Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell ; 77(2): 241-250.e8, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31706702

RESUMEN

The signal recognition particle (SRP), responsible for co-translational protein targeting and delivery to cellular membranes, depends on the native long-hairpin fold of its RNA to confer functionality. Since RNA initiates folding during its synthesis, we used high-resolution optical tweezers to follow in real time the co-transcriptional folding of SRP RNA. Surprisingly, SRP RNA folding is robust to transcription rate changes and the presence or absence of its 5'-precursor sequence. The folding pathway also reveals the obligatory attainment of a non-native hairpin intermediate (H1) that eventually rearranges into the native fold. Furthermore, H1 provides a structural platform alternative to the native fold for RNase P to bind and mature SRP RNA co-transcriptionally. Delays in attaining the final native fold are detrimental to the cell, altogether showing that a co-transcriptional folding pathway underpins the proper biogenesis of function-essential SRP RNA.


Asunto(s)
Pliegue del ARN/genética , ARN/genética , Partícula de Reconocimiento de Señal/genética , Transcripción Genética/genética , Escherichia coli/genética , Unión Proteica/genética , Ribosomas/genética
2.
Mol Cell ; 74(6): 1227-1238.e3, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31003868

RESUMEN

rRNAs and tRNAs universally require processing from longer primary transcripts to become functional for translation. Here, we describe an unsuspected link between tRNA maturation and the 3' processing of 16S rRNA, a key step in preparing the small ribosomal subunit for interaction with the Shine-Dalgarno sequence in prokaryotic translation initiation. We show that an accumulation of either 5' or 3' immature tRNAs triggers RelA-dependent production of the stringent response alarmone (p)ppGpp in the Gram-positive model organism Bacillus subtilis. The accumulation of (p)ppGpp and accompanying decrease in GTP levels specifically inhibit 16S rRNA 3' maturation. We suggest that cells can exploit this mechanism to sense potential slowdowns in tRNA maturation and adjust rRNA processing accordingly to maintain the appropriate functional balance between these two major components of the translation apparatus.


Asunto(s)
Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica , Guanosina Pentafosfato/biosíntesis , Iniciación de la Cadena Peptídica Traduccional , ARN Ribosómico 16S/genética , ARN de Transferencia/genética , Bacillus subtilis/metabolismo , Secuencia de Bases , Guanosina Pentafosfato/genética , Guanosina Trifosfato/metabolismo , Ligasas/genética , Ligasas/metabolismo , Conformación de Ácido Nucleico , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
3.
Bioessays ; 46(1): e2300145, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926700

RESUMEN

Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Leucemia Mieloide Aguda , Humanos , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Mol Cell ; 65(1): 3-4, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28061331

RESUMEN

In this issue of Molecular Cell, Chao et al. (2017) investigate the important role of the low-specificity endonuclease RNase E in shaping the transcriptome of a bacterial pathogen by functioning as both a degradative enzyme and an RNA maturase.


Asunto(s)
Escherichia coli/enzimología , ARN Mensajero/genética , Endorribonucleasas/genética , ARN Bacteriano
5.
Trends Biochem Sci ; 45(1): 42-57, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31679841

RESUMEN

Bacterial RNA degradosomes are multienzyme molecular machines that act as hubs for post-transcriptional regulation of gene expression. The ribonuclease activities of these complexes require tight regulation, as they are usually essential for cell survival while potentially destructive. Recent studies have unveiled a wide variety of regulatory mechanisms including autoregulation, post-translational modifications, and protein compartmentalization. Recently, the subcellular organization of bacterial RNA degradosomes was found to present similarities with eukaryotic messenger ribonucleoprotein (mRNP) granules, membraneless compartments that are also involved in mRNA and protein storage and/or mRNA degradation. In this review, we present the current knowledge on the composition and targets of RNA degradosomes, the most recent developments regarding the regulation of these machineries, and their similarities with the eukaryotic mRNP granules.


Asunto(s)
Endorribonucleasas/metabolismo , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , ARN Bacteriano/metabolismo , Endorribonucleasas/genética , Complejos Multienzimáticos/genética , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Helicasas/genética
6.
Adv Exp Med Biol ; 1441: 313-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884719

RESUMEN

Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN no Traducido , Animales , Humanos , Empalme Alternativo/genética , Regulación de la Expresión Génica , Edición de ARN , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
7.
Curr Genet ; 68(1): 3-14, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34476547

RESUMEN

As the limiting component of the budding yeast telomerase, the Tlc1 RNA must undergo multiple consecutive modifications and rigorous quality checks throughout its lifecycle. These steps will ensure that only correctly processed and matured molecules are assembled into telomerase complexes that subsequently act at telomeres. The complex pathway of Tlc1 RNA maturation, involving 5'- and 3'-end processing, stabilisation and assembly with the protein subunits, requires at least one nucleo-cytoplasmic passage. Furthermore, it appears that the pathway is tightly coordinated with the association of various and changing proteins, including the export factor Xpo1, the Mex67/Mtr2 complex, the Kap122 importin, the Sm7 ring and possibly the CBC and TREX-1 complexes. Although many of these maturation processes also affect other RNA species, the Tlc1 RNA exploits them in a new combination and, therefore, ultimately follows its own and unique pathway. In this review, we highlight recent new insights in maturation and subcellular shuttling of the budding yeast telomerase RNA and discuss how these events may be fine-tuned by the biochemical characteristics of the varying processing and transport factors as well as the final telomerase components. Finally, we indicate outstanding questions that we feel are important to be addressed for a complete understanding of the telomerase RNA lifecycle and that could have implications for the human telomerase as well.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Telomerasa , Citoplasma/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
8.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682820

RESUMEN

Mitochondria are the power houses of eukaryote cells. These endosymbiotic organelles of prokaryote origin are considered as semi-autonomous since they have retained a genome and fully functional gene expression mechanisms. These pathways are particularly interesting because they combine features inherited from the bacterial ancestor of mitochondria with characteristics that appeared during eukaryote evolution. RNA biology is thus particularly diverse in mitochondria. It involves an unexpectedly vast array of factors, some of which being universal to all mitochondria and others being specific from specific eukaryote clades. Among them, ribonucleases are particularly prominent. They play pivotal functions such as the maturation of transcript ends, RNA degradation and surveillance functions that are required to attain the pool of mature RNAs required to synthesize essential mitochondrial proteins such as respiratory chain proteins. Beyond these functions, mitochondrial ribonucleases are also involved in the maintenance and replication of mitochondrial DNA, and even possibly in the biogenesis of mitochondrial ribosomes. The diversity of mitochondrial RNases is reviewed here, showing for instance how in some cases a bacterial-type enzyme was kept in some eukaryotes, while in other clades, eukaryote specific enzymes were recruited for the same function.


Asunto(s)
Ribonucleasas , Transcriptoma , Endorribonucleasas/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ARN/metabolismo , Ribonucleasas/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(25): 6404-6409, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29866852

RESUMEN

Folded RNA elements that block processive 5' → 3' cellular exoribonucleases (xrRNAs) to produce biologically active viral noncoding RNAs have been discovered in flaviviruses, potentially revealing a new mode of RNA maturation. However, whether this RNA structure-dependent mechanism exists elsewhere and, if so, whether a singular RNA fold is required, have been unclear. Here we demonstrate the existence of authentic RNA structure-dependent xrRNAs in dianthoviruses, plant-infecting viruses unrelated to animal-infecting flaviviruses. These xrRNAs have no sequence similarity to known xrRNAs; thus, we used a combination of biochemistry and virology to characterize their sequence requirements and mechanism of stopping exoribonucleases. By solving the structure of a dianthovirus xrRNA by X-ray crystallography, we reveal a complex fold that is very different from that of the flavivirus xrRNAs. However, both versions of xrRNAs contain a unique topological feature, a pseudoknot that creates a protective ring around the 5' end of the RNA structure; this may be a defining structural feature of xrRNAs. Single-molecule FRET experiments reveal that the dianthovirus xrRNAs undergo conformational changes and can use "codegradational remodeling," exploiting the exoribonucleases' degradation-linked helicase activity to help form their resistant structure; such a mechanism has not previously been reported. Convergent evolution has created RNA structure-dependent exoribonuclease resistance in different contexts, which establishes it as a general RNA maturation mechanism and defines xrRNAs as an authentic functional class of RNAs.


Asunto(s)
Exorribonucleasas/metabolismo , Flavivirus/genética , Interacciones Huésped-Patógeno/genética , Pliegue del ARN/genética , ARN Viral/genética , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Conformación de Ácido Nucleico , Estabilidad del ARN/genética
10.
J Biol Chem ; 294(22): 8885-8893, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31000629

RESUMEN

tRNAHis guanylyltransferase (Thg1) adds a single guanine to the -1 position of tRNAHis as part of its maturation. This seemingly modest addition of one nucleotide to tRNAHis ensures translational fidelity by providing a critical identity element for the histidyl aminoacyl tRNA synthetase (HisRS). Like HisRS, Thg1 utilizes the GUG anticodon for selective tRNAHis recognition, and Thg1-tRNA complex structures have revealed conserved residues that interact with anticodon nucleotides. Separately, kinetic analysis of alanine variants has demonstrated that many of these same residues are required for catalytic activity. A model in which loss of activity with the variants was attributed directly to loss of the critical anticodon interaction has been proposed to explain the combined biochemical and structural results. Here we used RNA chemical footprinting and binding assays to test this model and further probe the molecular basis for the requirement for two critical tRNA-interacting residues, His-152 and Lys-187, in the context of human Thg1 (hThg1). Surprisingly, we found that His-152 and Lys-187 alanine-substituted variants maintain a similar overall interaction with the anticodon region, arguing against the sufficiency of this interaction for driving catalysis. Instead, conservative mutagenesis revealed a new direct function for these residues in recognition of a non-Watson-Crick G-1:A73 bp, which had not been described previously. These results have important implications for the evolution of eukaryotic Thg1 from a family of ancestral promiscuous RNA repair enzymes to the highly selective enzymes needed for their essential function in tRNAHis maturation.


Asunto(s)
Proteínas de Homeodominio/metabolismo , ARN de Transferencia de Histidina/metabolismo , Anticodón/química , Anticodón/metabolismo , Biocatálisis , Dominio Catalítico , Evolución Molecular , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
11.
Plant J ; 100(3): 549-561, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31319441

RESUMEN

The essential type of endonuclease that removes 5' leader sequences from transfer RNA precursors is called RNase P. While ribonucleoprotein RNase P enzymes containing a ribozyme are found in all domains of life, another type of RNase P called 'PRORP', for 'PROtein-only RNase P', is composed of protein that occurs only in a wide variety of eukaryotes, in organelles and in the nucleus. Here, to find how PRORP functions integrate with other cell processes, we explored the protein interaction network of PRORP1 in Arabidopsis mitochondria and chloroplasts. Although PRORP proteins function as single subunit enzymes in vitro, we found that PRORP1 occurs in protein complexes and is present in high-molecular-weight fractions that contain mitochondrial ribosomes. The analysis of immunoprecipitated protein complexes identified proteins involved in organellar gene expression processes. In particular, direct interaction was established between PRORP1 and MNU2 a mitochondrial nuclease. A specific domain of MNU2 and a conserved signature of PRORP1 were found to be directly accountable for this protein interaction. Altogether, results revealed the existence of an RNA maturation complex in Arabidopsis mitochondria and suggested that PRORP proteins cooperated with other gene expression factors for RNA maturation in vivo.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Endonucleasas/metabolismo , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , Ribonucleasa P/metabolismo , Regiones no Traducidas 5'/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Cloroplastos/enzimología , Endonucleasas/genética , Evolución Molecular , Mitocondrias/enzimología , Proteínas Mitocondriales , Modelos Moleculares , Complejos Multiproteicos , Dominios Proteicos , Ribonucleasa P/genética , Ribosomas/metabolismo
12.
RNA Biol ; 16(4): 481-491, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29517395

RESUMEN

Specialized RNA endonucleases are critical for efficient activity of the CRISPR-Cas defense mechanisms against invading DNA or RNA. Cas6-type enzymes are the RNA endonucleases in many type I and type III CRISPR-Cas systems. These enzymes are diverse and critical residues involved in the recognition and cleavage of RNA substrates are not universally conserved. Cas6 endonucleases associated with the CRISPR-Cas subtypes I-A, I-B, I-C, I-E and I-F, as well as III-B have been studied from three archaea and four bacteria thus far. However, until now information about subtype I-D specific Cas6 endonucleases has remained scarce. Here, we report the biochemical analysis of Cas6-1, which is specific for the crRNA maturation from the subtype I-D CRISPR-Cas system of Synechocystis sp. PCC 6803. Assays of turnover kinetics suggest a single turnover mechanism for Cas6-1. The mutation of conserved amino acids R29A, H32A-S33A and H51A revealed these as essential, whereas the parallel mutation of R175A-R176A led to a pronounced and the K155A mutation to a slight reduction in enzymatic activity. In contrast, the mutations R67A, R81A and K231A left the enzymatic activity unchanged. These results are in accordance with the predominant role of histidine residues in the active site and of positively charged residues in RNA binding. Nevertheless, the protein-RNA interaction site seems to differ from other known systems, since imidazole could not restore the mutated histidine site.


Asunto(s)
Sistemas CRISPR-Cas/genética , Endonucleasas/metabolismo , Synechocystis/genética , Secuencia de Bases , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Imidazoles/farmacología , Mutagénesis/genética , Mutación/genética , ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Homología Estructural de Proteína
13.
RNA Biol ; 15(4-5): 508-517, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28726545

RESUMEN

Endoribonuclease toxins (ribotoxins) are produced by bacteria and fungi to respond to stress, eliminate non-self competitor species, or interdict virus infection. PrrC is a bacterial ribotoxin that targets and cleaves tRNALysUUU in the anticodon loop. In vitro studies suggested that the post-transcriptional modification threonylcarbamoyl adenosine (t6A) is required for PrrC activity but this prediction had never been validated in vivo. Here, by using t6A-deficient yeast derivatives, it is shown that t6A is a positive determinant for PrrC proteins from various bacterial species. Streptococcus mutans is one of the few bacteria where the t6A synthesis gene tsaE (brpB) is dispensable and its genome encodes a PrrC toxin. We had previously shown using an HPLC-based assay that the S. mutans tsaE mutant was devoid of t6A. However, we describe here a novel and a more sensitive hybridization-based t6A detection method (compared to HPLC) that showed t6A was still present in the S. mutans ΔtsaE, albeit at greatly reduced levels (93% reduced compared with WT). Moreover, mutants in 2 other S. mutans t6A synthesis genes (tsaB and tsaC) were shown to be totally devoid of the modification thus confirming its dispensability in this organism. Furthermore, analysis of t6A modification ratios and of t6A synthesis genes mRNA levels in S. mutans suggest they may be regulated by growth phase.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Bacterianas/genética , Endorribonucleasas/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Lisina/genética , Streptococcus mutans/genética , Adenosina/deficiencia , Adenosina/genética , Anticodón/química , Anticodón/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN de Transferencia de Lisina/metabolismo , Streptococcus mutans/metabolismo
14.
Biochem J ; 474(13): 2145-2158, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28512204

RESUMEN

Accurate assembly and maturation of human mitochondrial ribosomes is essential for synthesis of the 13 polypeptides encoded by the mitochondrial genome. This process requires the correct integration of 80 proteins, 1 mt (mitochondrial)-tRNA and 2 mt-rRNA species, the latter being post-transcriptionally modified at many sites. Here, we report that human ribosome-binding factor A (RBFA) is a mitochondrial RNA-binding protein that exerts crucial roles in mitoribosome biogenesis. Unlike its bacterial orthologue, RBFA associates mainly with helices 44 and 45 of the 12S rRNA in the mitoribosomal small subunit to promote dimethylation of two highly conserved consecutive adenines. Characterization of RBFA-depleted cells indicates that this dimethylation is not a prerequisite for assembly of the small ribosomal subunit. However, the RBFA-facilitated modification is necessary for completing mt-rRNA maturation and regulating association of the small and large subunits to form a functional monosome implicating RBFA in the quality control of mitoribosome formation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Proteínas de Escherichia coli/genética , Células HEK293 , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , ARN Ribosómico/genética , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Homología de Secuencia de Aminoácido
15.
RNA Biol ; 14(9): 1124-1137, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27791472

RESUMEN

Our ability to map and quantify RNA modifications at a genome-wide scale have revolutionized our understanding of the pervasiveness and dynamic regulation of diverse RNA modifications. Recent efforts in the field have demonstrated the presence of modified residues in almost any type of cellular RNA. Next-generation sequencing (NGS) technologies are the primary choice for transcriptome-wide RNA modification mapping. Here we provide an overview of approaches for RNA modification detection based on their RT-signature, specific chemicals, antibody-dependent (Ab) enrichment, or combinations thereof. We further discuss sources of artifacts in genome-wide modification maps, and experimental and computational considerations to overcome them. The future in this field is tightly linked to the development of new specific chemical reagents, highly specific Ab against RNA modifications and use of single-molecule RNA sequencing techniques.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN/genética , Animales , Biología Computacional/métodos , Epigénesis Genética , Epigenómica/métodos , Humanos , ARN/química , ARN/metabolismo , Transcriptoma
16.
Postepy Biochem ; 63(3): 221-232, 2017.
Artículo en Polaco | MEDLINE | ID: mdl-29294267

RESUMEN

Ribonucleic acids appear in many forms, including circular (circRNA). It is much more widespread than originally thought. For HDV, viroids & viroid-like satellite RNAs circular RNAs act as genomes. It has also been observed in connection with the maturation of archaeal pre-rRNAs & pre-tRNAs - as an end product or transitional stage. In Archaea there are also circular forms of several snoRNAs and other RNAs known for their regulatory functions. Many circRNAs might appear in the course of maturation of pre-mRNAs containing spliceosomal, group I or group II introns. Observed molecules consist of exclusively introntic or exonic sequences. Particles containing both at once were detected too. Intronic circRNAs may take part in their maternal genetic elements' mobility. Exonic circRNAs are often tissue-specific or characteristic for a particular stage of the organism development. Some can modulate miRNA activity. Exonic circRNAs may be associated with several neurodegenerative diseases. Circular RNAs might prove useful in therapeutics and diagnostics.


Asunto(s)
ARN/metabolismo , Intrones
17.
RNA Biol ; 11(12): 1597-607, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25626080

RESUMEN

In eukaryotes and viruses that infect them, the 5' end of mRNA molecules, and also many other functionally important RNAs, are modified to form a so-called cap structure that is important for interactions of these RNAs with many nuclear and cytoplasmic proteins. The RNA cap has multiple roles in gene expression, including enhancement of RNA stability, splicing, nucleocytoplasmic transport, and translation initiation. Apart from guanosine addition to the 5' end in the most typical cap structure common to transcripts produced by RNA polymerase II (in particular mRNA), essentially all cap modifications are due to methylation. The complexity of the cap structure and its formation can range from just a single methylation of the unprocessed 5' end of the primary transcript, as in mammalian U6 and 7SK, mouse B2, and plant U3 RNAs, to an elaborate m(7)Gpppm(6,6)AmpAmpCmpm(3)Um structure at the 5' end of processed RNA in trypanosomes, which are formed by as many as 8 methylation reactions. While all enzymes responsible for methylation of the cap structure characterized to date were found to belong to the same evolutionarily related and structurally similar Rossmann Fold Methyltransferase superfamily, that uses the same methyl group donor, S-adenosylmethionine; the enzymes also exhibit interesting differences that are responsible for their distinct functions. This review focuses on the evolutionary classification of enzymes responsible for cap methylation in RNA, with a focus on the sequence relationships and structural similarities and dissimilarities that provide the basis for understanding the mechanism of biosynthesis of different caps in cellular and viral RNAs. Particular attention is paid to the similarities and differences between methyltransferases from human cells and from human pathogens that may be helpful in the development of antiviral and antiparasitic drugs.


Asunto(s)
Caperuzas de ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Protozoario/metabolismo , ARN Viral/metabolismo , Animales , Humanos , Metilación , Ratones , Modelos Moleculares , Caperuzas de ARN/química , ARN Mensajero/química , ARN Protozoario/química , ARN Viral/química , S-Adenosilmetionina/metabolismo , Trypanosoma/enzimología , Trypanosoma/genética , Virus/enzimología , Virus/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
18.
RNA Biol ; 11(12): 1619-29, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25611331

RESUMEN

Functional tRNA molecules always contain a wide variety of post-transcriptionally modified nucleosides. These modifications stabilize tRNA structure, allow for proper interaction with other macromolecules and fine-tune the decoding of mRNAs during translation. Their presence in functionally important regions of tRNA is conserved in all domains of life. However, the identities of many of these modified residues depend much on the phylogeny of organisms the tRNAs are found in, attesting for domain-specific strategies of tRNA maturation. In this work we present a new tool, tRNAmodviz web server (http://genesilico.pl/trnamodviz) for easy comparative analysis and visualization of modification patterns in individual tRNAs, as well as in groups of selected tRNA sequences. We also present results of comparative analysis of tRNA sequences derived from 7 phylogenetically distinct groups of organisms: Gram-negative bacteria, Gram-positive bacteria, cytosol of eukaryotic single cell organisms, Fungi and Metazoa, cytosol of Viridiplantae, mitochondria, plastids and Euryarchaeota. These data update the study conducted 20 y ago with the tRNA sequences available at that time.


Asunto(s)
Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Programas Informáticos , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Euryarchaeota/clasificación , Euryarchaeota/genética , Euryarchaeota/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Filogenia , Plastidios/genética , Plastidios/metabolismo , ARN Mensajero/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Viridiplantae/clasificación , Viridiplantae/genética , Viridiplantae/metabolismo
19.
Methods Mol Biol ; 2776: 243-257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502509

RESUMEN

Global understanding of plastid gene expression has always been impaired by its complexity. RNA splicing, editing, and intercistronic processing create multiple transcripts isoforms that can hardly be resolved using traditional molecular biology techniques. During the last decade, the wide adoption of RNA-seq-based techniques has, however, allowed an unprecedented understanding of all the different steps of chloroplast gene expression, from transcription to translation. Current strategies are nonetheless unable to identify and quantify full length transcripts isoforms, a limitation that can now be overcome using Nanopore Sequencing. We here provide a complete protocol to produce, from total leaf RNA, cDNA libraries ready for Nanopore sequencing. While most Nanopore protocols take advantage of the mRNA polyA tail we here first ligate an RNA adapter to the 3' ends of the RNAs and use it to initiate the template switching reverse transcription. The cDNA is then prepared and indexed for use with the regular Oxford Nanopore v14 chemistry. This protocol is of particular interest to researchers willing to simultaneously study the multiple post-transcriptional processes prevalent in the chloroplast.


Asunto(s)
Secuenciación de Nanoporos , Transcriptoma , Secuenciación de Nanoporos/métodos , Biblioteca de Genes , ARN/genética , Isoformas de Proteínas/genética , Cloroplastos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos
20.
RNA Biol ; 10(5): 726-37, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23563642

RESUMEN

CRISPR-Cas is a rapidly evolving RNA-mediated adaptive immune system that protects bacteria and archaea against mobile genetic elements. The system relies on the activity of short mature CRISPR RNAs (crRNAs) that guide Cas protein(s) to silence invading nucleic acids. A set of CRISPR-Cas, type II, requires a trans-activating small RNA, tracrRNA, for maturation of precursor crRNA (pre-crRNA) and interference with invading sequences. Following co-processing of tracrRNA and pre-crRNA by RNase III, dual-tracrRNA:crRNA guides the CRISPR-associated endonuclease Cas9 (Csn1) to cleave site-specifically cognate target DNA. Here, we screened available genomes for type II CRISPR-Cas loci by searching for Cas9 orthologs. We analyzed 75 representative loci, and for 56 of them we predicted novel tracrRNA orthologs. Our analysis demonstrates a high diversity in cas operon architecture and position of the tracrRNA gene within CRISPR-Cas loci. We observed a correlation between locus heterogeneity and Cas9 sequence diversity, resulting in the identification of various type II CRISPR-Cas subgroups. We validated the expression and co-processing of predicted tracrRNAs and pre-crRNAs by RNA sequencing in five bacterial species. This study reveals tracrRNA family as an atypical, small RNA family with no obvious conservation of structure, sequence or localization within type II CRISPR-Cas loci. The tracrRNA family is however characterized by the conserved feature to base-pair to cognate pre-crRNA repeats, an essential function for crRNA maturation and DNA silencing by dual-RNA:Cas9. The large panel of tracrRNA and Cas9 ortholog sequences should constitute a useful database to improve the design of RNA-programmable Cas9 as genome editing tool.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Secuencia de Bases , Proteínas Asociadas a CRISPR/inmunología , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad/genética , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Alineación de Secuencia , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA