Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 203-215, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38411551

RESUMEN

Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases.


Asunto(s)
Archaea , Ácido Mevalónico , Ácido Mevalónico/metabolismo , Archaea/metabolismo , Methanosarcinaceae/química , Methanosarcinaceae/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química
2.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 7): 169-179, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37358501

RESUMEN

Superoxide dismutase (SOD) is an essential and ubiquitous antioxidant protein that is widely present in biological systems. The anhydrobiotic tardigrades are some of the toughest micro-animals. They have an expanded set of genes for antioxidant proteins such as SODs. These proteins are thought to play an essential role in oxidative stress resistance in critical situations such as desiccation, although their functions at the molecular level have yet to be explored. Here, crystal structures of a copper/zinc-containing SOD (RvSOD15) from an anhydrobiotic tardigrade, Ramazzottius varieornatus strain YOKOZUNA-1, are reported. In RvSOD15, one of the histidine ligands of the catalytic copper center is replaced by a valine (Val87). The crystal structures of the wild type and the V87H mutant show that even though a histidine is placed at position 87, a nearby flexible loop can destabilize the coordination of His87 to the Cu atom. Model structures of other RvSODs were investigated and it was found that some of them are also unusual SODs, with features such as deletion of the electrostatic loop or ß3 sheet and unusual metal-binding residues. These studies show that RvSOD15 and some other RvSODs may have evolved to lose the SOD function, suggesting that gene duplications of antioxidant proteins do not solely explain the high stress tolerance of anhydrobiotic tardigrades.


Asunto(s)
Histidina , Tardigrada , Animales , Antioxidantes/metabolismo , Cristalografía por Rayos X , Tardigrada/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/química , Proteínas/metabolismo
3.
Plant Physiol Biochem ; 205: 108184, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977025

RESUMEN

DNA damage is a serious threat to all living organisms and may be induced by environmental stressors. Previous studies have revealed that the tardigrade (Ramazzotius varieornatus) DNA damage suppressor protein Dsup has protective effects in human cells and tobacco. However, whether Dsup provides radiation damage protection more widely in crops is unclear. To explore the effects of Dsup in other crops, stable Dsup overexpression lines through Agrobacterium-mediated transformation were generated and their agronomic traits were deeply investigated. In this study, the overexpression of Dsup not only enhanced the DNA damage resistance at the seeds and seedlings stages, they also exhibited grain size enlargement and starch granule structure and cell size alteration by the scanning electron microscopy observation. Notably, the RNA-seq revealed that the Dsup plants increased radiation-related and abiotic stress-related gene expression in comparison to wild types, suggesting that Dsup is capable to coordinate normal growth and abiotic stress resistance in rice. Immunoprecipitation enrichment with liquid chromatography-tandem mass spectrometry (IP-LC-MS) assays uncovered 21 proteins preferably interacting with Dsup in plants, suggesting that Dsup binds to transcription and translation related proteins to regulate the homeostasis between DNA protection and plant development. In conclusion, our data provide a detailed agronomic analysis of Dsup plants and potential mechanisms of Dsup function in crops. Our findings provide novel insights for the breeding of crop radiation resistance.


Asunto(s)
Oryza , Humanos , Oryza/metabolismo , Fitomejoramiento , Grano Comestible/genética , Grano Comestible/metabolismo , Semillas/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Evol Bioinform Online ; 18: 11769343221140277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578471

RESUMEN

Lineage-specific genes can contribute to the emergence and evolution of novel traits and adaptations. Tardigrades are animals that have adapted to tolerate extreme conditions by undergoing a form of cryptobiosis called anhydrobiosis, a physical transformation to an inactive desiccated state. While studies to understand the genetics underlying the interspecies diversity in anhydrobiotic transitions have identified tardigrade-specific genes and family expansions involved in this process, the contributions of species-specific genes to the variation in tardigrade development and cryptobiosis are less clear. We used previously published transcriptomes throughout development and anhydrobiosis (5 embryonic stages, 7 juvenile stages, active adults, and tun adults) to assess the transcriptional biases of different classes of genes between 2 tardigrade species, Hypsibius exemplaris and Ramazzottius varieornatus. We also used the transcriptomes of 2 other tardigrades, Echiniscoides sigismundi and Richtersius coronifer, and data from 3 non-tardigrade species (Adenita vaga, Drosophila melanogaster, and Caenorhabditis elegans) to help identify lineage-specific genes. We found that lineage-specific genes have generally low and narrow expression but are enriched among biased genes in different stages of development depending on the species. Biased genes tend to be specific to early and late development, but there is little overlap in functional enrichment of biased genes between species. Gene expansions in the 2 tardigrades also involve families with different functions despite homologous genes being expressed during anhydrobiosis in both species. Our results demonstrate the interspecific variation in transcriptional contributions and biases of lineage-specific genes during development and anhydrobiosis in 2 tardigrades.

5.
Data Brief ; 36: 107111, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34095369

RESUMEN

Tardigrades are microscopic animals of which terrestrial species are capable of tolerating extreme environments by entering a desiccated ametabolic state known as anhydrobiosis. Intriguingly, they survive high dosage gamma rays (>4,000 Gy), possibly through a mechanism known as cross-tolerance. We hypothesized that anhydrobiosis genes are also regulated during cross-tolerance, thus we submitted Ramazzottius varieornatus to 500 Gy 60Co gamma-ray and conducted time-course low-input RNA-Seq. The gene expression was quantified with RSEM and differential expression was determined with DEseq2. Differentially expressed genes were submitted to gene ontology enrichment analysis with GOStat. The transcriptome dynamically shifted nine hours post-exposure.

6.
Elife ; 82019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31571581

RESUMEN

Tardigrades, also known as water bears, are animals that can survive extreme conditions. The tardigrade Ramazzottius varieornatus contains a unique nuclear protein termed Dsup, for damage suppressor, which can increase the resistance of human cells to DNA damage under conditions, such as ionizing radiation or hydrogen peroxide treatment, that generate hydroxyl radicals. Here we find that R. varieornatus Dsup is a nucleosome-binding protein that protects chromatin from hydroxyl radicals. Moreover, a Dsup ortholog from the tardigrade Hypsibius exemplaris similarly binds to nucleosomes and protects DNA from hydroxyl radicals. Strikingly, a conserved region in Dsup proteins exhibits sequence similarity to the nucleosome-binding domain of vertebrate HMGN proteins and is functionally important for nucleosome binding and hydroxyl radical protection. These findings suggest that Dsup promotes the survival of tardigrades under diverse conditions by a direct mechanism that involves binding to nucleosomes and protecting chromosomal DNA from hydroxyl radicals.


Asunto(s)
Daño del ADN , ADN/metabolismo , Radical Hidroxilo/metabolismo , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Tardigrada/enzimología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA