Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 93(1): 109-137, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38598854

RESUMEN

Methylation of RNA nucleotides represents an important layer of gene expression regulation, and perturbation of the RNA methylome is associated with pathophysiology. In cells, RNA methylations are installed by RNA methyltransferases (RNMTs) that are specialized to catalyze particular types of methylation (ribose or different base positions). Furthermore, RNMTs must specifically recognize their appropriate target RNAs within the RNA-dense cellular environment. Some RNMTs are catalytically active alone and achieve target specificity via recognition of sequence motifs and/or RNA structures. Others function together with protein cofactors that can influence stability, S-adenosyl-L-methionine binding, and RNA affinity as well as aiding specific recruitment and catalytic activity. Association of RNMTs with guide RNAs represents an alternative mechanism to direct site-specific methylation by an RNMT that lacks intrinsic specificity. Recently, ribozyme-catalyzed methylation of RNA has been achieved in vitro, and here, we compare these different strategies for RNA methylation from structural and mechanistic perspectives.


Asunto(s)
Conformación de Ácido Nucleico , ARN Catalítico , ARN , ARN Catalítico/metabolismo , ARN Catalítico/química , ARN Catalítico/genética , Metilación , ARN/metabolismo , ARN/genética , ARN/química , Humanos , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Nucleótidos/metabolismo , Nucleótidos/química , Nucleótidos/genética , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/química , Especificidad por Sustrato , Animales , Modelos Moleculares
2.
Cell ; 185(8): 1308-1324.e23, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35325593

RESUMEN

Asymmetric localization of oskar ribonucleoprotein (RNP) granules to the oocyte posterior is crucial for abdominal patterning and germline formation in the Drosophila embryo. We show that oskar RNP granules in the oocyte are condensates with solid-like physical properties. Using purified oskar RNA and scaffold proteins Bruno and Hrp48, we confirm in vitro that oskar granules undergo a liquid-to-solid phase transition. Whereas the liquid phase allows RNA incorporation, the solid phase precludes incorporation of additional RNA while allowing RNA-dependent partitioning of client proteins. Genetic modification of scaffold granule proteins or tethering the intrinsically disordered region of human fused in sarcoma (FUS) to oskar mRNA allowed modulation of granule material properties in vivo. The resulting liquid-like properties impaired oskar localization and translation with severe consequences on embryonic development. Our study reflects how physiological phase transitions shape RNA-protein condensates to regulate the localization and expression of a maternal RNA that instructs germline formation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Animales , Gránulos de Ribonucleoproteínas Citoplasmáticas , Drosophila/embriología , Proteínas de Drosophila/genética , Desarrollo Embrionario , Oocitos/metabolismo , ARN/metabolismo
3.
Cell ; 181(2): 346-361.e17, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302572

RESUMEN

Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Células HeLa , Humanos , Conformación de Ácido Nucleico , Orgánulos/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Estrés Fisiológico/genética
4.
Cell ; 179(6): 1370-1381.e12, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761536

RESUMEN

The synthesis of new ribosomes begins during transcription of the rRNA and is widely assumed to follow an orderly 5' to 3' gradient. To visualize co-transcriptional assembly of ribosomal protein-RNA complexes in real time, we developed a single-molecule platform that simultaneously monitors transcription and protein association with the elongating transcript. Unexpectedly, the early assembly protein uS4 binds newly made pre-16S rRNA only transiently, likely due to non-native folding of the rRNA during transcription. Stable uS4 binding became more probable only in the presence of additional ribosomal proteins that bind upstream and downstream of protein uS4 by allowing productive assembly intermediates to form earlier. We propose that dynamic sampling of elongating RNA by multiple proteins overcomes heterogeneous RNA folding, preventing assembly bottlenecks and initiating assembly within the transcription time window. This may be a common feature of transcription-coupled RNP assembly.


Asunto(s)
Ribonucleoproteínas/metabolismo , Transcripción Genética , Fluorescencia , Modelos Biológicos , Unión Proteica , Estabilidad Proteica , Precursores del ARN/biosíntesis , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Elongación de la Transcripción Genética
5.
Cell ; 177(6): 1619-1631.e21, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31104843

RESUMEN

The stability of eukaryotic mRNAs is dependent on a ribonucleoprotein (RNP) complex of poly(A)-binding proteins (PABPC1/Pab1) organized on the poly(A) tail. This poly(A) RNP not only protects mRNAs from premature degradation but also stimulates the Pan2-Pan3 deadenylase complex to catalyze the first step of poly(A) tail shortening. We reconstituted this process in vitro using recombinant proteins and show that Pan2-Pan3 associates with and degrades poly(A) RNPs containing two or more Pab1 molecules. The cryo-EM structure of Pan2-Pan3 in complex with a poly(A) RNP composed of 90 adenosines and three Pab1 protomers shows how the oligomerization interfaces of Pab1 are recognized by conserved features of the deadenylase and thread the poly(A) RNA substrate into the nuclease active site. The structure reveals the basis for the periodic repeating architecture at the 3' end of cytoplasmic mRNAs. This illustrates mechanistically how RNA-bound Pab1 oligomers act as rulers for poly(A) tail length over the mRNAs' lifetime.


Asunto(s)
Exorribonucleasas/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Ribonucleoproteínas/metabolismo , Microscopía por Crioelectrón/métodos , Exorribonucleasas/fisiología , Poli A/metabolismo , Proteína I de Unión a Poli(A)/fisiología , Proteínas de Unión a Poli(A)/metabolismo , ARN/metabolismo , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Cell ; 174(1): 218-230.e13, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29804836

RESUMEN

Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells.


Asunto(s)
ARN no Traducido/química , Telomerasa/metabolismo , Biocatálisis , Línea Celular , Células HeLa , Humanos , Chaperonas Moleculares , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN no Traducido/metabolismo , Telomerasa/antagonistas & inhibidores , Telomerasa/química , Telomerasa/genética , Telómero/metabolismo
7.
Mol Cell ; 84(19): 3692-3705, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366355

RESUMEN

RNAs and RNA-binding proteins can undergo spontaneous or active condensation into phase-separated liquid-like droplets. These condensates are cellular hubs for various physiological processes, and their dysregulation leads to diseases. Although RNAs are core components of many cellular condensates, the underlying molecular determinants for the formation, regulation, and function of ribonucleoprotein condensates have largely been studied from a protein-centric perspective. Here, we highlight recent developments in ribonucleoprotein condensate biology with a particular emphasis on RNA-driven phase transitions. We also present emerging future directions that might shed light on the role of RNA condensates in spatiotemporal regulation of cellular processes and inspire bioengineering of RNA-based therapeutics.


Asunto(s)
Condensados Biomoleculares , Transición de Fase , Proteínas de Unión al ARN , ARN , Ribonucleoproteínas , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Humanos , ARN/metabolismo , ARN/química , ARN/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Animales
8.
Genes Dev ; 38(15-16): 698-717, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39142832

RESUMEN

Neurological and neuromuscular diseases resulting from familial, sporadic, or de novo mutations have devasting personal, familial, and societal impacts. As the initial product of DNA transcription, RNA transcripts and their associated ribonucleoprotein complexes provide attractive targets for modulation by increasing wild-type or blocking mutant allele expression, thus relieving downstream pathological consequences. Therefore, it is unsurprising that many existing and under-development therapeutics have focused on targeting disease-associated RNA transcripts as a frontline drug strategy for these genetic disorders. This review focuses on the current range of RNA targeting modalities using examples of both dominant and recessive neurological and neuromuscular diseases.


Asunto(s)
Enfermedades del Sistema Nervioso , Enfermedades Neuromusculares , ARN , Humanos , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/terapia , Enfermedades Neuromusculares/tratamiento farmacológico , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/terapia , Animales , ARN/metabolismo , ARN/genética , Terapia Molecular Dirigida/métodos
9.
Annu Rev Biochem ; 84: 325-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25784054

RESUMEN

Throughout their lifetimes, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Since the discovery of the first mRNP component more than 40 years ago, what is known as the mRNA interactome now comprises >1,000 proteins. These proteins bind mRNAs in myriad ways with varying affinities and stoichiometries, with many assembling onto nascent RNAs in a highly ordered process during transcription and precursor mRNA (pre-mRNA) processing. The nonrandom distribution of major mRNP proteins observed in transcriptome-wide studies leads us to propose that mRNPs are organized into three major domains loosely corresponding to 5' untranslated regions (UTRs), open reading frames, and 3' UTRs. Moving from the nucleus to the cytoplasm, mRNPs undergo extensive remodeling as they are first acted upon by the nuclear pore complex and then by the ribosome. When not being actively translated, cytoplasmic mRNPs can assemble into large multi-mRNP assemblies or be permanently disassembled and degraded. In this review, we aim to give the reader a thorough understanding of past and current eukaryotic mRNP research.


Asunto(s)
Ribonucleoproteínas/química , Transporte Activo de Núcleo Celular , Animales , Humanos , Biosíntesis de Proteínas , Empalme del ARN , Estabilidad del ARN , ARN Mensajero/metabolismo , Transcripción Genética
10.
Mol Cell ; 82(9): 1724-1736.e7, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35320752

RESUMEN

7SK non-coding RNA (7SK) negatively regulates RNA polymerase II (RNA Pol II) elongation by inhibiting positive transcription elongation factor b (P-TEFb), and its ribonucleoprotein complex (RNP) is hijacked by HIV-1 for viral transcription and replication. Methylphosphate capping enzyme (MePCE) and La-related protein 7 (Larp7) constitutively associate with 7SK to form a core RNP, while P-TEFb and other proteins dynamically assemble to form different complexes. Here, we present the cryo-EM structures of 7SK core RNP formed with two 7SK conformations, circular and linear, and uncover a common RNA-dependent MePCE-Larp7 complex. Together with NMR, biochemical, and cellular data, these structures reveal the mechanism of MePCE catalytic inactivation in the core RNP, unexpected interactions between Larp7 and RNA that facilitate a role as an RNP chaperone, and that MePCE-7SK-Larp7 core RNP serves as a scaffold for switching between different 7SK conformations essential for RNP assembly and regulation of P-TEFb sequestration and release.


Asunto(s)
Factor B de Elongación Transcripcional Positiva , ARN , Conformación Molecular , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteínas/metabolismo , Transcripción Genética
11.
Mol Cell ; 78(4): 670-682.e8, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32343944

RESUMEN

Biomolecular condensates play a key role in organizing RNAs and proteins into membraneless organelles. Bacterial RNP-bodies (BR-bodies) are a biomolecular condensate containing the RNA degradosome mRNA decay machinery, but the biochemical function of such organization remains poorly defined. Here, we define the RNA substrates of BR-bodies through enrichment of the bodies followed by RNA sequencing (RNA-seq). We find that long, poorly translated mRNAs, small RNAs, and antisense RNAs are the main substrates, while rRNA, tRNA, and other conserved non-coding RNAs (ncRNAs) are excluded from these bodies. BR-bodies stimulate the mRNA decay rate of enriched mRNAs, helping to reshape the cellular mRNA pool. We also observe that BR-body formation promotes complete mRNA decay, avoiding the buildup of toxic endo-cleaved mRNA decay intermediates. The combined selective permeability of BR-bodies for both enzymes and substrates together with the stimulation of the sub-steps of mRNA decay provide an effective organization strategy for bacterial mRNA decay.


Asunto(s)
Caulobacter crescentus/metabolismo , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Complejos Multienzimáticos/metabolismo , Orgánulos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/crecimiento & desarrollo , Endorribonucleasas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Humanos , Complejos Multienzimáticos/genética , Orgánulos/genética , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Helicasas/genética , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Mensajero/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
12.
Mol Cell ; 80(6): 1078-1091.e6, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33290746

RESUMEN

We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.


Asunto(s)
COVID-19/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Genoma Viral , Nucleocápside/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/metabolismo , Animales , Antivirales/farmacología , COVID-19/genética , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus/genética , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Nucleocápside/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , SARS-CoV-2/genética , Células Vero , Tratamiento Farmacológico de COVID-19
13.
Mol Cell ; 77(6): 1237-1250.e4, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32048997

RESUMEN

Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine-aspartic acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine's guanidinium ion. MCDs can synergize with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behavior is tunable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. Contrastingly, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation and link the dynamic material properties of speckles with function in mRNA processing.


Asunto(s)
Arginina/metabolismo , Núcleo Celular/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Lisina/metabolismo , Empalme del ARN/genética , ARN Mensajero/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Arginina/genética , Núcleo Celular/genética , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Lisina/genética , Mutación , Fosforilación , Dominios Proteicos , ARN Mensajero/genética , Factores de Empalme Serina-Arginina/genética
14.
Trends Genet ; 40(7): 580-586, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705823

RESUMEN

Due to their capacity to mediate repetitive protein interactions, intrinsically disordered regions (IDRs) are crucial for the formation of various types of protein-RNA complexes. The functions of IDRs are strongly modulated by post-translational modifications (PTMs). Phosphorylation is the most common and well-studied modification of IDRs, which can alter homomeric or heteromeric interactions of proteins and impact their ability to phase separate. Moreover, phosphorylation can influence the RNA-binding properties of proteins, and recent studies demonstrated its selective impact on the global profiles of protein-RNA binding and regulation. These findings highlight the need for further integrative approaches to understand how signalling remodels protein-RNA networks in cells.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN , ARN , Fosforilación , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , ARN/genética , Procesamiento Proteico-Postraduccional/genética , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química
15.
EMBO J ; 42(7): e111870, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36178199

RESUMEN

The presence of foreign nucleic acids in the cytosol is a marker of infection. Cells have sensors, also known as pattern recognition receptors (PRRs), in the cytosol that detect foreign nucleic acid and initiate an innate immune response. Recent studies have reported the condensation of multiple PRRs including PKR, NLRP6, and cGAS, with their nucleic acid activators into discrete nucleoprotein assemblies. Nucleic acid-protein condensates form due to multivalent interactions and can create high local concentrations of components. The formation of PRR-containing condensates may alter the magnitude or timing of PRR activation. In addition, unique condensates form following RNase L activation or during paracrine signaling from virally infected cells that may play roles in antiviral defense. These observations suggest that condensate formation may be a conserved mechanism that cells use to regulate activation of the innate immune response and open an avenue for further investigation into the composition and function of these condensates. Here we review the nucleic acid-protein granules that are implicated in the innate immune response, discuss general consequences of condensate formation and signal transduction, as well as what outstanding questions remain.


Asunto(s)
Ácidos Nucleicos , Inmunidad Innata , Receptores de Reconocimiento de Patrones , Transducción de Señal , Citosol
16.
EMBO J ; 42(20): e114106, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37724036

RESUMEN

The localization of RNAs in cells is critical for many cellular processes. Whereas motor-driven transport of ribonucleoprotein (RNP) condensates plays a prominent role in RNA localization in cells, their study remains limited by the scarcity of available tools allowing to manipulate condensates in a spatial manner. To fill this gap, we reconstitute in cellula a minimal RNP transport system based on bioengineered condensates, which were functionalized with kinesins and dynein-like motors, allowing for their positioning at either the cell periphery or centrosomes. This targeting mostly occurs through the active transport of the condensate scaffolds, which leads to localized nucleation of phase-separated condensates. Then, programming the condensates to recruit specific mRNAs is able to shift the localization of these mRNAs toward the cell periphery or the centrosomes. Our method opens novel perspectives for examining the role of RNA localization as a driver of cellular functions.


Asunto(s)
Microtúbulos , Ribonucleoproteínas , Microtúbulos/metabolismo , Ribonucleoproteínas/genética , ARN/genética , ARN Mensajero/genética , Dineínas/genética , Dineínas/metabolismo
17.
Mol Cell ; 74(3): 598-608.e6, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051140

RESUMEN

RNA flow between organisms has been documented within and among different kingdoms of life. Recently, we demonstrated horizontal RNA transfer between honeybees involving secretion and ingestion of worker and royal jellies. However, how the jelly facilitates transfer of RNA is still unknown. Here, we show that worker and royal jellies harbor robust RNA-binding activity. We report that a highly abundant jelly component, major royal jelly protein 3 (MRJP-3), acts as an extracellular non-sequence-specific RNA-aggregating factor. Multivalent RNA binding stimulates higher-order assembly of MRJP-3 into extracellular ribonucleoprotein granules that protect RNA from degradation and enhance RNA bioavailability. These findings reveal that honeybees have evolved a secreted dietary RNA-binding factor to concentrate, stabilize, and share RNA among individuals. Our work identifies high-order ribonucleoprotein assemblies with functions outside cells and organisms.


Asunto(s)
Abejas/genética , Ácidos Grasos/genética , Transferencia de Gen Horizontal/genética , Glicoproteínas/genética , Proteínas de Insectos/genética , Animales , Ácidos Grasos/biosíntesis , Transición de Fase , ARN/genética , Transporte de ARN/genética , Proteínas de Unión al ARN/genética
18.
Mol Cell ; 74(3): 521-533.e6, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30952514

RESUMEN

Cellular RNAs often colocalize with cytoplasmic, membrane-less ribonucleoprotein (RNP) granules enriched for RNA-processing enzymes, termed processing bodies (PBs). Here we track the dynamic localization of individual miRNAs, mRNAs, and long non-coding RNAs (lncRNAs) to PBs using intracellular single-molecule fluorescence microscopy. We find that unused miRNAs stably bind to PBs, whereas functional miRNAs, repressed mRNAs, and lncRNAs both transiently and stably localize within either the core or periphery of PBs, albeit to different extents. Consequently, translation potential and 3' versus 5' placement of miRNA target sites significantly affect the PB localization dynamics of mRNAs. Using computational modeling and supporting experimental approaches, we show that partitioning in the PB phase attenuates mRNA silencing, suggesting that physiological mRNA turnover occurs predominantly outside of PBs. Instead, our data support a PB role in sequestering unused miRNAs for surveillance and provide a framework for investigating the dynamic assembly of RNP granules by phase separation at single-molecule resolution.


Asunto(s)
MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Ribonucleoproteínas/genética , Gránulos Citoplasmáticos/genética , Silenciador del Gen , Células HeLa , Humanos , Procesamiento Postranscripcional del ARN/genética , ARN no Traducido/genética , Imagen Individual de Molécula
19.
Mol Cell ; 76(2): 329-345, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626751

RESUMEN

High-throughput sequencing-based methods and their applications in the study of transcriptomes have revolutionized our understanding of alternative splicing. Networks of functionally coordinated and biologically important alternative splicing events continue to be discovered in an ever-increasing diversity of cell types in the context of physiologically normal and disease states. These studies have been complemented by efforts directed at defining sequence codes governing splicing and their cognate trans-acting factors, which have illuminated important combinatorial principles of regulation. Additional studies have revealed critical roles of position-dependent, multivalent protein-RNA interactions that direct splicing outcomes. Investigations of evolutionary changes in RNA binding proteins, splice variants, and associated cis elements have further shed light on the emergence, mechanisms, and functions of splicing networks. Progress in these areas has emphasized the need for a coordinated, community-based effort to systematically address the functions of individual splice variants associated with normal and disease biology.


Asunto(s)
Empalme Alternativo/fisiología , Evolución Molecular , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Humanos
20.
EMBO J ; 41(9): e110137, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35355287

RESUMEN

Numerous membrane-less organelles, composed of a combination of RNA and proteins, are observed in the nucleus and cytoplasm of eukaryotic cells. These RNP granules include stress granules (SGs), processing bodies (PBs), Cajal bodies, and nuclear speckles. An unresolved question is how frequently RNA molecules are required for the integrity of RNP granules in either the nucleus or cytosol. To address this issue, we degraded intracellular RNA in either the cytosol or the nucleus by the activation of RNase L and examined the impact of RNA loss on several RNP granules. We find the majority of RNP granules, including SGs, Cajal bodies, nuclear speckles, and the nucleolus, are altered by the degradation of their RNA components. In contrast, PBs and super-enhancer complexes were largely not affected by RNA degradation in their respective compartments. RNA degradation overall led to the apparent dissolution of some membrane-less organelles, whereas others reorganized into structures with altered morphology. These findings highlight a critical and widespread role of RNA in the organization of several RNP granules.


Asunto(s)
Gránulos Citoplasmáticos , ARN , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA