripotentes Inducidas , Cromatina/metabolismo , Cromatina/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Protoplastos/metabolismo , Reprogramación Celular/genética , Histonas/metabolismo , Histonas/genética , Células Vegetales/metabolismo , Epigénesis Genética
2.
Plant J ; 119(1): 404-412, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38646817

RESUMEN

The main bottleneck in the application of biotechnological breeding methods to woody species is due to the in vitro regeneration recalcitrance shown by several genotypes. On the other side, woody species, especially grapevine (Vitis vinifera L.), use most of the pesticides and other expensive inputs in agriculture, making the development of efficient approaches of genetic improvement absolutely urgent. Genome editing is an extremely promising technique particularly for wine grape genotypes, as it allows to modify the desired gene in a single step, preserving all the quality traits selected and appreciated in elite varieties. A genome editing and regeneration protocol for the production of transgene-free grapevine plants, exploiting the lipofectamine-mediated direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to target the phytoene desaturase gene, is reported. We focused on Nebbiolo (V. vinifera), an extremely in vitro recalcitrant wine genotype used to produce outstanding wines, such as Barolo and Barbaresco. The use of the PEG-mediated editing method available in literature and employed for highly embryogenic grapevine genotypes did not allow the proper embryo development in the recalcitrant Nebbiolo. Lipofectamines, on the contrary, did not have a negative impact on protoplast viability and plant regeneration, leading to the obtainment of fully developed edited plants after about 5 months from the transfection. Our work represents one of the first examples of lipofectamine use for delivering editing reagents in plant protoplasts. The important result achieved for the wine grape genotype breeding could be extended to other important wine grape varieties and recalcitrant woody species.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genotipo , Lípidos , Protoplastos , Vitis , Vitis/genética , Edición Génica/métodos , Protoplastos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Vino , Genoma de Planta/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
3.
Plant J ; 113(1): 160-173, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36440497

RESUMEN

The anther-enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non-coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21- or 24-nucleotide phasiRNA loci (referred to as 21- or 24-PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21- or 24-PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans-activation assays in maize protoplasts of individual TFs using bulk-protoplast RNA-sequencing showed that two of the TFs coexpressed with 21-PHAS loci could activate several 21-nucleotide phasiRNA pathway genes but not transcription of 21-PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24-PHAS loci using single-cell (protoplast) RNA-sequencing, did not detect reproducible activation of either 21-PHAS or 24-PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci.


Asunto(s)
MicroARNs , Zea mays , Zea mays/genética , ARN Interferente Pequeño/genética , Secuencia de Bases , Poaceae/genética , Nucleótidos , Regulación de la Expresión Génica de las Plantas/genética , ARN de Planta/genética , MicroARNs/genética
4.
BMC Plant Biol ; 24(1): 527, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858674

RESUMEN

BACKGROUND: Angelica Gigas (Purple parsnip) is an important medicinal plant that is cultivated and utilized in Korea, Japan, and China. It contains bioactive substances especially coumarins with anti-inflammatory, anti-platelet aggregation, anti-cancer, anti-diabetic, antimicrobial, anti-obesity, anti-oxidant, immunomodulatory, and neuroprotective properties. This medicinal crop can be genetically improved, and the metabolites can be obtained by embryonic stem cells. In this context, we established the protoplast-to-plant regeneration methodology in Angelica gigas. RESULTS: In the present investigation, we isolated the protoplast from the embryogenic callus by applying methods that we have developed earlier and established protoplast cultures using Murashige and Skoog (MS) liquid medium and by embedding the protoplast in thin alginate layer (TAL) methods. We supplemented the culture medium with growth regulators namely 2,4-dichlorophenoxyaceticacid (2,4-D, 0, 0.75, 1.5 mg L- 1), kinetin (KN, 0, 0.5, and 1.0 mg L- 1) and phytosulfokine (PSK, 0, 50, 100 nM) to induce protoplast division, microcolony formation, and embryogenic callus regeneration. We applied central composite design (CCD) and response surface methodology (RSM) for the optimization of 2,4-D, KN, and PSK levels during protoplast division, micro-callus formation, and induction of embryogenic callus stages. The results revealed that 0.04 mg L- 1 2,4-D + 0.5 mg L- 1 KN + 2 nM PSK, 0.5 mg L- 1 2,4-D + 0.9 mg L- 1 KN and 90 nM PSK, and 1.5 mg L- 1 2,4-D and 1 mg L- 1 KN were optimum for protoplast division, micro-callus formation and induction embryogenic callus. MS basal semi-solid medium without growth regulators was good for the development of embryos and plant regeneration. CONCLUSIONS: This study demonstrated successful protoplast culture, protoplast division, micro-callus formation, induction embryogenic callus, somatic embryogenesis, and plant regeneration in A. gigas. The methodologies developed here are quite useful for the genetic improvement of this important medicinal plant.


Asunto(s)
Angelica , Reguladores del Crecimiento de las Plantas , Técnicas de Embriogénesis Somática de Plantas , Protoplastos , Angelica/embriología , Reguladores del Crecimiento de las Plantas/farmacología , Técnicas de Embriogénesis Somática de Plantas/métodos , Protoplastos/efectos de los fármacos , División Celular/efectos de los fármacos
5.
Genes Cells ; 28(12): 881-892, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37850683

RESUMEN

The internalization of engineered high-density lipoprotein nanoparticles (engineered lipoproteins [eLPs]) with different lipid and protein compositions, zeta potentials, and/or sizes were analyzed in representative plant and mammalian cells. The impact of the addition of a cell-penetrating peptide to eLPs on the internalization was very small in Bright Yellow (BY)-2 protoplasts compared with HeLa cells. When eLPs were prepared with one of the abundant lipids in BY-2 cells, digalactosyldiacylglycerol (DGDG) (eLP4), its internalization was dramatically increased only in HeLa cells. Such an increase in HeLa cells was also obtained for liposomes containing DGDG in a DGDG content-dependent manner. Increasing the size and zeta potential of eLPs improved their internalization in both HeLa cells and in BY-2 protoplasts but to quite varying degrees. Although eLPs tended to stay at the plasma membrane (PM) in BY-2 protoplasts with much less internalization, the PM-bound eLPs somehow promoted the internalization of coexisting nanobeads in cell culture media. These results provide fundamental insight into the future design of lipid nanoparticles for drug delivery in mammalian and plant cells.


Asunto(s)
Lipoproteínas , Nanopartículas , Animales , Humanos , Células HeLa , Nanopartículas/química , Mamíferos
6.
New Phytol ; 241(6): 2621-2636, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38282212

RESUMEN

Plant resistance (R) and pathogen avirulence (Avr) gene interactions play a vital role in pathogen resistance. Efficient molecular screening tools for crops lack far behind their model organism counterparts, yet they are essential to rapidly identify agriculturally important molecular interactions that trigger host resistance. Here, we have developed a novel wheat protoplast assay that enables efficient screening of Avr/R interactions at scale. Our assay allows access to the extensive gene pool of phenotypically described R genes because it does not require the overexpression of cloned R genes. It is suitable for multiplexed Avr screening, with interactions tested in pools of up to 50 Avr candidates. We identified Avr/R-induced defense genes to create a promoter-luciferase reporter. Then, we combined this with a dual-color ratiometric reporter system that normalizes read-outs accounting for experimental variability and Avr/R-induced cell death. Moreover, we introduced a self-replicative plasmid reducing the amount of plasmid used in the assay. Our assay increases the throughput of Avr candidate screening, accelerating the study of cellular defense signaling and resistance gene identification in wheat. We anticipate that our assay will significantly accelerate Avr identification for many wheat pathogens, leading to improved genome-guided pathogen surveillance and breeding of disease-resistant crops.


Asunto(s)
Fitomejoramiento , Protoplastos , Virulencia/genética , Muerte Celular , Regiones Promotoras Genéticas/genética , Enfermedades de las Plantas/genética
7.
Microb Cell Fact ; 23(1): 73, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431598

RESUMEN

BACKGROUND: Lignocellulosic biomass provides a great starting point for the production of energy, chemicals, and fuels. The major component of lignocellulosic biomass is cellulose, the employment of highly effective enzymatic cocktails, which can be produced by a variety of microorganisms including species of the genus Aspergillus, is necessary for its utilization in a more productive manner. In this regard, molecular biology techniques should be utilized to promote the economics of enzyme production, whereas strategies like protoplast fusion could be employed to improve the efficacy of the hydrolytic process. RESULTS: The current study focuses on cellulase production in Aspergillus species using intrageneric protoplast fusion, statistical optimization of growth parameters, and determination of antioxidant activity of fermentation hydrolysate. Protoplast fusion was conducted between A. flavus X A. terreus (PFFT), A. nidulans X A. tamarii (PFNT) and A. oryzae X A. tubingensis (PFOT), and the resultant fusant PFNT revealed higher activity level compared with the other fusants. Thus, this study aimed to optimize lignocellulosic wastes-based medium for cellulase production by Aspergillus spp. fusant (PFNT) and studying the antioxidant effect of fermentation hydrolysate. The experimental strategy Plackett-Burman (PBD) was used to assess how culture conditions affected cellulase output, the best level of the three major variables namely, SCB, pH, and incubation temperature were then determined using Box-Behnken design (BBD). Consequently, by utilizing an optimized medium instead of a basal medium, cellulase activity increased from 3.11 U/ml to 7.689 U/ml CMCase. The following medium composition was thought to be ideal based on this optimization: sugarcane bagasse (SCB), 6.82 gm; wheat bran (WB), 4; Moisture, 80%; pH, 4; inoculum size, (3 × 106 spores/ml); and incubation Temp. 31.8 °C for 4 days and the fermentation hydrolysate has 28.13% scavenging activities. CONCLUSION: The results obtained in this study demonstrated the significant activity of the selected fusant and the higher sugar yield from cellulose hydrolysis over its parental strains, suggesting the possibility of enhancing cellulase activity by protoplast fusion using an experimental strategy and the fermentation hydrolysate showed antioxidant activity.


Asunto(s)
Celulasa , Celulasas , Saccharum , Celulosa/metabolismo , Protoplastos/metabolismo , Antioxidantes , Saccharum/metabolismo , Aspergillus/metabolismo , Fermentación , Celulasa/química , Hidrólisis
8.
J Sep Sci ; 47(9-10): e2400120, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772720

RESUMEN

Current techniques identifying herbal medicine species require marker labeling or lack systematical accuracy (expert authentication). There is an emerging interest in developing an accurate and label-free tool for herbal medicine authentication. Here, a high-resolution microfluidic-based method is developed for identifying herbal species by protoplast subpopulations. Moso bamboo and henon bamboo are used as a model to be differentiated based on protoplast. Their biophysical properties factors are characterized to be 7.09 (± 0.39) × 108 V/m2 and 6.54 (± 0.26) × 108 V/m2, respectively. Their biophysical distributions could be distinguished by the Cramér-von Mises criterion with a 94.60% confidence level. The subpopulations of each were compared with conventional flow cytometry indicating the existence of subpopulations and the differences between the two species. The subsets divided by a biophysical factor of 8.05(± 0.51) × 108 V/m2 suggest good consistency with flow cytometry. The work demonstrated the possibility of microfluidics manipulation on protoplast for medication safety use taking advantage of dielectrophoresis. The device is promising in developing a reliable and accurate way of identifying herbal species with difficulties in authentication.


Asunto(s)
Hojas de la Planta , Protoplastos , Análisis de la Célula Individual , Protoplastos/citología , Hojas de la Planta/química , Citometría de Flujo , Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica/instrumentación
9.
BMC Plant Biol ; 23(1): 56, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36698067

RESUMEN

BACKGROUND: Areca palm (Areca catechu) is a woody perennial plant of both economical and medicinal importance grown in tropical and subtropical climates. Yet, the molecular biology study of areca palm is extremely impeded by its unavailability of a transformation method. An efficient protoplast isolation and transformation system could be highly desirable to overcome this barrier. RESULTS: Here, we described a simple and efficient method for protoplast isolation and transformation from the perennial plant areca palm. A high yield of protoplasts (2.5 × 107 protoplasts per gram of fresh leaf tissues) was obtained from the fresh light green leaflet from the newly-emerged leaf digested overnight in the enzyme solution [2% (w/v) cellulase R10, 0.5% (w/v) macerozyme R10, 0.7 M mannitol, 10 mM CaCl2, 20 mM KCl, 20 mM MES and 0.1% (w/v) BSA, pH 5.7] by the direct leaf-peeling method. The isolated areca protoplasts maintain viability of 86.6% and have been successfully transformed with a green fluorescent protein (GFP)-tagged plasmid (pGreen0029-GFP, 6.0 kb) via the polyethylene glycol (PEG)-mediated transformation. Moreover, the mannitol concentration (optimal: 0.7 M) was determined as a key factor affecting areca protoplast isolation. We also demonstrated that the optimal density of areca protoplast for efficient transformation was at 1.0-1.5 × 106 cells/ml. With the optimization of transformation parameters, we have achieved a relatively high transformation efficiency of nearly 50%. CONCLUSION: We have established the first efficient protocol for the high-yield isolation and transformation of areca palm protoplasts. This method shall be applied in various biological studies of areca palm, such as gene function analysis, genome editing, protein trafficking and localization and protein-protein interaction. In addition, the protoplast system offers a great genetic transformation approach for the woody perennial plant-areca palm. Moreover, the established platform may be applied in protoplast isolation and transformation for other important species in the palm family, including oil palm and coconut.


Asunto(s)
Areca , Arecaceae , Protoplastos/metabolismo , Hojas de la Planta
10.
Plant Biotechnol J ; 21(12): 2641-2653, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37610064

RESUMEN

CRISPR/Cas-based genome editing is now extensively used in plant breeding and continues to evolve. Most CRISPR/Cas current applications in plants focus on gene knock-outs; however, there is a pressing need for new methods to achieve more efficient delivery of CRISPR components and gene knock-ins to improve agronomic traits of crop cultivars. We report here a genome editing system that combines the advantages of protoplast technologies with recent CRISPR/Cas advances to achieve seamless large fragment insertions in the model Solanaceae plant Nicotiana tabacum. With this system, two resistance-related regions of the N' gene were replaced with homologous fragments from the N'alata gene to confer TMV-U1 resistance in the T0 generation of GMO-free plants. Our study establishes a reliable genome-editing tool for efficient gene modifications and provides a detailed description of the optimization process to assist other researchers adapt this system for their needs.


Asunto(s)
Sistemas CRISPR-Cas , Nicotiana , Nicotiana/genética , Sistemas CRISPR-Cas/genética , Protoplastos , Fitomejoramiento , Edición Génica/métodos , Plantas/genética , Genoma de Planta
11.
Nitric Oxide ; 132: 8-14, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731643

RESUMEN

Cytochrome P450 55B1(CYP55B1) from Chlamydomonas reinhardtii reduces nitric oxide (NO) to dinitrogen oxide (N2O) with the electron supply from NAD(P)H in vivo. Here a novel nitric oxide biosensor was developed by immobilized CYP55B1 on the surface of pyrolytic graphite electrode (PGE) by cross-linking with glutaraldehyde (GA) and bovine serum albumin (BSA). The direct electrochemistry of CYP55B1 was realized with the redox peak potential of -0.355 V and -0.385 V and the catalytic reduction peak of NO by CYP55B1 is at -0.85 V at the scan rate of 0.5 V S-1 in pH 7.0 phosphate buffer. The apparent coverage (Γ = 1.43 × 10-11 mol cm-2), the electron transfer rate constant (ks = 17.39 s-1) and apparent affinity to NO (Kmapp = 11.64 nM) of CYP55B1 in GA/BSA film were obtained. The catalytic mechanism of CYP55B1 towards NO with NADH was examined by the biosensor. The linear range of NO detection was investigated by differential pulse voltammetry with the results of 5-50 nM and the detection limit of 0.5 nM (S/N = 3). The selectivity and stability of the electrochemical biosensor were investigated. Furthermore, the CYP55B1electrochemical biosensor was applied to monitor NO release from Arabidopsis protoplasts with the average content of 0.848 fmol per cell under anaerobic condition.


Asunto(s)
Arabidopsis , Técnicas Biosensibles , Óxido Nítrico , Protoplastos , Sistema Enzimático del Citocromo P-450 , Glutaral , Oxidación-Reducción , Técnicas Electroquímicas
12.
Crit Rev Food Sci Nutr ; 63(17): 2960-2969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34592865

RESUMEN

Strains' improvement technology plays an essential role in enhancing the quality of industrial strains. Several traditional methods and modern techniques have been used to further improve strain engineering programs. The advances stated in strain engineering and the increasing demand for microbial metabolites leads to the invention of the genome shuffling technique, which ensures a specific phenotype improvement through inducing mutation and recursive protoplast fusion. In such technique, the selection of multi-parental strains with distinct phenotypic traits is crucial. In addition, as this evolutionary strain improvement technique involves combinative approaches, it does not require any gene sequence data for genome alteration and, therefore, strains developed by this elite technique will not be considered as genetically modified organisms. In this review, the different stages involved in the genome shuffling technique and its wide applications in various phenotype improvements will be addressed. Taken together, data discussed here highlight that the use of genome shuffling for strain improvement will be a plus for solving complex phenotypic traits and in promoting the rapid development of other industrially important strains.


Asunto(s)
Barajamiento de ADN , Protoplastos , Barajamiento de ADN/métodos , Fenotipo , Tecnología
13.
Biotechnol Lett ; 45(10): 1381-1391, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37589824

RESUMEN

OBJECTIVE: In this study, we established an efficient and rapid transient expression system in the protoplasts of Pinellia ternata (Thunb.) Breit. (P. ternata). RESULTS: The protoplasts of P. ternata were prepared from plant leaves as the source material by digesting them with the combination of 20 g·l-1 cellulase and 15 g·l-1 macerozyme for 6 h. Based on the screening of PEG concentration, the conditions for PEG-mediated protoplast transformation were improved, and the highest transformation efficiency was found for 40% PEG 4000. Furthermore, we used the subcellular protein localization technique in P. ternata protoplasts to allow further validation of transient expression system. CONCLUSIONS: We present the method that can be applicable for studying both gene verification and expression in P. ternata protoplasts, thus allowing for engineering the improved varieties of P. ternata through molecular plant breeding techniques. This method can also be widely applicable for analyzing protein interactions, detecting promoter activity, for somatic cell fusion in plant breeding, as well as for other related studies.


Asunto(s)
Celulasa , Pinellia , Pinellia/genética , Protoplastos , Fitomejoramiento , Barajamiento de ADN
14.
Proc Natl Acad Sci U S A ; 117(51): 32731-32738, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288703

RESUMEN

In plant cells, cortical microtubules (CMTs) generally control morphogenesis by guiding cellulose synthesis. CMT alignment has been proposed to depend on geometrical cues, with microtubules aligning with the cell long axis in silico and in vitro. Yet, CMTs are usually transverse in vivo, i.e., along predicted maximal tension, which is transverse for cylindrical pressurized vessels. Here, we adapted a microwell setup to test these predictions in a single-cell system. We confined protoplasts laterally to impose a curvature ratio and modulated pressurization through osmotic changes. We find that CMTs can be longitudinal or transverse in wallless protoplasts and that the switch in CMT orientation depends on pressurization. In particular, longitudinal CMTs become transverse when cortical tension increases. This explains the dual behavior of CMTs in planta: CMTs become longitudinal when stress levels become low, while stable transverse CMT alignments in tissues result from their autonomous response to tensile stress fluctuations.


Asunto(s)
Microtúbulos/química , Microtúbulos/metabolismo , Protoplastos/citología , Anisotropía , Arabidopsis/citología , Arabidopsis/genética , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente , Poloxámero/química , Presión
15.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569360

RESUMEN

Mangoes (Mangifera indica L.) are an important kind of perennial fruit tree, but their biochemical testing method and transformation technology were insufficient and had not been rigorously explored. The protoplast technology is an excellent method for creating a rapid and effective tool for transient expression and transformation assays, particularly in plants that lack an Agrobacterium-mediated plant transformation system. This study optimized the conditions of the protoplast isolation and transformation system, which can provide a lot of help in the gene expression regulation study of mango. The most beneficial protoplast isolation conditions were 150 mg/mL of cellulase R-10 and 180 mg/mL of macerozyme R-10 in the digestion solution at pH 5.6 and 12 h of digestion time. The 0.16 M and 0.08 M mannitol in wash solution (WI) and suspension for counting (MMG), respectively, were optimal for the protoplast isolation yield. The isolated leaf protoplasts (~5.4 × 105 cells/10 mL) were transfected for 30 min mediated by 40% calcium-chloride-based polyethylene glycol (PEG)-4000-CaCl2, from which 84.38% of the protoplasts were transformed. About 0.08 M and 0.12 M of mannitol concentration in MMG and transfection solutions, respectively, were optimal for protoplast viability. Under the florescence signal, GFP was seen in the transformed protoplasts. This showed that the target gene was successfully induced into the protoplast and that it can be transcribed and translated. Experimental results in this paper show that our high-efficiency protoplast isolation and PEG-mediated transformation protocols can provide excellent new methods for creating a rapid and effective tool for the molecular mechanism study of mangoes.


Asunto(s)
Mangifera , Mangifera/genética , Protoplastos/metabolismo , Hojas de la Planta/genética , Transfección
16.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835049

RESUMEN

Protoplast-based engineering has become an important tool for basic plant molecular biology research and developing genome-edited crops. Uncaria rhynchophylla is a traditional Chinese medicinal plant with a variety of pharmaceutically important indole alkaloids. In this study, an optimized protocol for U. rhynchophylla protoplast isolation, purification, and transient gene expression was developed. The best protoplast separation protocol was found to be 0.8 M D-mannitol, 1.25% Cellulase R-10, and 0.6% Macerozyme R-10 enzymolysis for 5 h at 26 °C in the dark with constant oscillation at 40 rpm/min. The protoplast yield was as high as 1.5 × 107 protoplasts/g fresh weight, and the survival rate of protoplasts was greater than 90%. Furthermore, polyethylene glycol (PEG)-mediated transient transformation of U. rhynchophylla protoplasts was investigated by optimizing different crucial factors affecting transfection efficiency, including plasmid DNA amount, PEG concentration, and transfection duration. The U. rhynchophylla protoplast transfection rate was highest (71%) when protoplasts were transfected overnight at 24 °C with the 40 µg of plasmid DNA for 40 min in a solution containing 40% PEG. This highly efficient protoplast-based transient expression system was used for subcellular localization of transcription factor UrWRKY37. Finally, a dual-luciferase assay was used to detect a transcription factor promoter interaction by co-expressing UrWRKY37 with a UrTDC-promoter reporter plasmid. Taken together, our optimized protocols provide a foundation for future molecular studies of gene function and expression in U. rhynchophylla.


Asunto(s)
Perfilación de la Expresión Génica , Protoplastos , Protoplastos/metabolismo , Perfilación de la Expresión Génica/métodos , Factores de Transcripción/metabolismo , ADN/metabolismo
17.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982841

RESUMEN

Long non-coding RNAs (lncRNAs), a class of poorly conserved transcripts without protein-encoding ability, are widely involved in plant organogenesis and stress responses by mediating the transmission and expression of genetic information at the transcriptional, posttranscriptional, and epigenetic levels. Here, we cloned and characterized a novel lncRNA molecule through sequence alignment, Sanger sequencing, transient expression in protoplasts, and genetic transformation in poplar. lncWOX11a is a 215 bp transcript located on poplar chromosome 13, ~50 kbp upstream of PeWOX11a on the reverse strand, and the lncRNA may fold into a series of complex stem-loop structures. Despite the small open reading frame (sORF) of 51 bp within lncWOX11a, bioinformatics analysis and protoplast transfection revealed that lncWOX11a has no protein-coding ability. The overexpression of lncWOX11a led to a decrease in the quantity of adventitious roots on the cuttings of transgenic poplars. Further, cis-regulatory module prediction and CRISPR/Cas9 knockout experiments with poplar protoplasts demonstrated that lncWOX11a acts as a negative regulator of adventitious rooting by downregulating the WUSCHEL-related homeobox gene WOX11, which is supposed to activate adventitious root development in plants. Collectively, our findings imply that lncWOX11a is essential for modulating the formation and development of adventitious roots.


Asunto(s)
Populus , ARN Largo no Codificante , ARN Largo no Codificante/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Prep Biochem Biotechnol ; 53(7): 827-840, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36449415

RESUMEN

The axenic culture of Aspergillus candidus (Asp-C) produced an anti-leukemic L-asparaginase while Aspergillus sydowii (Asp-S) produced the acrylamide-reduction type. Upon mutagenesis by atmospheric and room-temperature plasma (ARTP), their individual L-asparaginase activities improved 2.3-folds in each of Ile-Thr-Asp-C-180-K and Val-Asp-S-180-E stable mutants. Protoplast fusion of selected stable mutants generated fusant-09 with improved anti-leukemic activity, acrylamide reduction, higher temperature optimum and superior kinetic parameters. Submerged (SmF) and solid-state fermentation (SSF) types were compared; likewise batch, fed-batch and continuous fermentation modes; and fed-batch submerged fermentation was selected on the basis of impressive techno-economics. Fusant L-asparaginase was purified by PEG/Na+ citrate aqueous two-phase system and molecular exclusion chromatography to 69.96 and 146.21-fold, respectively, and characterized by molecular weight, specificity, activity and stability to chemical and physical agents. Michaelis-Menten kinetics, evaluated under optimum conditions gave Km, Vmax, Kcat, and Kcat/Km as 1.667 × 10-3 M, 1666.67 µmol min-1 mg-1 protein, 645.99 s-1 and 3.88 × 105 M-1 s-1 respectively. In-vitro cytotoxicity of HL-60 cell lines by fusant-09 L-asparaginase improved 3.00 and 18.71-folds from mutants Ile-Thr-Asp-C-180-K and Val-Asp-S-180-E, and from 5.73 and 32.55 from respective original strains. Free-radical scavenging and acrylamide reduction improvements were intermediate. Fusant-09 L-asparaginase is strongly recommended for sustainable economic anti-leukemic and food industry applications.


Asunto(s)
Asparaginasa , Protoplastos , Asparaginasa/química , Temperatura , Protoplastos/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Acrilamidas
19.
World J Microbiol Biotechnol ; 39(10): 274, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37558775

RESUMEN

The lead is poisonous metal and because of its chemical nature it acts as an environmental contaminant through the water or soil and it becomes toxic to humans. The toxicity of Pb occurs as a change in the conformation of nucleic acid and protein, inhibition of enzyme activity, disruption of membrane function and oxidative phosphorylation. For protoplast preparation, the removal of the cell wall and protoplast formation obtained by specific lytic enzyme. In cytoplasmic membrane, the envelope of bacteria consists of overlying cell wall. From hypertonic environment, the complete cell wall removal occurs due to which it maintains the osmotic integrity of the cell and produces the protoplast. In current work, protoplasts were produced by specific lytic enzyme (lysozyme and macerozyme), chemo fused (with the help of Polyethylene Glycol) and regenerated from strains Staphylococcus sp. and Bacillus sp. The fused protoplast was spherical in shape observed under microscopy. Colonies were screened on specific medium supplemented with Pb (Concentration at the rate of 1.5mM). One resistant colony (MICBT-1) was selected and further examined and applied for the transformation of Pb in the broth medium. The strain removed 98% of Pb at 1mM concentration. Next, sucrose containing medium was best which gives maximum protoplast regeneration. From various organisms, fusion technique has been used to combine the genes to create the strains having desired properties. This is a significant technique for engineering of bacterial strains for advantageous applied properties. Further MICBT-1 applied in artificially contaminated soil and removed maximally in exchangeable fraction (remains up to 0.05 mM). An efficient bioremediating agent for lead transformation from soil and water is expected to ease the ever-increasing problem. Further, it is needful to obtain new strain with the help of protoplast technology which can reduce the pollutant. This lead tolerant strain can be applied for bioremediation purposes in the Pb contaminated soil and water environment.


Asunto(s)
Plomo , Protoplastos , Humanos , Protoplastos/fisiología , Plomo/toxicidad , Tecnología , Suelo , Agua
20.
World J Microbiol Biotechnol ; 39(5): 114, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36913158

RESUMEN

In this investigation, lactic acid bacteria (LAB) isolated from milk were tested for their antibacterial properties and improved the antimicrobial activity of these isolates using genome shuffling. A total of sixty-one isolates were found in eleven samples, which were then tested using the agar diffusion method for their antibacterial activity against Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa. Thirty-one strains exhibited antibacterial activity against at least one of the tested pathogens, with an inhibitory zone's diameter varying between 15.0 and 24.0 mm. Two isolates that showed the highest antimicrobial activity were identified as Lactobacillus plantarum CIP 103151 and Lactobacillus plantarum JCM 1149 according to 16S rRNA analysis. In the present study, applying genome shuffling approach significantly enhanced the antibacterial activity of L. plantarum. The initial populations were obtained via ultraviolet irradiation and were treated using the protoplast fusion method. The ideal condition for the production of protoplasts was 15 mg/ml of lysozyme and 10 µg/ml of mutanolysin. After two rounds of fusion, ten recombinants exhibited a significant increase in the inhibition zones versus S. aureus, S. typhimurium, P. aeruginosa, and E. coli, reaching up to 1.34, 1.31, 1.37, and 1.37-fold increase in inhibitory zone respectively. Random Amplified Polymorphic DNA results showed clear differences in DNA banding patterns among the wild strain of L. plantarum CIP 103151 and the three selected shuffled strains using primers 1283 & OPA09. On the other hand, no change was obtained using primers OPD03 neither among the wild strain and the three recombinant strains nor among the three shuffled strains.


Asunto(s)
Antiinfecciosos , Lactobacillales , Lactobacillales/genética , Staphylococcus aureus/genética , ARN Ribosómico 16S/genética , Barajamiento de ADN , Escherichia coli/genética , Antibacterianos/farmacología , Antiinfecciosos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA