Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.214
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(10): 2649-2664.e18, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33848463

RESUMEN

Receptor tyrosine kinase (RTK)-mediated activation of downstream effector pathways such as the RAS GTPase/MAP kinase (MAPK) signaling cascade is thought to occur exclusively from lipid membrane compartments in mammalian cells. Here, we uncover a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer. Chimeric (fusion) oncoproteins involving certain RTKs including ALK and RET undergo de novo higher-order assembly into membraneless cytoplasmic protein granules that actively signal. These pathogenic biomolecular condensates locally concentrate the RAS activating complex GRB2/SOS1 and activate RAS in a lipid membrane-independent manner. RTK protein granule formation is critical for oncogenic RAS/MAPK signaling output in these cells. We identify a set of protein granule components and establish structural rules that define the formation of membraneless protein granules by RTK oncoproteins. Our findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform for organizing oncogenic RTK and RAS signaling.


Asunto(s)
Condensados Biomoleculares/metabolismo , Gránulos Citoplasmáticos/metabolismo , Neoplasias/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Activación Enzimática , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Células HEK293 , Humanos , Proteína SOS1/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 121(23): e2322359121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805286

RESUMEN

Rearranged during transfection (RET) rearrangement oncoprotein-mediated Ras/MAPK signaling cascade is constitutively activated in cancers. Here, we demonstrate a unique signal niche. The niche is a ternary complex based on the chimeric RET liquid-liquid phase separation. The complex comprises the rearranged kinase (RET fusion); the adaptor (GRB2), and the effector (SHC1). Together, they orchestrate the Ras/MAPK signal cascade, which is dependent on tyrosine kinase. CCDC6-RET fusion undergoes LLPS requiring its kinase domain and its fusion partner. The CCDC6-RET fusion LLPS promotes the autophosphorylation of RET fusion, with enhanced kinase activity, which is necessary for the formation of the signaling niche. Within the signal niche, the interactions among the constituent components are reinforced, and the signal transduction efficiency is amplified. The specific RET fusion-related signal niche elucidates the mechanism of the constitutive activation of the Ras/MAPK signaling pathway. Beyond just focusing on RET fusion itself, exploration of the ternary complex potentially unveils a promising avenue for devising therapeutic strategies aimed at treating RET fusion-driven diseases.


Asunto(s)
Proteína Adaptadora GRB2 , Sistema de Señalización de MAP Quinasas , Proteínas de Fusión Oncogénica , Proteínas Proto-Oncogénicas c-ret , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Proteínas ras , Humanos , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/genética , Células HEK293 , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Fosforilación , Proteínas Proto-Oncogénicas c-ret/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas ras/metabolismo , Proteínas ras/genética , Transducción de Señal , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética
3.
Bioessays ; 46(3): e2300189, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38161234

RESUMEN

Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8ß1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.


Asunto(s)
Estructuras Embrionarias , Factor Neurotrófico Derivado de la Línea Celular Glial , Nefronas/embriología , Uréter , Ratones , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Riñón/anomalías , Riñón/metabolismo , Riñón/patología , Uréter/metabolismo , Morfogénesis
4.
Proc Natl Acad Sci U S A ; 120(34): e2211986120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585461

RESUMEN

The receptor tyrosine kinase RET plays a critical role in the fate specification of enteric neural crest-derived cells (ENCDCs) during enteric nervous system (ENS) development. RET loss of function (LoF) is associated with Hirschsprung disease (HSCR), which is marked by aganglionosis of the gastrointestinal (GI) tract. Although the major phenotypic consequences and the underlying transcriptional changes from Ret LoF in the developing ENS have been described, cell type- and state-specific effects are unknown. We performed single-cell RNA sequencing on an enriched population of ENCDCs from the developing GI tract of Ret null heterozygous and homozygous mice at embryonic day (E)12.5 and E14.5. We demonstrate four significant findings: 1) Ret-expressing ENCDCs are a heterogeneous population comprising ENS progenitors as well as glial- and neuronal-committed cells; 2) neurons committed to a predominantly inhibitory motor neuron developmental trajectory are not produced under Ret LoF, leaving behind a mostly excitatory motor neuron developmental program; 3) expression patterns of HSCR-associated and Ret gene regulatory network genes are impacted by Ret LoF; and 4) Ret deficiency leads to precocious differentiation and reduction in the number of proliferating ENS precursors. Our results support a model in which Ret contributes to multiple distinct cellular phenotypes during development of the ENS, including the specification of inhibitory neuron subtypes, cell cycle dynamics of ENS progenitors, and the developmental timing of neuronal and glial commitment.


Asunto(s)
Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Proteínas Proto-Oncogénicas c-ret , Animales , Ratones , Diferenciación Celular , Proliferación Celular , Enfermedad de Hirschsprung/genética , Cresta Neural , Proteínas Proto-Oncogénicas c-ret/genética
5.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36300492

RESUMEN

The enteric nervous system is a vast intrinsic network of neurons and glia within the gastrointestinal tract and is largely derived from enteric neural crest cells (ENCCs) that emigrate into the gut during vertebrate embryonic development. Study of ENCC migration dynamics and their genetic regulators provides great insights into fundamentals of collective cell migration and nervous system formation, and these are pertinent subjects for study due to their relevance to the human congenital disease Hirschsprung disease (HSCR). For the first time, we performed in toto gut imaging and single-cell generation tracing of ENCC migration in wild type and a novel ret heterozygous background zebrafish (retwmr1/+) to gain insight into ENCC dynamics in vivo. We observed that retwmr1/+ zebrafish produced fewer ENCCs localized along the gut, and these ENCCs failed to reach the hindgut, resulting in HSCR-like phenotypes. Specifically, we observed a proliferation-dependent migration mechanism, where cell divisions were associated with inter-cell distances and migration speed. Lastly, we detected a premature neuronal differentiation gene expression signature in retwmr1/+ ENCCs. These results suggest that Ret signaling may regulate maintenance of a stem state in ENCCs.


Asunto(s)
Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Animales , Humanos , División Celular , Movimiento Celular/genética , Proliferación Celular , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/metabolismo , Cresta Neural , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Pez Cebra/genética , Intestinos
6.
Annu Rev Physiol ; 83: 127-151, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33228454

RESUMEN

GDF15 is a cell activation and stress response cytokine of the glial cell line-derived neurotrophic factor family within the TGF-ß superfamily. It acts through a recently identified orphan member of the GFRα family called GFRAL and signals through the Ret coreceptor. Cell stress and disease lead to elevated GDF15 serum levels, causing anorexia, weight loss, and alterations to metabolism, largely by actions on regions of the hindbrain. These changes restore homeostasis and, in the case of obesity, cause a reduction in adiposity. In some diseases, such as advanced cancer, serum GDF15 levels can rise by as much as 10-100-fold, leading to an anorexia-cachexia syndrome, which is often fatal. This review discusses how GDF15 regulates appetite and metabolism, the role it plays in resistance to obesity, and how this impacts diseases such as diabetes, nonalcoholic fatty liver disease, and anorexia-cachexia syndrome. It also discusses potential therapeutic applications of targeting the GDF15-GFRAL pathway and lastly suggests some potential unifying hypotheses for its biological role.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Enfermedades Metabólicas/metabolismo , Transducción de Señal/fisiología , Animales , Humanos
7.
Genes Chromosomes Cancer ; 63(1): e23205, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37782551

RESUMEN

Mesenchymal spindle cell tumors with kinase fusions, often presenting in superficial or deep soft tissue locations, may rarely occur in bone. Herein, we describe the clinicopathologic and molecular data of eight bone tumors characterized by various kinase fusions from our files and incorporate the findings with the previously reported seven cases, mainly as single case reports. In the current series all but one of the patients were young children or teenagers, with an age range from newborn to 59 years (mean 19 years). Most tumors (n = 5) presented in the head and neck area (skull base, mastoid, maxilla, and mandible), and remaining three in the tibia, pelvic bone, and chest wall. The fusions included NTRK1 (n = 3), RET (n = 2), NTRK3 (n = 2), and BRAF (n = 1). In the combined series (n = 15), most tumors (73%) occurred in children and young adults (<30 years) and showed a predilection for jaw and skull bones (40%), followed by long and small tubular bones (33%). The fusions spanned a large spectrum of kinase genes, including in descending order NTRK3 (n = 6), NTRK1 (n = 4), RET (n = 2), BRAF (n = 2), and RAF1 (n = 1). All fusions confirmed by targeted RNA sequencing were in-frame and retained the kinase domain within the fusion oncoprotein. Similar to the soft tissue counterparts, most NTRK3-positive bone tumors in this series showed high-grade morphology (5/6), whereas the majority of NTRK1 tumors were low-grade (3/4). Notably, all four tumors presenting in the elderly were high-grade spindle cell sarcomas, with adult fibrosarcoma (FS)-like, malignant peripheral nerve sheath tumor (MPNST)-like and MPNST phenotypes. Overall, 10 tumors had high-grade morphology, ranging from infantile and adult-types FS, MPNST-like, and MPNST, whereas five showed benign/low-grade histology (MPNST-like and myxoma-like). Immunohistochemically (IHC), S100 and CD34 positivity was noted in 57% and 50%, respectively, while co-expression of S100 and CD34 in 43% of cases. One-third of tumors (4 high grade and the myxoma-like) were negative for both S100 and CD34. IHC for Pan-TRK was positive in all eight NTRK-fusion positive tumors tested and negative in two tumors with other kinase fusions. Clinical follow-up was too limited to allow general conclusions.


Asunto(s)
Neoplasias Óseas , Fibrosarcoma , Mixoma , Neurofibrosarcoma , Neoplasias de los Tejidos Blandos , Niño , Recién Nacido , Adolescente , Adulto Joven , Humanos , Preescolar , Anciano , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias de los Tejidos Blandos/genética , Fibrosarcoma/genética , Proteínas Tirosina Quinasas Receptoras , Neoplasias Óseas/genética , Proteínas de Fusión Oncogénica/genética , Biomarcadores de Tumor/genética , Receptor trkA/genética
8.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L19-L28, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37987758

RESUMEN

Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.


Asunto(s)
Asma , Factor Neurotrófico Derivado de la Línea Celular Glial , Animales , Ratones , Alérgenos , Colágeno , Modelos Animales de Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Cloruro de Metacolina/farmacología , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-ret/metabolismo
9.
Growth Factors ; : 1-9, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007914

RESUMEN

This study investigated the combined effects of resistance exercise training (RET) and alternate-day calorie restriction (ADCR) on body composition, insulin resistance (IR), insulin resistance-related biomarkers (adipokine adipsin and hepatokine soluble EFGR), and weight loss in obese men. The findings revealed that RET + ADCR induced the greatest reductions in body weight, body fat percentage, and waist-to-hip ratio (WHR) compared to RET and ADCR alone (p < 0.05). Additionally, RET + ADCR resulted in the most significant improvements in IR, as measured by HOMA-IR, and in circulating levels of adipsin and soluble EFGR (p < 0.05). These findings suggest that combining RET and ADCR may be a more effective strategy for improving metabolic health, including body composition, IR, and metabolic tissues' functions, in obese men than either intervention alone.

10.
Cancer Sci ; 115(3): 963-973, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38226414

RESUMEN

Ectopic activation of rearranged during transfection (RET) has been reported to facilitate lineage differentiation and cell proliferation in different cytogenetic subtypes of acute myeloid leukemia (AML). Herein, we demonstrate that RET is significantly (p < 0.01) upregulated in AML subtypes containing rearrangements of the lysine methyltransferase 2A gene (KMT2A), commonly referred to as KMT2A-rearranged (KMT2A-r) AML. Integrating multi-epigenomics data, we show that the KMT2A-MLLT3 fusion induces the development of CCCTC-binding (CTCF)-guided de novo extrusion enhancer loop to upregulate RET expression in KMT2A-r AML. Based on the finding that RET expression is tightly correlated with the selective chromatin remodeler and mediator (MED) proteins, we used a small-molecule inhibitor having dual inhibition against RET and MED12-associated cyclin-dependent kinase 8 (CDK8) in KMT2A-r AML cells. Dual inhibition of RET and CDK8 restricted cell proliferation by producing multimodal oxidative stress responses in treated cells. Our data suggest that epigenetically enhanced RET protects KMT2A-r AML cells from oxidative stresses, which could be exploited as a potential therapeutic strategy.


Asunto(s)
Reordenamiento Génico , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proto-Oncogenes , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Estrés Oxidativo/genética , Proteínas Proto-Oncogénicas c-ret/genética
11.
Oncologist ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478398

RESUMEN

We present a 54-year-old White male with a diagnosis of stage IV pancreatic neuroendocrine carcinoma. Next-generation sequencing of the tumor/blood identified a complex tumor genome, which included a rearranged during transfection (RET) gene fusion. The patient initially received cytotoxic chemotherapy with a significant radiographic response. After 4 cycles of chemotherapy, the patient was transitioned to a clinical trial using selpercatinib, a RET inhibitor, as maintenance therapy. Unfortunately, our patient developed progression of disease at the first treatment monitoring scan. Our patient suffered primary resistance to RET-targeted therapy. Proposed mechanisms of resistance include intrinsic resistance of the nuclear receptor co-activator 4-RET fusion to RET inhibition, the RET fusion representing a passenger alteration to another tumorigenic driver pathway and/or decreased efficacy of RET inhibition after platinum-based chemotherapy. Our patient's clinical course highlights the fact that "actionable" genomic alterations do not always equate to patient benefit.

12.
Biochem Biophys Res Commun ; 710: 149861, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38581949

RESUMEN

During early development, the enteric nervous system forms from the migration of enteric neural crest cells (ENCCs) from the foregut to the hindgut, where they undergo proliferation and differentiation facilitated by interactions with enteric mesenchymal cells (EMCs). This study investigates the impact on ENCC migration of EMC-ENCC communication mediated by GFRA1b expressed in EMCs. GFRA1-expressing cells in day 11-12 (E11-12) mouse embryos differentiated into smooth muscle cells from E12 onwards. Observations at E12-13.5 revealed high levels of GFRA1 expression on the anti-mesenteric side of the hindgut, correlating with enhanced ENCC migration. This indicates that GFRA1 in EMCs plays a role in ENCC migration during development. Examining GFRA1 isoforms, we found high levels of GFRA1b, which lacks amino acids 140-144, in EMCs. To assess the impact of GFRA1 isoforms on EMC-ENCC communication, we conducted neurosphere drop assays. This revealed that GFRA1b-expressing cells promoted GDNF-dependent extension and increased neurite density in ENCC neurospheres. Co-culture of ENCC mimetic cells expressing RET and GFRA1a with EMC mimetic cells expressing GFRA1a, GFRA1b, or vector alone showed that only GFRA1b-expressing co-cultured cells sustained RET phosphorylation in ENCC-mimetic cells for over 120 min upon GDNF stimulation. Our study provides evidence that GFRA1b-mediated cell-to-cell communication plays a critical role in ENCC motility in enteric nervous system development. These findings contribute to understanding the cellular interactions and signaling mechanisms that underlie enteric nervous system formation and highlight potential therapeutic targets for gastrointestinal motility disorders.


Asunto(s)
Sistema Nervioso Entérico , Cresta Neural , Animales , Ratones , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Sistema Nervioso Entérico/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Cresta Neural/metabolismo , Isoformas de Proteínas/metabolismo
13.
Biochem Biophys Res Commun ; 714: 149959, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657443

RESUMEN

Gestational diabetes mellitus (GDM) presents a substantial population health concern. Previous studies have revealed that GDM can ultimately influence nephron endowment. In this study, we established a GDM mouse model to investigate the embryological alterations and molecular mechanisms underlying the development of congenital anomalies of the kidney and urinary tract (CAKUT) affected by GDM. Our study highlights that GDM could contribute to the manifestation of CAKUT, with prevalent phenotypes characterized by isolated hydronephrosis and duplex kidney complicated with hydronephrosis in mice. Ectopic ureteric buds (UBs) and extended length of common nephric ducts (CNDs) were noted in the metanephric development stage. The expression of Ret and downstream p-ERK activity were enhanced in UBs, which indicated the alteration of RET/MAPK/ERK pathway may be one of the mechanisms contributing to the increased occurrence of CAKUT associated with GDM.


Asunto(s)
Diabetes Gestacional , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-ret , Anomalías Urogenitales , Reflujo Vesicoureteral , Animales , Femenino , Ratones , Embarazo , Diabetes Gestacional/metabolismo , Riñón/anomalías , Riñón/metabolismo , Riñón/embriología , Proteínas Proto-Oncogénicas c-ret/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Sistema Urinario/anomalías , Sistema Urinario/embriología , Anomalías Urogenitales/etiología , Anomalías Urogenitales/genética , Anomalías Urogenitales/patología
14.
Development ; 148(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34338291

RESUMEN

Negative feedback loops represent a regulatory mechanism that guarantees that signaling thresholds are compatible with a physiological response. Previously, we established that Lrig1 acts through this mechanism to inhibit Ret activity. However, it is unclear whether other Lrig family members play similar roles. Here, we show that Lrig1 and Lrig3 are co-expressed in Ret-positive mouse dorsal root ganglion (DRG) neurons. Lrig3, like Lrig1, interacts with Ret and inhibits GDNF/Ret signaling. Treatment of DRG neurons with GDNF ligands induces a significant increase in the expression of Lrig1 and Lrig3. Our findings show that, whereas a single deletion of either Lrig1 or Lrig3 fails to promote Ret-mediated axonal growth, haploinsufficiency of Lrig1 in Lrig3 mutants significantly potentiates Ret signaling and axonal growth of DRG neurons in response to GDNF ligands. We observe that Lrig1 and Lrig3 act redundantly to ensure proper cutaneous innervation of nonpeptidergic axons and behavioral sensitivity to cold, which correlates with a significant increase in the expression of the cold-responsive channel TrpA1. Together, our findings provide insights into the in vivo functions through which Lrig genes control morphology, connectivity and function in sensory neurons.


Asunto(s)
Axones/metabolismo , Epidermis/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/genética , Animales , Animales Recién Nacidos , Línea Celular Transformada , Ganglios Espinales/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Células HEK293 , Humanos , Ligandos , Masculino , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Proyección Neuronal/genética , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transfección
15.
Cytotherapy ; 26(1): 63-72, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921725

RESUMEN

INTRODUCTION: Previous studies have suggested that the tyrosine kinase receptor RET plays a significant role in the hematopoietic potential in mice and could also be used to expand cord-blood derived hematopoietic stem cells (HSCs). The role of RET in human iPSC-derived hematopoiesis has not been tested so far. METHODS: To test the implication of RET on the hematopoietic potential of iPSCs, we activated its pathway with the lentiviral overexpression of RETWT or RETC634Y mutation in normal iPSCs. An iPSC derived from a patient harboring the RETC634Y mutation (iRETC634Y) and its CRISPR-corrected isogenic control iPSC (iRETCTRL) were also used. The hematopoietic potential was tested using 2D cultures and evaluated regarding the phenotype and the clonogenic potential of generated cells. RESULTS: Hematopoietic differentiation from iPSCs with RET overexpression (WT or C634Y) led to a significant reduction in the number and in the clonogenic potential of primitive hematopoietic cells (CD34+/CD38-/CD49f+) as compared to control iPSCs. Similarly, the hematopoietic potential of iRETC634Y was reduced as compared to iRETCTRL. Transcriptomic analyses revealed a specific activated expression profile for iRETC634Y compared to its control with evidence of overexpression of genes which are part of the MAPK network with negative hematopoietic regulator activities. CONCLUSION: RET activation in iPSCs is associated with an inhibitory activity in iPSC-derived hematopoiesis, potentially related to MAPK activation.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Proteínas Tirosina Quinasas Receptoras/metabolismo , Diferenciación Celular/genética , Hematopoyesis/genética , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo
16.
BMC Cancer ; 24(1): 178, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317126

RESUMEN

BACKGROUND: The impact of immune checkpoint inhibitors (ICIs) based treatments on non-small cell lung cancers (NSCLCs) with RET fusions remains poorly understood. METHODS: We screened patients with RET fusions at the First Affiliated Hospital of Zhengzhou University and included those who were treated with ICIs based regimens for further analysis. We evaluated clinical indicators including objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). RESULTS: A total of 232 patients with RET fusions were included in the study. Of these, 129 patients had their programmed death-ligand 1 (PDL1) expression levels tested, with 22 patients (17.8%) having a PDL1 level greater than or equal to 50%. Additionally, tumor mutational burden (TMB) status was evaluated in 35 patients, with the majority (30/35, 85.8%) having a TMB of less than 10 mutations per megabase. Out of the 38 patients treated with ICI based regimens, the median PFS was 5 months (95% confidence interval [CI]: 2.4-7.6 months) and the median OS was 19 months (95% CI: 9.7-28.3 months) at the time of data analysis. Stratification based on treatment lines did not show any significant differences in OS (18 vs. 19 months, p = 0.63) and PFS (6 vs. 5 months, p = 0.86). The ORR for patients treated with ICIs was 26.3%. Furthermore, no significant differences were found for PFS (p = 0.27) and OS (p = 0.75) between patients with positive and negative PDL1 expression. Additionally, there was no significant difference in PD-L1 levels (p = 0.10) between patients who achieved objective response and those who did not. CONCLUSIONS: Patients with RET fusion positive NSCLCs may not benefit from ICI based regimens and therefore should not be treated with ICIs in clinical practice.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estudios Retrospectivos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Antígeno B7-H1/genética , Análisis de Datos , Proteínas Proto-Oncogénicas c-ret/genética
17.
Am J Med Genet A ; 194(7): e63576, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38407483

RESUMEN

Genetic testing for germline RET pathogenic variants, which cause the Multiple Endocrine Neoplasia Type 2 (MEN2) syndrome, has become crucial in managing patients with medullary thyroid carcinoma (MTC). Classically, RET heterozygous missense pathogenic variants are transmitted in a Mendelian autosomal dominant pattern, of which germline/gonadal mosaicism has never been reported. We report the novel occurrence of a MEN2A patient's family in which the siblings inherited three different RET 634 genotypes: wild type (p.Cys634), p.Cys634Gly or p.Cys634Arg heterozygous pathogenic variants. We hypothesized that germline/gonadal mosaicism, derived from an inherited + early somatic mutation in the mother or a double de novo mutation during maternal embryogenesis, led to this rare event in the RET gene. Exome analysis of the proband's deceased mother's paraffin-embedded thyroid tissue confirmed the three nucleotides in the same 634 codon position. For the first time, we describe germline/gonadal mosaicism in RET, generating a second pathogenic amino acid change in the same codon causing MEN2A. Our finding shows that RET parental mosaicism, confirmed by somatic exome sequencing, might explain discrepant genotype cases in siblings with inherited cancers.


Asunto(s)
Mutación de Línea Germinal , Mosaicismo , Neoplasia Endocrina Múltiple Tipo 2a , Linaje , Proteínas Proto-Oncogénicas c-ret , Humanos , Neoplasia Endocrina Múltiple Tipo 2a/genética , Neoplasia Endocrina Múltiple Tipo 2a/patología , Proteínas Proto-Oncogénicas c-ret/genética , Mutación de Línea Germinal/genética , Femenino , Masculino , Adulto , Sustitución de Aminoácidos , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Genotipo , Secuenciación del Exoma
18.
Bioorg Med Chem ; 106: 117749, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744018

RESUMEN

Aberrant RET kinase signaling is activated in numerous cancers including lung, thyroid, breast, pancreatic, and prostate. Recent approvals of selective RET inhibitors, pralsetinib and selpercatinib, has shifted the focus of RET kinase drug discovery programs towards the development of selective inhibitors. However, selective inhibitors invariably lose efficacy as the selective nature of the inhibitor places Darwinian-like pressure on the tumor to bypass treatment through the selection of novel oncogenic drivers. Further, selective inhibitors are restricted for use in tumors with specific genetic backgrounds that do not encompass diverse patient classes. Here we report the identification of a pyrimido indole RET inhibitor found to also have activity against TRK. This selective dual RET/TRK inhibitor can be utilized in tumors with both RET and TRK genetic backgrounds and can also provide blockade of NTRK-fusions that are selected for from RET inhibitor treatments. Efforts towards developing dual RET/TRK inhibitors can be beneficial in terms of encompassing more diverse patient classes while also achieving blockade against emerging resistance mechanisms.


Asunto(s)
Indoles , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-ret , Receptor trkA , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Descubrimiento de Drogas , Indoles/química , Indoles/farmacología , Indoles/síntesis química , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas c-ret/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-ret/metabolismo , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Relación Estructura-Actividad
19.
Mol Biol Rep ; 51(1): 502, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598020

RESUMEN

BACKGROUND: Thyroid cancer, originating in the neck's thyroid gland, encompasses various types. Genetic mutations, particularly in BRAF and RET genes are crucial in its development. This study investigates the association between BRAF (rs113488022) and RET (rs77709286) polymorphisms and thyroid cancer risk in the Khyber Pakhtunkhwa (KP) population. METHODS: Blood samples from 100 thyroid cancer patients and 100 healthy controls were genotyped using ARMS-PCR followed by gel electrophoresis and statistical analysis. RESULTS: Analysis revealed a significant association between the minor allele T of BRAF (rs113488022) and thyroid cancer risk (P = 0.0001). Both genotypes of BRAF (rs113488022) showed significant associations with thyroid cancer risk (AT; P = 0.0012 and TT; P = 0.045). Conversely, the minor allele G of RET (rs77709286) exhibited a non-significant association with thyroid cancer risk (P = 0.2614), and neither genotype showed significant associations (CG; P = 0.317, GG; P = 0.651). Demographic and clinical parameters analysis using SPSS showed a non-significant association between BRAF and RET variants and age group (P = 0.878 and P = 0.536), gender (P = 0.587 and P = 0.21), tumor size (P = 0.796 and P = 0.765), or tumor localization (P = 0.689 and P = 0.727). CONCLUSION: In conclusion, this study emphasizes the significant association between BRAF polymorphism and thyroid cancer risk, while RET polymorphism showed a less pronounced impact. Further validation using larger and specific datasets is essential to establish conclusive results.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf , Sulfonas , Neoplasias de la Tiroides , Uridina/análogos & derivados , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/genética , Alelos , Proteínas Proto-Oncogénicas c-ret/genética
20.
Future Oncol ; 20(6): 297-306, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37916501

RESUMEN

WHAT IS THIS SUMMARY ABOUT?: This is a summary of a research study called ARROW, which tested a medicine called pralsetinib in patients with non-small cell lung cancer (NSCLC), thyroid cancer, and other advanced solid tumours caused by a change in a gene called RET. For the purposes of this summary, only patients with NSCLC with a change in RET called fusion (RET fusion+) are highlighted. WHAT WERE THE RESULTS?: In total, 281 patients with RET fusion+ NSCLC had taken part in this study across the USA, Europe, and Asia. Patients were asked to take four pills (adding up to 400 mg) of pralsetinib each day and were checked for any changes in their tumours, as well as for any side effects. After an average of 8 months of treatment with pralsetinib, 72% of previously untreated patients and 59% of patients who had previously received chemotherapy had considerable shrinkage of their tumours. Among 10 patients with tumours which had spread to the brain (all of whom had received previous treatments), 70% had their tumours shrink greatly in the brain after treatment with pralsetinib. On average, patients lived with little to no tumour growth for 16 months. In previously untreated patients, the most common severe side effects that were considered related to pralsetinib treatment were decreased white blood cells (neutrophils and lymphocytes), increased blood pressure, and an increase in a blood protein called creatine phosphokinase. In previously treated patients, the severe side effects were decreased white blood cells (neutrophils, lymphocytes, and leukocytes), increased blood pressure, and low levels of red blood cells. In both untreated and previously treated patients, the most common severe side effects that required hospital attention were lung inflammation/swelling causing shortness of breath (pneumonitis) and lung infection (pneumonia). WHAT DO THE RESULTS MEAN?: Overall, the ARROW study showed that pralsetinib was effective in shrinking tumours in patients with RET fusion+ NSCLC regardless of previous treatment history. The recorded side effects were expected in patients receiving this type of medicine. Clinical Trial Registration: NCT03037385 (ARROW) (ClinicalTrials.gov).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Pirazoles , Piridinas , Proteínas Proto-Oncogénicas c-ret/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA